Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2018, Vol. 13 Issue (6) : 458-463    https://doi.org/10.1007/s11515-018-1516-0
RESEARCH ARTICLE
Effectiveness of revascularization of the ulcerated foot in diabetic patients with peripheral artery disease for one year follow-up
Mohammad Momen Gharibvand1, Mina Mounesi1(), Arman Shahriari2, Asghar Sharif Najafi2, Azim Motamed far1, Atefeh Roumi2
1. Department of Radiology, school of medicine,Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
2. Department of Internal Medicin, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Razi Hospital, Ahvaz, Iran
 Download: PDF(265 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Diabetes is an important risk factor for atherosclerosis. The diabetic foot is characterized by the presence of arteriopathy and neuropathy.When ischemia is diagnosed, restoration of pulsatile blood flow by revascularization may be considered for salvaging the limb. The treatment options are angioplasty with or without stenting and surgical bypass or hybrid procedures combining the two.

AIMS: To evaluate the outcomes of severe ischemic diabetic foot ulcers for which percutaneous transluminal angioplasty (PTA) was considered as the first-line vascular procedure. Factors associated with successful PTA were also evaluated.

METHODS: In 80 consecutive diabetic patients with foot ulcers and severe limb ischemia, PTA was performed if feasible. All patients were followed until healing or for one year. Clinical and angiographic factors in fluencing outcomes after PTA were sought by univariate and multivariate analysis.

RESULTS: PTA was done in 73 of the 80 (91.2%) patients, and considered clinically succe ssful in 58(79.9%). Successful PTA was significantly higher in patients with Superficial femoral artery, posterior Tibialis and dorsalis pedis arteries involvement in the univariate analysis. Seven patients were expired during the study follow up due to MI, pulmonary thromboembolism and GI bleeding.

CONCLUSION: PTA in diabetic patients with severe ischemic foot ulcers provided favorable. Some parameters could be used for predicting PTA successfulness.

Keywords percutaneous transluminal angioplasty      revascularization      diabetes     
Corresponding Author(s): Mina Mounesi   
Online First Date: 21 September 2018    Issue Date: 30 November 2018
 Cite this article:   
Mohammad Momen Gharibvand,Mina Mounesi,Arman Shahriari, et al. Effectiveness of revascularization of the ulcerated foot in diabetic patients with peripheral artery disease for one year follow-up[J]. Front. Biol., 2018, 13(6): 458-463.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-018-1516-0
https://academic.hep.com.cn/fib/EN/Y2018/V13/I6/458
Variables Frequency Percent
Age(mean±SD) 66.5±8.3 (48-82)
Gender Male 39 48.8%
Female 41 51.2%
Underlying Diseases HTN 54 67.5%
HLP 52 65%
CAD 55 68.8%
CVA 6 7.5%
Neuropathy 17 21.3%
Nephropathy 14 17.5%
Ulcer Size >5 38 47.5%
<5 42 52.5%
BMI >30 33 41.3%
<30 47 58.8%
Smoking 30 37.5%
Tab.1  Patients characteristics
Arteries Variable Frequency Percent
Superficial femoral artery Mild (50-70) 17 21.3%
Moderate (70-90) 14 17.5%
Severe (>90) 7 8.8%
Near Ocluded (99) 0 0
Total 38 47.5%
Popliteal artery Mild (50-70) 9 11.3%
Moderate (70-90) 5 6.3%
Sever 0 0
Near Ocluded (99) 0 0
Total 14 17.5%
Anterior Tibialis artery Mild (50-70) 18 22.5%
Moderate (70-90) 16 20%
Severe (>90) 0 0
Near Ocluded (99) 7 8.8%
Total 41 51.2%
Posterior Tibialis artery Mild (50-70) 27 33.8%
Moderate (70-90) 13 16.3%
Severe (>90) 3 3.8%
Near Ocluded (99) 6 7.5%
Total 49 61.3%
Proneal artery Mild (50-70) 24 30%
Moderate (70-90) 11 13.7%
Severe (>90) 0 0
Near Ocluded (99) 0 0
Total 35 43.7%
Dorsalis pedis artery Mild (50-70) 17 21.3%
Moderate (70-90) 9 11.3%
Severe (>90) 0 0
Near Ocluded (99) 0 0
Total 26 32.5%
Tab.2  The severity of stenosis among involved arteries
Vessels Mean Std. Deviation Minimum Maximum
Superficial femoral artery 181.42 31.47 133 224
Popliteal artery 16.57 2.4 12 19
Anterior Tibialis artery 132.43 42.09 78 201
Posterior Tibialis artery 110.36 35.21 22 192
Proneal artery 107.51 14.83 68 137
Dorsalis pedis artery 42.26 7.23 30 52
Tab.3  Mean length of involved arteries
Outcomes Frequency Percent
Adverse Effects None 73 91.3%
Gi bleeding cuased by colopidogrol overdose (Expired) 3 3.8%
MI(expired) 3 3.8%
PTE(expired) 1 1.3%
Healing Comprelet healing 52 65%
Partial healing 6 7.5%
Non-healing 3 3.8%
Angioplasty not done 7 8.85
Relapse 5 6.3%
Expired 7 8.8%
Tab.4  The outcome of participants
Fig.1  Long segment stenosis of Anterior Tibialis arttry before and after angioplasty.
Fig.2  Dorsalis pedis artery angioplasty.
Variables Healing (n = 58) Non-healing (n = 15) P-value
Age 65.18±7.6 66.6±8.6 0.519
Gender Male 24(41.4%) 10(66.7%) 0.072
Female 34(58.6%) 5(33.3%)
Arteries Superficial 183.7273±30.32 172.4±30.32 0.32
Popliteal 17.3333±1.7 16 0.147
Anterior Tibialis 135.6667±37.32 155.7273±43.35 0.152
Posterioi Tibialis 101.0588±24.25 117.8125±35.05 0.055
Dorsalis 40.4444±5.7 40.6364±8.5 0.955
Proneal artery 105.13±8.93 109.64±11 0.295
BMI BMI>30 27(46.6%) 5(33.3%) 0.267
BMI<30 31(53.4%) 10(66.7%)
HTN Yes 40(69%) 11(73.3%) 0.5
No 18(31%) 4(26.7%)
Neuropathy Yes 12(20.7% 2(13.3%) 0.40
No 46(79.3%) 13(86.7%)
Nephropathy Yes 9(15.5%) 5(33.3%) 0.20
No 49(84.5%) 10(66.7%)
CAD Yes 33(56.9%) 13(86.7%) 0.11
No 25(43.1%) 2(13.3%)
CVA Yes 3(5.2%) 3(20%) 0.097
No 55(94.5%) 12(80%)
Hyperlipidemia Yes 38(65.5%) 9(60%) 0.4
No 20(34.5%) 6(40%)
Smoking Yes 16(27.6%) 9(60%) 0.02*
N0 42(72.4%) 6(40%)
Ulcer Size >5 25(43.1%) 8(53.3%) 0.33
<5 33(56.9%) 7(46.7%)
Tab.5  Comparison between healed and non-healed patients
Arteries B Sig. Odds ratio 95% C.I.for EXP(B)
Lower Upper
Superficial femoral artery 2.854 0.007 17.354 2.180 138.138
Popliteal artery 1.712 0.113 5.538 0.666 46.055
Anterior Tibialis artery -0.430 0.576 0.651 0.144 2.937
Posterior Tibialis artery 2.921 0.007 18.553 2.210 155.723
Proneal artery 1.100 0.151 1.467 0.631 11.530
Dorsalis pedis artery 2.600 0.013 13.467 1.729 104.910
Tab.6  Multivariable analysis between involved arteries and treatment response
1 Esteghamati A, Larijani B, Aghajani M H, Ghaemi F, Kermanchi J, Shahrami A, Saadat M, Esfahani E N, Ganji M, Noshad S, Khajeh E, Ghajar A, Heidari B, Afarideh M, Mechanick J I, Ismail-Beigi F (2017). Diabetes in Iran: Prospective Analysis from First Nationwide Diabetes Report of National Program for Prevention and Control of Diabetes (NPPCD-2016). Sci Rep, 7(1): 13461
https://doi.org/10.1038/s41598-017-13379-z pmid: 29044139
2 Faglia E, Clerici G, Clerissi J, Caminiti M, Quarantiello A, Curci V, Losa S, Vitiello R, Lupattelli T, Somalvico F (2008). Angioplasty for diabetic patients with failing bypass graft or residual critical ischemia after bypass graft. Eur J Vasc Endovasc Surg, 36(3): 331–338
https://doi.org/10.1016/j.ejvs.2008.04.012 pmid: 18538593
3 Flu H C, Lardenoye J H, Veen E J, Aquarius A E, Van Berge Henegouwen D P, Hamming J F (2009). Morbidity and mortality caused by cardiac adverse events after revascularization for critical limb ischemia. Ann Vasc Surg, 23(5): 583–597
https://doi.org/10.1016/j.avsg.2009.06.012 pmid: 19747609
4 Forman D E, Berman A D, McCabe C H, Baim D S, Wei J Y (1992). PTCA in the elderly: the “young-old” versus the “old-old”. J Am Geriatr Soc, 40(1): 19–22
https://doi.org/10.1111/j.1532-5415.1992.tb01823.x pmid: 1727842
5 Gottsäter A (2006). Managing risk factors for atherosclerosis in critical limb ischaemia. Eur J Vasc Endovasc Surg, 32(5): 478–483
https://doi.org/10.1016/j.ejvs.2006.03.007 pmid: 16631394
6 Jörneskog G (2012). Why critical limb ischemia criteria are not applicable to diabetic foot and what the consequences are. Scand J Surg, 101(2): 114–118
https://doi.org/10.1177/145749691210100207 pmid: 22623444
7 Kassaian S E, Mohajeri-Tehrani M R, Dehghan-Nayyeri A, Saroukhani S, Annabestani Z, Alidoosti M, Shirani S, Shojaei-Fard A, Molavi B, Poorhosseini H, Salarifar M, Aboee-Rad M, Pashang M, Larijani B (2013). Major adverse events, six months after endovascular revascularization for critical limb ischemia in diabetic patients. Arch Iran Med, 16(5): 258–263
pmid: 23641737
8 Kota S K, Kota S K, Meher L K, Sahoo S, Mohapatra S, Modi K D (2013). Surgical revascularization techniques for diabetic foot. J Cardiovasc Dis Res, 4(2): 79–83
https://doi.org/10.1016/j.jcdr.2012.10.002 pmid: 24027360
9 Lepäntalo M, Apelqvist J, Setacci C, Ricco J B, de Donato G, Becker F, Robert-Ebadi H, Cao P, Eckstein H H, De Rango P, Diehm N, Schmidli J, Teraa M, Moll F L, Dick F, Davies A H (2011). Chapter V: Diabetic foot. Eur J Vasc Endovasc Surg, 42(Suppl 2): S60–S74
https://doi.org/10.1016/S1078-5884(11)60012-9 pmid: 22172474
10 Markakis K, Bowling F L, Boulton A J (2016). The diabetic foot in 2015: an overview. Diabetes Metab Res Rev, 32(Suppl 1): 169–178
https://doi.org/10.1002/dmrr.2740 pmid: 26451519
11 Norgren L, Hiatt W R, Dormandy J A, Nehler M R, Harris K A, Fowkes F G, the TASC II Working Group (2007). Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg, 45(1 Suppl S): S5–S67
https://doi.org/10.1016/j.jvs.2006.12.037 pmid: 17223489
12 Lumsden A B, Davies M G, Peden E K ( 2009). Medical and endovascular management of critical limb ischemia. J Endo Ther, 16(2_suppl): 31–62
13 Sakai A, Hirayama A, Adachi T, Nanto S, Hori M, Inoue M, Kamada T, Kodama K (1996). Is the presence of hyperlipidemia associated with impairment of endothelium-dependent neointimal relaxation after percutaneous transluminal coronary angioplasty? Heart Vessels, 11(5): 255–261
https://doi.org/10.1007/BF01746206 pmid: 9129246
14 Salas C A, Adam D J, Papavassiliou V G, London N J (2004). Percutaneous transluminal angioplasty for critical limb ischaemia in octogenarians and nonagenarians. Eur J Vasc Endovasc Surg, 28(2): 142–145
https://doi.org/10.1016/j.ejvs.2004.03.023 pmid: 15234694
15 Sun N F, Tian A L, Tian Y L, Hu S Y, Xu L (2013). The interventional therapy for diabetic peripheral artery disease. BMC Surg, 13(1): 32
https://doi.org/10.1186/1471-2482-13-32 pmid: 23957838
16 Uccioli L, Gandini R, Giurato L, Fabiano S, Pampana E, Spallone V, Vainieri E, Simonetti G (2010). Long-term outcomes of diabetic patients with critical limb ischemia followed in a tertiary referral diabetic foot clinic. Diabetes Care, 33(5): 977–982
https://doi.org/10.2337/dc09-0831 pmid: 20200304
17 Zhang P, Lu J, Jing Y, Tang S, Zhu D, Bi Y (2017). Global epidemiology of diabetic foot ulceration: a systematic review and meta-analysis †. Ann Med, 49(2): 106–116
https://doi.org/10.1080/07853890.2016.1231932 pmid: 27585063
[1] Karimeh Haghani, Pouyan Asadi, Gholamreza Taheripak, Ali Noori-Zadeh, Shahram Darabi, Salar Bakhtiyari. Association of mitochondrial dysfunction and lipid metabolism with type 2 diabetes mellitus: A review of literature[J]. Front. Biol., 2018, 13(6): 406-417.
[2] Ankita Chattopadhyay, Mythili S.. The journey of gut microbiome – An introduction and its influence on metabolic disorders[J]. Front. Biol., 2018, 13(5): 327-341.
[3] Altea Rocchi,Congcong He. Emerging roles of autophagy in metabolism and metabolic disorders[J]. Front. Biol., 2015, 10(2): 154-164.
[4] Claudia A. BERTUCCIO,Daniel C. DEVOR. Intermediate conductance, Ca2+-activated K+ channels: a novel target for chronic renal diseases[J]. Front. Biol., 2015, 10(1): 52-60.
[5] Catherine C. Y. CHANG, Jie SUN, Ta-Yuan CHANG. Membrane-bound O-acyltransferases (MBOAT)[J]. Front Biol, 2011, 6(3): 177-182.
[6] Rebecca BERDEAUX. Metabolic regulation by salt inducible kinases[J]. Front Biol, 2011, 6(3): 231-241.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed