Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (2) : 154-164    https://doi.org/10.1007/s11515-015-1354-2
REVIEW
Emerging roles of autophagy in metabolism and metabolic disorders
Altea Rocchi,Congcong He()
Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
 Download: PDF(762 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The global prevalence of metabolic disorders is an immediate threat to human health. Genetic features, environmental aspects and lifestyle changes are the major risk factors determining metabolic dysfunction in the body. Autophagy is a housekeeping stress-induced lysosomal degradation pathway, which recycles macromolecules and metabolites for new protein synthesis and energy production and regulates cellular homeostasis by clearance of damaged protein or organelles. Recently, a dramatically increasing number of literatures has shown that defects of the autophagic machinery is associated with dysfunction of multiple metabolic tissues including pancreatic β cells, liver, adipose tissue and muscle, and is implicated in metabolic disorders such as obesity and insulin resistance. Here in this review, we summarize the representative works on these topics and discuss the versatile roles of autophagy in the regulation of cellular metabolism and its possible implication in metabolic diseases.

Keywords autophagy      selective autophagy      metabolism      metabolic disease      obesity      diabetes     
Corresponding Author(s): Congcong He   
Just Accepted Date: 05 March 2015   Online First Date: 30 March 2015    Issue Date: 06 May 2015
 Cite this article:   
Altea Rocchi,Congcong He. Emerging roles of autophagy in metabolism and metabolic disorders[J]. Front. Biol., 2015, 10(2): 154-164.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1354-2
https://academic.hep.com.cn/fib/EN/Y2015/V10/I2/154
Fig.1  Autophagy in organelle turnover and nutrient recycling. Autophagy is initiated by the formation of an isolation membrane (or phagophore) under stress conditions, such as nutrient deprivation, hypoxia and oxidative stress. The isolation membrane enwraps bulk cytosol or specific cargos (misfolded proteins, mitochondria, glycogen, ribosomes, lipid droplets, etc.), and elongates and forms a double-membrane autophagosome. It then fuses with the lysosome into an autolysosome, where the resident hydrolytic enzymes digest cargos and various resulting metabolites and macromolecules (including amino acids, glucose, nucleic acids and free fatty acids) are released back to the cytosol as new building blocks or energy sources. LD, lipid droplets; FFA, free fatty acids.
Fig.2  Regulation of autophagosome formation. Under nutrient-rich conditions, active mTORC1 inhibits the ULK1 kinase complex; whereas starvation activates AMPK, suppresses mTORC1 and induces ULK1, which upregulates another kinase complex, the PtdIns3K complex. Recruitment of Beclin 1 to the PtdIns3K complex is essential for the kinase activity, and is negatively regulated by sequestration of Beclin 1 by Bcl-2 and positively regulated by release of Beclin 1 upon JNK-mediated phosphorylation of Bcl-2. The PtdIns3K complex generates PI3P, which recruits additional PI3P- binding proteins (including WIPI and DFCP1) to promote autophagosome formation. Elongation of autophagosome membrane requires two ubiquitin-like conjugation systems, Atg12-Atg5-Atg16 and LC3-PE; the former acts as an E3 ligase to assist the conjugation of LC3 to PE. All the above molecules and pathways cooperate on the induction and formation of autophagosomes under stress conditions.
Fig.3  Functions of autophagy in multiple metabolic tissues. The roles of autophagy in selective tissues are summarized, based on the results from both in vitro and in vivo studies. Impaired autophagy imposes opposite effects in specific organs, leading to diverse metabolic abnormalities and susceptibility to diseases. TG, triglycerides; UPR, unfolded protein response; WAT, white adipose tissue; BAT, brown adipose tissue.
1 Axe E L, Walker S A, Manifava M, Chandra P, Roderick H L, Habermann A, Griffiths G, Ktistakis N T (2008). Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol, 182(4): 685–701
https://doi.org/10.1083/jcb.200803137 pmid: 18725538
2 Baerga R, Zhang Y, Chen P H, Goldman S, Jin S (2009). Targeted deletion of autophagy-related 5 (atg5) impairs adipogenesis in a cellular model and in mice. Autophagy, 5(8): 1118–1130
https://doi.org/10.4161/auto.5.8.9991 pmid: 19844159
3 Bj?rk?y G, Lamark T, Brech A, Outzen H, Perander M, ?vervatn A, Stenmark H, Johansen T (2005). p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol, 171(4): 603–614
https://doi.org/10.1083/jcb.200507002 pmid: 16286508
4 Boyle K B, Randow F (2013). The role of ‘eat-me’ signals and autophagy cargo receptors in innate immunity. Curr Opin Microbiol, 16(3): 339–348
https://doi.org/10.1016/j.mib.2013.03.010 pmid: 23623150
5 Burman C, Ktistakis N T (2010). Regulation of autophagy by phosphatidylinositol 3-phosphate. FEBS Lett, 584(7): 1302–1312
https://doi.org/10.1016/j.febslet.2010.01.011 pmid: 20074568
6 Campello S, Strappazzon F, Cecconi F (2014). Mitochondrial dismissal in mammals, from protein degradation to mitophagy. Biochim Biophys Acta, 1837(4): 451–460
https://doi.org/10.1016/j.bbabio.2013.11.010 pmid: 24275087
7 Cebollero E, Reggiori F, Kraft C (2012). Reticulophagy and ribophagy: regulated degradation of protein production factories. Int J Cell Biol, 2012: 182834
pmid: 22481944
8 Cecconi F, Levine B (2008). The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell, 15(3): 344–357
https://doi.org/10.1016/j.devcel.2008.08.012 pmid: 18804433
9 Coupé B, Ishii Y, Dietrich M O, Komatsu M, Horvath T L, Bouret S G (2012). Loss of autophagy in pro-opiomelanocortin neurons perturbs axon growth and causes metabolic dysregulation. Cell Metab, 15(2): 247–255
https://doi.org/10.1016/j.cmet.2011.12.016 pmid: 22285542
10 De Duve C, Wattiaux R (1966). Functions of lysosomes. Annu Rev Physiol, 28(1): 435–492
https://doi.org/10.1146/annurev.ph.28.030166.002251 pmid: 5322983
11 Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, Azuma K, Hirose T, Tanaka K, Kominami E, Kawamori R, Fujitani Y, Watada H (2008). Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab, 8(4): 325–332
https://doi.org/10.1016/j.cmet.2008.08.009 pmid: 18840363
12 Elzinga B M, Nyhan M J, Crowley L C, O’Donovan T R, Cahill M R, McKenna S L (2013). Induction of autophagy by Imatinib sequesters Bcr-Abl in autophagosomes and down-regulates Bcr-Abl protein. Am J Hematol, 88(6): 455–462
https://doi.org/10.1002/ajh.23428 pmid: 23440701
13 Geisler S, Holmstr?m K M, Skujat D, Fiesel F C, Rothfuss O C, Kahle P J, Springer W (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol, 12(2): 119–131
https://doi.org/10.1038/ncb2012 pmid: 20098416
14 Geng J, Klionsky D J (2008). The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep, 9(9): 859–864
https://doi.org/10.1038/embor.2008.163 pmid: 18704115
15 Goldman S, Zhang Y, Jin S (2010). Autophagy and adipogenesis: implications in obesity and type II diabetes. Autophagy, 6(1): 179–181
https://doi.org/10.4161/auto.6.1.10814 pmid: 20110772
16 Gonzalez C D, Lee M S, Marchetti P, Pietropaolo M, Towns R, Vaccaro M I, Watada H, Wiley J W (2011). The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy, 7(1): 2–11
https://doi.org/10.4161/auto.7.1.13044 pmid: 20935516
17 Grumati P, Coletto L, Schiavinato A, Castagnaro S, Bertaggia E, Sandri M, Bonaldo P (2011). Physical exercise stimulates autophagy in normal skeletal muscles but is detrimental for collagen VI-deficient muscles. Autophagy, 7(12): 1415–1423
https://doi.org/10.4161/auto.7.12.17877 pmid: 22024752
18 Guariguata L, Whiting D R, Hambleton I, Beagley J, Linnenkamp U, Shaw J E (2014). Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract, 103(2): 137–149
https://doi.org/10.1016/j.diabres.2013.11.002 pmid: 24630390
19 Hanada T, Noda N N, Satomi Y, Ichimura Y, Fujioka Y, Takao T, Inagaki F, Ohsumi Y (2007). The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J Biol Chem, 282(52): 37298–37302
https://doi.org/10.1074/jbc.C700195200 pmid: 17986448
20 Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan J L, Mizushima N (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol, 181(3): 497–510
https://doi.org/10.1083/jcb.200712064 pmid: 18443221
21 He C, Bassik M C, Moresi V, Sun K, Wei Y, Zou Z, An Z, Loh J, Fisher J, Sun Q, Korsmeyer S, Packer M, May H I, Hill J A, Virgin H W, Gilpin C, Xiao G, Bassel-Duby R, Scherer P E, Levine B (2012). Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature, 481(7382): 511–515
https://doi.org/10.1038/nature10758 pmid: 22258505
22 He C, Wei Y, Sun K, Li B, Dong X, Zou Z, Liu Y, Kinch L N, Khan S, Sinha S, Xavier R J, Grishin N V, Xiao G, Eskelinen E L, Scherer P E, Whistler J L, Levine B (2013). Beclin 2 functions in autophagy, degradation of G protein-coupled receptors, and metabolism. Cell, 154(5): 1085–1099
https://doi.org/10.1016/j.cell.2013.07.035 pmid: 23954414
23 Ichimura Y, Waguri S, Sou Y S, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T, Hoshii T, Hirao A, Takagi K, Mizushima T, Motohashi H, Lee M S, Yoshimori T, Tanaka K, Yamamoto M, Komatsu M (2013). Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell, 51(5): 618–631
https://doi.org/10.1016/j.molcel.2013.08.003 pmid: 24011591
24 Jaber N, Dou Z, Chen J S, Catanzaro J, Jiang Y P, Ballou L M, Selinger E, Ouyang X, Lin R Z, Zhang J, Zong W X (2012). Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc Natl Acad Sci USA, 109(6): 2003–2008
https://doi.org/10.1073/pnas.1112848109 pmid: 22308354
25 Jeong H, Then F, Melia T J Jr, Mazzulli J R, Cui L, Savas J N, Voisine C, Paganetti P, Tanese N, Hart A C, Yamamoto A, Krainc D (2009). Acetylation targets mutant huntingtin to autophagosomes for degradation. Cell, 137(1): 60–72
https://doi.org/10.1016/j.cell.2009.03.018 pmid: 19345187
26 Jiang S, Heller B, Tagliabracci V S, Zhai L, Irimia J M, DePaoli-Roach A A, Wells C D, Skurat A V, Roach P J (2010). Starch binding domain-containing protein 1/genethonin 1 is a novel participant in glycogen metabolism. J Biol Chem, 285(45): 34960–34971
https://doi.org/10.1074/jbc.M110.150839 pmid: 20810658
27 Jiang S, Wells C D, Roach P J (2011). Starch-binding domain-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochem Biophys Res Commun, 413(3): 420–425
https://doi.org/10.1016/j.bbrc.2011.08.106 pmid: 21893048
28 Jiang Y, Huang W, Wang J, Xu Z, He J, Lin X, Zhou Z, Zhang J (2014). Metformin plays a dual role in MIN6 pancreatic β cell function through AMPK-dependent autophagy. Int J Biol Sci, 10(3): 268–277
https://doi.org/10.7150/ijbs.7929 pmid: 24644425
29 Johansen T, Lamark T (2011). Selective autophagy mediated by autophagic adapter proteins. Autophagy, 7(3): 279–296
https://doi.org/10.4161/auto.7.3.14487 pmid: 21189453
30 Jung C H, Jun C B, Ro S H, Kim Y M, Otto N M, Cao J, Kundu M, Kim D H (2009). ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell, 20(7): 1992–2003
https://doi.org/10.1091/mbc.E08-12-1249 pmid: 19225151
31 Jung C H, Ro S H, Cao J, Otto N M, Kim D H (2010). mTOR regulation of autophagy. FEBS Lett, 584(7): 1287–1295
https://doi.org/10.1016/j.febslet.2010.01.017 pmid: 20083114
32 Jung H S, Chung K W, Won Kim J, Kim J, Komatsu M, Tanaka K, Nguyen Y H, Kang T M, Yoon K H, Kim J W, Jeong Y T, Han M S, Lee M K, Kim K W, Shin J, Lee M S (2008). Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab, 8(4): 318–324
https://doi.org/10.1016/j.cmet.2008.08.013 pmid: 18840362
33 Jung H S, Lee M S (2010). Role of autophagy in diabetes and mitochondria. Ann N Y Acad Sci, 1201(1): 79–83
https://doi.org/10.1111/j.1749-6632.2010.05614.x pmid: 20649543
34 Kageyama S, Sou Y S, Uemura T, Kametaka S, Saito T, Ishimura R, Kouno T, Bedford L, Mayer R J, Lee M S, Yamamoto M, Waguri S, Tanaka K, Komatsu M (2014). Proteasome dysfunction activates autophagy and the Keap1-Nrf2 pathway. J Biol Chem, 289(36): 24944–24955
https://doi.org/10.1074/jbc.M114.580357 pmid: 25049227
35 Kahn S E, Hull R L, Utzschneider K M (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 444(7121): 840–846
https://doi.org/10.1038/nature05482 pmid: 17167471
36 Kalender A, Selvaraj A, Kim S Y, Gulati P, Br?lé S, Viollet B, Kemp B E, Bardeesy N, Dennis P, Schlager J J, Marette A, Kozma S C, Thomas G (2010). Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab, 11(5): 390–401
https://doi.org/10.1016/j.cmet.2010.03.014 pmid: 20444419
37 Kane L A, Lazarou M, Fogel A I, Li Y, Yamano K, Sarraf S A, Banerjee S, Youle R J (2014). PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol, 205(2): 143–153
pmid: 24751536
38 Kaushik S, Arias E, Kwon H, Lopez N M, Athonvarangkul D, Sahu S, Schwartz G J, Pessin J E, Singh R (2012). Loss of autophagy in hypothalamic POMC neurons impairs lipolysis. EMBO Rep, 13(3): 258–265
https://doi.org/10.1038/embor.2011.260 pmid: 22249165
39 Kaushik S, Cuervo A M (2012). Chaperone-mediated autophagy: a unique way to enter the lysosome world. Trends Cell Biol, 22(8): 407–417
https://doi.org/10.1016/j.tcb.2012.05.006 pmid: 22748206
40 Kaushik S, Rodriguez-Navarro J A, Arias E, Kiffin R, Sahu S, Schwartz G J, Cuervo A M, Singh R (2011). Autophagy in hypothalamic AgRP neurons regulates food intake and energy balance. Cell Metab, 14(2): 173–183
https://doi.org/10.1016/j.cmet.2011.06.008 pmid: 21803288
41 Kazlauskaite A, Kondapalli C, Gourlay R, Campbell D G, Ritorto M S, Hofmann K, Alessi D R, Knebel A, Trost M, Muqit M M (2014). Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem J, 460(1): 127–139
https://doi.org/10.1042/BJ20140334 pmid: 24660806
42 Kim K H, Jeong Y T, Oh H, Kim S H, Cho J M, Kim Y N, Kim S S, Kim H, Hur K Y, Kim H K, Ko T, Han J, Kim H L, Kim J, Back S H, Komatsu M, Chen H, Chan D C, Konishi M, Itoh N, Choi C S, Lee M S (2013). Autophagy deficiency leads to protection from obesity and insulin resistance by inducing Fgf21 as a mitokine. Nat Med, 19(1): 83–92
https://doi.org/10.1038/nm.3014 pmid: 23202295
43 Kim K H, Lee M S (2014). Autophagy—a key player in cellular and body metabolism. Nat Rev Endocrinol, 10(6): 322–337
https://doi.org/10.1038/nrendo.2014.35 pmid: 24663220
44 Kirkin V, Lamark T, Sou Y S, Bj?rk?y G, Nunn J L, Bruun J A, Shvets E, McEwan D G, Clausen T H, Wild P, Bilusic I, Theurillat J P, ?vervatn A, Ishii T, Elazar Z, Komatsu M, Dikic I, Johansen T (2009). A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell, 33(4): 505–516
pmid: 19250911
45 Knaevelsrud H, Simonsen A (2010). Fighting disease by selective autophagy of aggregate-prone proteins. FEBS Lett, 584(12): 2635–2645
https://doi.org/10.1016/j.febslet.2010.04.041 pmid: 20412801
46 Komatsu M, Kurokawa H, Waguri S, Taguchi K, Kobayashi A, Ichimura Y, Sou Y S, Ueno I, Sakamoto A, Tong K I, Kim M, Nishito Y, Iemura S, Natsume T, Ueno T, Kominami E, Motohashi H, Tanaka K, Yamamoto M (2010). The selective autophagy substrate p62 activates the stress responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol, 12(3): 213–223
pmid: 20173742
47 Komatsu M, Waguri S, Ueno T, Iwata J, Murata S, Tanida I, Ezaki J, Mizushima N, Ohsumi Y, Uchiyama Y, Kominami E, Tanaka K, Chiba T (2005). Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol, 169(3): 425–434
https://doi.org/10.1083/jcb.200412022 pmid: 15866887
48 Korac J, Schaeffer V, Kovacevic I, Clement A M, Jungblut B, Behl C, Terzic J, Dikic I (2013). Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J Cell Sci, 126(Pt 2): 580–592
https://doi.org/10.1242/jcs.114926 pmid: 23178947
49 Koyano F, Okatsu K, Kosako H, Tamura Y, Go E, Kimura M, Kimura Y, Tsuchiya H, Yoshihara H, Hirokawa T, Endo T, Fon E A, Trempe J F, Saeki Y, Tanaka K, Matsuda N (2014). Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature, 510(7503): 162–166
pmid: 24784582
50 Kraft C, Deplazes A, Sohrmann M, Peter M (2008). Mature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol, 10(5): 602–610
https://doi.org/10.1038/ncb1723 pmid: 18391941
51 Kroemer G, Mari?o G, Levine B (2010). Autophagy and the integrated stress response. Mol Cell, 40(2): 280–293
https://doi.org/10.1016/j.molcel.2010.09.023 pmid: 20965422
52 Kuma A, Mizushima N (2010). Physiological role of autophagy as an intracellular recycling system: with an emphasis on nutrient metabolism. Semin Cell Dev Biol, 21(7): 683–690
https://doi.org/10.1016/j.semcdb.2010.03.002 pmid: 20223289
53 Le Guezennec X, Brichkina A, Huang Y F, Kostromina E, Han W, Bulavin D V (2012). Wip1-dependent regulation of autophagy, obesity, and atherosclerosis. Cell Metab, 16(1): 68–80
https://doi.org/10.1016/j.cmet.2012.06.003 pmid: 22768840
54 Lee J M, Wagner M, Xiao R, Kim K H, Feng D, Lazar M A, Moore D D (2014). Nutrient-sensing nuclear receptors coordinate autophagy. Nature, 516(7529): 112–115
pmid: 25383539
55 Levine B, Klionsky D J (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell, 6(4): 463–477
https://doi.org/10.1016/S1534-5807(04)00099-1 pmid: 15068787
56 Levine B, Kroemer G (2008). Autophagy in the pathogenesis of disease. Cell, 132(1): 27–42
https://doi.org/10.1016/j.cell.2007.12.018 pmid: 18191218
57 Lim Y M, Lim H, Hur K Y, Quan W, Lee H Y, Cheon H, Ryu D, Koo S H, Kim H L, Kim J, Komatsu M, Lee M S (2014). Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes. Nat Commun, 5: 4934
https://doi.org/10.1038/ncomms5934 pmid: 25255859
58 Lira V A, Okutsu M, Zhang M, Greene N P, Laker R C, Breen D S, Hoehn K L, Yan Z (2013). Autophagy is required for exercise training-induced skeletal muscle adaptation and improvement of physical performance. FASEB J, 27: 4184–4193
59 Liu H Y, Han J, Cao S Y, Hong T, Zhuo D, Shi J, Liu Z, Cao W (2009). Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J Biol Chem, 284(45): 31484–31492
https://doi.org/10.1074/jbc.M109.033936 pmid: 19758991
60 Mammucari C, Milan G, Romanello V, Masiero E, Rudolf R, Del Piccolo P, Burden S J, Di Lisi R, Sandri C, Zhao J, Goldberg A L, Schiaffino S, Sandri M (2007). FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab, 6(6): 458–471
https://doi.org/10.1016/j.cmet.2007.11.001 pmid: 18054315
61 Marselli L, Bugliani M, Suleiman M, Olimpico F, Masini M, Petrini M, Boggi U, Filipponi F, Syed F, Marchetti P (2013). β-Cell inflammation in human type 2 diabetes and the role of autophagy. Diabetes Obes Metab, 15(Suppl 3): 130–136
https://doi.org/10.1111/dom.12152 pmid: 24003929
62 Masiero E, Agatea L, Mammucari C, Blaauw B, Loro E, Komatsu M, Metzger D, Reggiani C, Schiaffino S, Sandri M (2009). Autophagy is required to maintain muscle mass. Cell Metab, 10(6): 507–515
https://doi.org/10.1016/j.cmet.2009.10.008 pmid: 19945408
63 Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T, Akira S, Noda T, Yoshimori T (2009). Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol, 11(4): 385–396
https://doi.org/10.1038/ncb1846 pmid: 19270696
64 Mizushima N (2010). The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol, 22(2): 132–139
https://doi.org/10.1016/j.ceb.2009.12.004 pmid: 20056399
65 Mizushima N, Komatsu M (2011). Autophagy: renovation of cells and tissues. Cell, 147(4): 728–741
https://doi.org/10.1016/j.cell.2011.10.026 pmid: 22078875
66 Mizushima N, Yoshimori T, Ohsumi Y (2011). The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol, 27(1): 107–132
https://doi.org/10.1146/annurev-cellbio-092910-154005 pmid: 21801009
67 Narendra D, Tanaka A, Suen D F, Youle R J (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J Cell Biol, 183(5): 795–803
pmid: 19029340
68 Newgard C B, An J, Bain J R, Muehlbauer M J, Stevens R D, Lien L F, Haqq A M, Shah S H, Arlotto M, Slentz C A, Rochon J, Gallup D, Ilkayeva O, Wenner B R, Yancy W S Jr, Eisenson H, Musante G, Surwit R S, Millington D S, Butler M D, Svetkey L P (2009). A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab, 9(4): 311–326
https://doi.org/10.1016/j.cmet.2009.02.002 pmid: 19356713
69 Ogawa M, Yoshikawa Y, Kobayashi T, Mimuro H, Fukumatsu M, Kiga K, Piao Z, Ashida H, Yoshida M, Kakuta S, Koyama T, Goto Y, Nagatake T, Nagai S, Kiyono H, Kawalec M, Reichhart J M, Sasakawa C (2011). A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host Microbe, 9(5): 376–389
https://doi.org/10.1016/j.chom.2011.04.010 pmid: 21575909
70 Ossareh-Nazari B, Ni?o C A, Bengtson M H, Lee J W, Joazeiro C A, Dargemont C (2014). Ubiquitylation by the Ltn1 E3 ligase protects 60S ribosomes from starvation-induced selective autophagy. J Cell Biol, 204(6): 909–917
https://doi.org/10.1083/jcb.201308139 pmid: 24616224
71 Ouimet M, Franklin V, Mak E, Liao X, Tabas I, Marcel Y L (2011). Autophagy regulates cholesterol efflux from macrophage foam cells via lysosomal acid lipase. Cell Metab, 13(6): 655–667
https://doi.org/10.1016/j.cmet.2011.03.023 pmid: 21641547
72 Pankiv S, Clausen T H, Lamark T, Brech A, Bruun J A, Outzen H, ?vervatn A, Bj?rk?y G, Johansen T (2007). p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem, 282(33): 24131–24145
https://doi.org/10.1074/jbc.M702824200 pmid: 17580304
73 Pattingre S, Tassa A, Qu X, Garuti R, Liang X H, Mizushima N, Packer M, Schneider M D, Levine B (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell, 122(6): 927–939
https://doi.org/10.1016/j.cell.2005.07.002 pmid: 16179260
74 Proikas-Cezanne T, Waddell S, Gaugel A, Frickey T, Lupas A, Nordheim A (2004). WIPI-1alpha (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene, 23(58): 9314–9325
https://doi.org/10.1038/sj.onc.1208331 pmid: 15602573
75 Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P, Hogan R N, Gilpin C, Levine B (2007). Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell, 128(5): 931–946
https://doi.org/10.1016/j.cell.2006.12.044 pmid: 17350577
76 Quan W, Kim H K, Moon E Y, Kim S S, Choi C S, Komatsu M, Jeong Y T, Lee M K, Kim K W, Kim M S, Lee M S (2012a). Role of hypothalamic proopiomelanocortin neuron autophagy in the control of appetite and leptin response. Endocrinology, 153(4): 1817–1826
https://doi.org/10.1210/en.2011-1882 pmid: 22334718
77 Quan W, Lim Y M, Lee M S (2012b). Role of autophagy in diabetes and endoplasmic reticulum stress of pancreatic β-cells. Exp Mol Med, 44(2): 81–88
https://doi.org/10.3858/emm.2012.44.2.030 pmid: 22257883
78 Raben N, Hill V, Shea L, Takikita S, Baum R, Mizushima N, Ralston E, Plotz P (2008). Suppression of autophagy in skeletal muscle uncovers the accumulation of ubiquitinated proteins and their potential role in muscle damage in Pompe disease. Hum Mol Genet, 17(24): 3897–3908
https://doi.org/10.1093/hmg/ddn292 pmid: 18782848
79 Rabinowitz J D, White E (2010). Autophagy and metabolism. Science, 330(6009): 1344–1348
https://doi.org/10.1126/science.1193497 pmid: 21127245
80 Ravikumar B, Duden R, Rubinsztein D C (2002). Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet, 11(9): 1107–1117
https://doi.org/10.1093/hmg/11.9.1107 pmid: 11978769
81 Rodriguez A, Durán A, Selloum M, Champy M F, Diez-Guerra F J, Flores J M, Serrano M, Auwerx J, Diaz-Meco M T, Moscat J (2006). Mature-onset obesity and insulin resistance in mice deficient in the signaling adapter p62. Cell Metab, 3(3): 211–222
https://doi.org/10.1016/j.cmet.2006.01.011 pmid: 16517408
82 Ryter S W, Cloonan S M, Choi A M K (2013). Autophagy: a critical regulator of cellular metabolism and homeostasis. Mol Cells, 36(1): 7–16
https://doi.org/10.1007/s10059-013-0140-8 pmid: 23708729
83 Santambrogio L, Cuervo A M (2011). Chasing the elusive mammalian microautophagy. Autophagy, 7(6): 652–654
https://doi.org/10.4161/auto.7.6.15287 pmid: 21460618
84 Sengupta A, Molkentin J D, Yutzey K E (2009). FoxO transcription factors promote autophagy in cardiomyocytes. J Biol Chem, 284(41): 28319–28331
https://doi.org/10.1074/jbc.M109.024406 pmid: 19696026
85 Seok S, Fu T, Choi S E, Li Y, Zhu R, Kumar S, Sun X, Yoon G, Kang Y, Zhong W, Ma J, Kemper B, Kemper J K (2014). Transcriptional regulation of autophagy by an FXR-CREB axis. Nature, 516(7529): 108–111
pmid: 25383523
86 Settembre C, De Cegli R, Mansueto G, Saha P K, Vetrini F, Visvikis O, Huynh T, Carissimo A, Palmer D, Klisch T J, Wollenberg A C, Di Bernardo D, Chan L, Irazoqui J E, Ballabio A (2013). TFEB controls cellular lipid metabolism through a starvation-induced autoregulatory loop. Nat Cell Biol, 15(6): 647–658
https://doi.org/10.1038/ncb2718 pmid: 23604321
87 Settembre C, Di Malta C, Polito V A, Garcia Arencibia M, Vetrini F, Erdin S, Erdin S U, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein D C, Ballabio A (2011). TFEB links autophagy to lysosomal biogenesis. Science, 332(6036): 1429–1433
https://doi.org/10.1126/science.1204592 pmid: 21617040
88 Shaid S, Brandts C H, Serve H, Dikic I (2013). Ubiquitination and selective autophagy. Cell Death Differ, 20(1): 21–30
https://doi.org/10.1038/cdd.2012.72 pmid: 22722335
89 Shang L, Wang X (2011). AMPK and mTOR coordinate the regulation of Ulk1 and mammalian autophagy initiation. Autophagy, 7(8): 924–926
https://doi.org/10.4161/auto.7.8.15860 pmid: 21521945
90 Simonsen A, Birkeland H C, Gillooly D J, Mizushima N, Kuma A, Yoshimori T, Slagsvold T, Brech A, Stenmark H (2004). Alfy, a novel FYVE-domain-containing protein associated with protein granules and autophagic membranes. J Cell Sci, 117(Pt 18): 4239–4251
https://doi.org/10.1242/jcs.01287 pmid: 15292400
91 Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo A M, Czaja M J (2009a). Autophagy regulates lipid metabolism. Nature, 458(7242): 1131–1135
https://doi.org/10.1038/nature07976 pmid: 19339967
92 Singh R, Xiang Y, Wang Y, Baikati K, Cuervo A M, Luu Y K, Tang Y, Pessin J E, Schwartz G J, Czaja M J (2009b). Autophagy regulates adipose mass and differentiation in mice. J Clin Invest, 119(11): 3329–3339
pmid: 19855132
93 Suzuki K, Kubota Y, Sekito T, Ohsumi Y (2007). Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells, 12(2): 209–218
https://doi.org/10.1111/j.1365-2443.2007.01050.x pmid: 17295840
94 Warr M R, Binnewies M, Flach J, Reynaud D, Garg T, Malhotra R, Debnath J, Passegué E (2013). FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature, 494(7437): 323–327
https://doi.org/10.1038/nature11895 pmid: 23389440
95 Wei Y, Pattingre S, Sinha S, Bassik M, Levine B (2008). JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell, 30(6): 678–688
https://doi.org/10.1016/j.molcel.2008.06.001 pmid: 18570871
96 Wong E, Bejarano E, Rakshit M, Lee K, Hanson H H, Zaarur N, Phillips G R, Sherman M Y, Cuervo A M (2012). Molecular determinants of selective clearance of protein inclusions by autophagy. Nat Commun, 3: 1240
https://doi.org/10.1038/ncomms2244 pmid: 23212369
97 Yang L, Li P, Fu S, Calay E S, Hotamisligil G S (2010). Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab, 11(6): 467–478
https://doi.org/10.1016/j.cmet.2010.04.005 pmid: 20519119
98 Zhang C, He Y, Okutsu M, Ong L C, Jin Y, Zheng L, Chow P, Yu S, Zhang M, Yan Z (2013). Autophagy is involved in adipogenic differentiation by repressesing proteasome-dependent PPARγ2 degradation. Am J Physiol Endocrinol Metab, 305(4): E530–E539
https://doi.org/10.1152/ajpendo.00640.2012 pmid: 23800883
99 Zhang Y, Goldman S, Baerga R, Zhao Y, Komatsu M, Jin S (2009). Adipose-specific deletion of autophagy-related gene 7 (atg7) in mice reveals a role in adipogenesis. Proc Natl Acad Sci USA, 106(47): 19860–19865
https://doi.org/10.1073/pnas.0906048106 pmid: 19910529
100 Zhao J, Brault J J, Schild A, Cao P, Sandri M, Schiaffino S, Lecker S H, Goldberg A L (2007). FoxO3 coordinately activates protein degradation by the autophagic/lysosomal and proteasomal pathways in atrophying muscle cells. Cell Metab, 6(6): 472–483
https://doi.org/10.1016/j.cmet.2007.11.004 pmid: 18054316
101 Zheng Y T, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell J H (2009). The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol, 183(9): 5909–5916
https://doi.org/10.4049/jimmunol.0900441 pmid: 19812211
102 Zhong Y, Wang Q J, Li X, Yan Y, Backer J M, Chait B T, Heintz N, Yue Z (2009). Distinct regulation of autophagic activity by Atg14L and Rubicon associated with Beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol, 11(4): 468–476
https://doi.org/10.1038/ncb1854 pmid: 19270693
103 Zhou G, Sebhat I K, Zhang B B (2009). AMPK activators—potential therapeutics for metabolic and other diseases. Acta Physiol (Oxf), 196(1): 175–190
https://doi.org/10.1111/j.1748-1716.2009.01967.x pmid: 19245659
[1] Mohammad Momen Gharibvand, Mina Mounesi, Arman Shahriari, Asghar Sharif Najafi, Azim Motamed far, Atefeh Roumi. Effectiveness of revascularization of the ulcerated foot in diabetic patients with peripheral artery disease for one year follow-up[J]. Front. Biol., 2018, 13(6): 458-463.
[2] Karimeh Haghani, Pouyan Asadi, Gholamreza Taheripak, Ali Noori-Zadeh, Shahram Darabi, Salar Bakhtiyari. Association of mitochondrial dysfunction and lipid metabolism with type 2 diabetes mellitus: A review of literature[J]. Front. Biol., 2018, 13(6): 406-417.
[3] Ankita Chattopadhyay, Mythili S.. The journey of gut microbiome – An introduction and its influence on metabolic disorders[J]. Front. Biol., 2018, 13(5): 327-341.
[4] Andrew Brandmaier, Sheng-Qi Hou, Sandra Demaria, Silvia C. Formenti, Wen H. Shen. PTEN at the interface of immune tolerance and tumor suppression[J]. Front. Biol., 2017, 12(3): 163-174.
[5] Liang Hu,Edward Trope,Qi-Long Ying. Metabolism of pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 355-365.
[6] Yanan Sun,Jie Yang,Zhenyi Ma. Functions of the adaptor protein p66Shc in solid tumors[J]. Front. Biol., 2015, 10(6): 487-494.
[7] Ruth Beckervordersandforth,Benjamin M. Häberle,D. Chichung Lie. Metabolic regulation of adult stem cell-derived neurons[J]. Front. Biol., 2015, 10(2): 107-116.
[8] James M. Arnold,William T. Choi,Arun Sreekumar,Mirjana Maletić-Savatić. Analytical strategies for studying stem cell metabolism[J]. Front. Biol., 2015, 10(2): 141-153.
[9] Massimo Bonora,Paolo Pinton,Keisuke Ito. Mitochondrial control of hematopoietic stem cell balance and hematopoiesis[J]. Front. Biol., 2015, 10(2): 117-124.
[10] Annalisa Zecchin,Aleksandra Brajic,Peter Carmeliet. Targeting endothelial cell metabolism: new therapeutic prospects?[J]. Front. Biol., 2015, 10(2): 125-140.
[11] Claudia A. BERTUCCIO,Daniel C. DEVOR. Intermediate conductance, Ca2+-activated K+ channels: a novel target for chronic renal diseases[J]. Front. Biol., 2015, 10(1): 52-60.
[12] Kristen DAVIS,Young-Jai YOU. Appetite control: why we fail to stop eating even when we are full?[J]. Front. Biol., 2014, 9(3): 169-174.
[13] Leon H. CHEW,Calvin K. YIP. Structural biology of the macroautophagy machinery[J]. Front. Biol., 2014, 9(1): 18-34.
[14] Noor GAMMOH,Simon WILKINSON. Autophagy in cancer biology and therapy[J]. Front. Biol., 2014, 9(1): 35-50.
[15] FoSheng HSU, Yuxin MAO. The Sac domain-containing phosphoinositide phosphatases: structure, function, and disease[J]. Front Biol, 2013, 8(4): 395-407.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed