Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 6 Issue (3) : 231-241    https://doi.org/10.1007/s11515-011-1148-0
REVIEW
Metabolic regulation by salt inducible kinases
Rebecca BERDEAUX()
Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston 6431 Fannin St., MSE R366, Houston TX 77030, USA
 Download: PDF(417 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In fasting mammals, the liver is the primary source of glucose production for maintenance of normoglycemia. In this setting, circulating peptide hormones and catecholamines cause hepatic glucose output by stimulating glycogen breakdown as well as de novo glucose production through gluconeogenesis. Fasting gluconeogenesis is regulated by a complex transcriptional cascade culminating in elevated expression of hepatic enzymes that promote gluconeogenesis and glucose export to the blood. The cAMP response element binding protein CREB and its co-activator CRTC2 play crucial roles in signal-dependent transcriptional regulation of gluconeogenesis. Recent work has identified a family of serine/threonine kinases, the salt inducible kinases (SIKs), which are subject to hormonal control and constrain gluconeogenic and lipogenic gene expression in liver. As normal regulation of gluconeogenesis and lipogenesis is disrupted in diabetic states, SIK kinases are poised to serve as therapeutic targets to modulate metabolic disturbances in diabetic patients. The purpose of this review is to 1) describe the identification of CRTCs CREB co-activators and their regulation by SIKs, 2) discuss recent progress toward understanding regulation and function of SIKs in metabolism and 3) examine the potential clinical impact of therapeutics that target SIK kinase function.

Keywords salt inducible kinases (SIKs)      cAMP response element binding protein (CREB)      CRTC      gluconeogenesis      lipogenesis      type 2 diabetes      transcription     
Corresponding Author(s): BERDEAUX Rebecca,Email:rebecca.berdeaux@uth.tmc.edu   
Issue Date: 01 June 2011
 Cite this article:   
Rebecca BERDEAUX. Metabolic regulation by salt inducible kinases[J]. Front Biol, 2011, 6(3): 231-241.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1148-0
https://academic.hep.com.cn/fib/EN/Y2011/V6/I3/231
Fig.1  Diagram of CREB/CRTC activation in liver during fasting. During fasting, glucagon induces cAMP accumulation, which activates PKA. PKA catalyzes phosphorylation of CREB and SIK kinases (shown as SIK2). Phosphorylated CREB on target gene promoters recruits CBP/p300 histone acetyltransferases. Phosphorylation of SIK by PKA inhibits SIK activity on CRTC2. Dephosphorylated CRTC2 translocates to the nucleus and forms a ternary complex with CREB/CBP. The CREB complex directs transcription of , and to promote gluconeogenesis. Inhibitory phosphorylation is shown in red; activating phosphorylation shown in green.
Fig.1  Diagram of CREB/CRTC activation in liver during fasting. During fasting, glucagon induces cAMP accumulation, which activates PKA. PKA catalyzes phosphorylation of CREB and SIK kinases (shown as SIK2). Phosphorylated CREB on target gene promoters recruits CBP/p300 histone acetyltransferases. Phosphorylation of SIK by PKA inhibits SIK activity on CRTC2. Dephosphorylated CRTC2 translocates to the nucleus and forms a ternary complex with CREB/CBP. The CREB complex directs transcription of , and to promote gluconeogenesis. Inhibitory phosphorylation is shown in red; activating phosphorylation shown in green.
Fig.2  Domain structure and percent identity of SIK1 (A) and SIK2 (B). Domain structures of A) SIK1 and B) SIK2 showing the N-terminal kinase domain (yellow, with catalytic lysine indicated), the T-loop LKB1 phosphorylation site, UBA domain (purple), AKT phosphorylation site (Ser358 in SIK2), PKA phosphorylation site (Ser577), and RK-rich nuclear localization signal (blue). Mouse numbering shown. Phosphorylation sites are colored green for activating and red for inhibitory phosphorylation. Percent identity between domains was determined by the CLUSTALW alignment tool and is shown beneath the SIK2 diagram.
Fig.2  Domain structure and percent identity of SIK1 (A) and SIK2 (B). Domain structures of A) SIK1 and B) SIK2 showing the N-terminal kinase domain (yellow, with catalytic lysine indicated), the T-loop LKB1 phosphorylation site, UBA domain (purple), AKT phosphorylation site (Ser358 in SIK2), PKA phosphorylation site (Ser577), and RK-rich nuclear localization signal (blue). Mouse numbering shown. Phosphorylation sites are colored green for activating and red for inhibitory phosphorylation. Percent identity between domains was determined by the CLUSTALW alignment tool and is shown beneath the SIK2 diagram.
Fig.3  Diagram of SIK2-dependent CRTC2 regulation in hepatocytes. Left) During fasting, SIK2 is inhibited by PKA phosphorylation on Ser587. CRTC2 localizes to the nucleus and cooperates with CREB/CBP to activate transcription of gluconeogenic genes. Right) After re-feeding, insulin activates AKT, which phosphorylates SIK2 on Ser358, promoting SIK2 kinase activity. SIK2 in turn phosphorylates CRTC2 on Ser171, causing CRTC2 to exit the nucleus. In the cytoplasm, phospho-CRTC2 is polyubiquitylated by the COP1 E3 ubiquitin ligase complex and degraded by the proteasome. In livers of diabetic animals, CRTC2 is de-phosphorylated and O-glycosylated, and the protein accumulates inappropriately.
Fig.3  Diagram of SIK2-dependent CRTC2 regulation in hepatocytes. Left) During fasting, SIK2 is inhibited by PKA phosphorylation on Ser587. CRTC2 localizes to the nucleus and cooperates with CREB/CBP to activate transcription of gluconeogenic genes. Right) After re-feeding, insulin activates AKT, which phosphorylates SIK2 on Ser358, promoting SIK2 kinase activity. SIK2 in turn phosphorylates CRTC2 on Ser171, causing CRTC2 to exit the nucleus. In the cytoplasm, phospho-CRTC2 is polyubiquitylated by the COP1 E3 ubiquitin ligase complex and degraded by the proteasome. In livers of diabetic animals, CRTC2 is de-phosphorylated and O-glycosylated, and the protein accumulates inappropriately.
Fig.4  Mechanisms by which SIKs inhibit hepatic lipogenesis. A) SIK1 directly phosphorylates Srebp1-c on three serine residues (Ser265/266/329). This blocks transcription of lipogenic genes including and and inhibits hepatic triglyceride synthesis. SIK1 RNAi promotes lipogenic gene expression. B) Glucose stimulates hepatic lipogenesis by activating p300-dependent acetylation of ChREBP, which cooperates with Srebp1-c to induce lipogenic genes. SIK2 opposes this pathway by phosphorylating p300(Ser89), inhibiting p300 acetylation of ChREBP.
Fig.4  Mechanisms by which SIKs inhibit hepatic lipogenesis. A) SIK1 directly phosphorylates Srebp1-c on three serine residues (Ser265/266/329). This blocks transcription of lipogenic genes including and and inhibits hepatic triglyceride synthesis. SIK1 RNAi promotes lipogenic gene expression. B) Glucose stimulates hepatic lipogenesis by activating p300-dependent acetylation of ChREBP, which cooperates with Srebp1-c to induce lipogenic genes. SIK2 opposes this pathway by phosphorylating p300(Ser89), inhibiting p300 acetylation of ChREBP.
1 Altarejos J Y, Goebel N, Conkright M D, Inoue H, Xie J, Arias C M, Sawchenko P E, Montminy M (2008). The Creb1 coactivator Crtc1 is required for energy balance and fertility. Nat Med , 14(10): 1112–1117
doi: 10.1038/nm.1866 pmid:18758446
2 Altarejos J Y, Montminy M (2011). CREB and the CRTC co-activators: sensors for hormonal and metabolic signals. Nat Rev Mol Cell Biol , 12(3): 141–151
doi: 10.1038/nrm3072 pmid:21346730
3 Argaud D, Zhang Q, Pan W, Maitra S, Pilkis S J, Lange A J (1996). Regulation of rat liver glucose-6-phosphatase gene expression in different nutritional and hormonal states: gene structure and 5′-flanking sequence. Diabetes , 45(11): 1563–1571
doi: 10.2337/diabetes.45.11.1563 pmid:8866562
4 Berdeaux R, Goebel N, Banaszynski L, Takemori H, Wandless T, Shelton G D, Montminy M (2007). SIK1 is a class II HDAC kinase that promotes survival of skeletal myocytes. Nat Med , 13(5): 597–603
doi: 10.1038/nm1573 pmid:17468767
5 Bonni A, Ginty D D, Dudek H, Greenberg M E (1995). Serine 133-phosphorylated CREB induces transcription via a cooperative mechanism that may confer specificity to neurotrophin signals. Mol Cell Neurosci , 6(2): 168–183
doi: 10.1006/mcne.1995.1015 pmid:7551568
6 Bricambert J, Miranda J, Benhamed F, Girard J, Postic C, Dentin R (2010). Salt-inducible kinase 2 links transcriptional coactivator p300 phosphorylation to the prevention of ChREBP-dependent hepatic steatosis in mice. J Clin Invest , 120(12): 4316–4331
doi: 10.1172/JCI41624 pmid:21084751
7 Bright N J, Thornton C, Carling D (2009). The regulation and function of mammalian AMPK-related kinases. Acta Physiol (Oxf) , 196(1): 15–26
doi: 10.1111/j.1748-1716.2009.01971.x pmid:19245655
8 Brindle P, Nakajima T, Montminy M (1995). Multiple protein kinase A-regulated events are required for transcriptional induction by cAMP. Proc Natl Acad Sci U S A , 92(23): 10521–10525
doi: 10.1073/pnas.92.23.10521 pmid:7479832
9 Cheng H, Liu P, Wang Z C, Zou L, Santiago S, Garbitt V, Gjoerup O V, Iglehart J D, Miron A, Richardson A L, Hahn W C, Zhao J J (2009). SIK1 couples LKB1 to p53-dependent anoikis and suppresses metastasis. Sci Signal , 2(80): ra35
doi: 10.1126/scisignal.2000369 pmid:19622832
10 Cheng J, Uchida M, Zhang W, Grafe M R, Herson P S, Hurn P D (2011). Role of salt-induced kinase 1 in androgen neuroprotection against cerebral ischemia. J Cereb Blood Flow Metab , 31(1): 339–350
doi: 10.1038/jcbfm.2010.98 pmid:20588319
11 Choi S, Kim W, Chung J (2011). Drosophila salt-inducible kinase (SIK) regulates starvation resistance through cAMP-response element-binding protein (CREB)-regulated transcription coactivator (CRTC). J Biol Chem , 286(4): 2658–2664
doi: 10.1074/jbc.C110.119222 pmid:21127058
12 Conkright M D, Canettieri G, Screaton R, Guzman E, Miraglia L, Hogenesch J B, Montminy M (2003). TORCs: transducers of regulated CREB activity. Mol Cell , 12(2): 413–423
doi: 10.1016/j.molcel.2003.08.013 pmid:14536081
13 Dentin R, Hedrick S, Xie J, Yates J 3rd, Montminy M (2008). Hepatic glucose sensing via the CREB coactivator CRTC2. Science , 319(5868): 1402–1405
doi: 10.1126/science.1151363 pmid:18323454
14 Dentin R, Liu Y, Koo S H, Hedrick S, Vargas T, Heredia J, Yates J 3rd, Montminy M (2007). Insulin modulates gluconeogenesis by inhibition of the coactivator TORC2. Nature , 449(7160): 366–369
doi: 10.1038/nature06128 pmid:17805301
15 Dentin R, Pégorier J P, Benhamed F, Foufelle F, Ferré P, Fauveau V, Magnuson M A, Girard J, Postic C (2004). Hepatic glucokinase is required for the synergistic action of ChREBP and SREBP-1c on glycolytic and lipogenic gene expression. J Biol Chem , 279(19): 20314–20326
doi: 10.1074/jbc.M312475200 pmid:14985368
16 Doi J, Takemori H, Lin X Z, Horike N, Katoh Y, Okamoto M (2002). Salt-inducible kinase represses cAMP-dependent protein kinase-mediated activation of human cholesterol side chain cleavage cytochrome P450 promoter through the CREB basic leucine zipper domain. J Biol Chem , 277(18): 15629–15637
doi: 10.1074/jbc.M109365200 pmid:11864972
17 Du J, Chen Q, Takemori H, Xu H (2008). SIK2 can be activated by deprivation of nutrition and it inhibits expression of lipogenic genes in adipocytes. Obesity (Silver Spring) , 16(3): 531–538
doi: 10.1038/oby.2007.98 pmid:18239551
18 Erion D M, Ignatova I D, Yonemitsu S, Nagai Y, Chatterjee P, Weismann D, Hsiao J J, Zhang D, Iwasaki T, Stark R, Flannery C, Kahn M, Carmean C M, Yu X X, Murray S F, Bhanot S, Monia B P, Cline G W, Samuel V T, Shulman G I (2009). Prevention of hepatic steatosis and hepatic insulin resistance by knockdown of cAMP response element-binding protein. Cell Metab , 10(6): 499–506
doi: 10.1016/j.cmet.2009.10.007 pmid:19945407
19 Feldman J D, Vician L, Crispino M, Hoe W, Baudry M, Herschman H R (2000). The salt-inducible kinase, SIK, is induced by depolarization in brain. J Neurochem , 74(6): 2227–2238
doi: 10.1046/j.1471-4159.2000.0742227.x pmid:10820182
20 Fisch T M, Prywes R, Roeder R G (1987). c-fos sequence necessary for basal expression and induction by epidermal growth factor, 12-O-tetradecanoyl phorbol-13-acetate and the calcium ionophore. Mol Cell Biol , 7(10): 3490–3502
pmid:3119989
21 Hardie D G (2004). The AMP-activated protein kinase pathway—new players upstream and downstream. J Cell Sci , 117(Pt 23): 5479–5487
doi: 10.1242/jcs.01540 pmid:15509864
22 Hawley S A, Pan D A, Mustard K J, Ross L, Bain J, Edelman A M, Frenguelli B G, Hardie D G (2005). Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab , 2(1): 9–19
doi: 10.1016/j.cmet.2005.05.009 pmid:16054095
23 Hawley S A, Selbert M A, Goldstein E G, Edelman A M, Carling D, Hardie D G (1995). 5′-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J Biol Chem , 270(45): 27186–27191
doi: 10.1074/jbc.270.45.27186 pmid:7592975
24 He L, Sabet A, Djedjos S, Miller R, Sun X, Hussain M A, Radovick S, Wondisford F E (2009). Metformin and insulin suppress hepatic gluconeogenesis through phosphorylation of CREB binding protein. Cell , 137(4): 635–646
doi: 10.1016/j.cell.2009.03.016 pmid:19450513
25 Herzig S, Long F, Jhala U S, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M (2001). CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature , 413(6852): 179–183
doi: 10.1038/35093131 pmid:11557984
26 Horike N, Kumagai A, Shimono Y, Onishi T, Itoh Y, Sasaki T, Kitagawa K, Hatano O, Takagi H, Susumu T, Teraoka H, Kusano K, Nagaoka Y, Kawahara H, Takemori H (2010). Downregulation of SIK2 expression promotes the melanogenic program in mice. Pigment Cell Melanoma Res , 23(6): 809–819
doi: 10.1111/j.1755-148X.2010.00760.x pmid:20819186
27 Horike N, Takemori H, Katoh Y, Doi J, Min L, Asano T, Sun X J, Yamamoto H, Kasayama S, Muraoka M, Nonaka Y, Okamoto M (2003). Adipose-specific expression, phosphorylation of Ser794 in insulin receptor substrate-1, and activation in diabetic animals of salt-inducible kinase-2. J Biol Chem , 278(20): 18440–18447
doi: 10.1074/jbc.M211770200 pmid:12624099
28 Iourgenko V, Zhang W, Mickanin C, Daly I, Jiang C, Hexham J M, Orth A P, Miraglia L, Meltzer J, Garza D, Chirn G W, McWhinnie E, Cohen D, Skelton J, Terry R, Yu Y, Bodian D, Buxton F P, Zhu J, Song C, Labow M A (2003). Identification of a family of cAMP response element-binding protein coactivators by genome-scale functional analysis in mammalian cells. Proc Natl Acad Sci U S A , 100(21): 12147–12152
doi: 10.1073/pnas.1932773100 pmid:14506290
29 Jakobsen S N, Hardie D G, Morrice N, Tornqvist H E (2001). 5′-AMP-activated protein kinase phosphorylates IRS-1 on Ser-789 in mouse C2C12 myotubes in response to 5-aminoimidazole-4-carboxamide riboside. J Biol Chem , 276(50): 46912–46916
doi: 10.1074/jbc.C100483200 pmid:11598104
30 Jaleel M, Villa F, Deak M, Toth R, Prescott A R, Van Aalten D M, Alessi D R (2006). The ubiquitin-associated domain of AMPK-related kinases regulates conformation and LKB1-mediated phosphorylation and activation. Biochem J , 394(Pt 3): 545–555
doi: 10.1042/BJ20051844 pmid:16396636
31 Kajimura S, Seale P, Spiegelman B M (2010). Transcriptional control of brown fat development. Cell Metab , 11(4): 257–262
doi: 10.1016/j.cmet.2010.03.005 pmid:20374957
32 Katoh Y, Takemori H, Doi J, Okamoto M (2002). Identification of the nuclear localization domain of salt-inducible kinase. Endocr Res , 28(4): 315–318
doi: 10.1081/ERC-120016802 pmid:12530631
33 Katoh Y, Takemori H, Horike N, Doi J, Muraoka M, Min L, Okamoto M (2004a). Salt-inducible kinase (SIK) isoforms: their involvement in steroidogenesis and adipogenesis. Mol Cell Endocrinol , 217(1-2): 109–112
doi: 10.1016/j.mce.2003.10.016 pmid:15134808
34 Katoh Y, Takemori H, Lin X Z, Tamura M, Muraoka M, Satoh T, Tsuchiya Y, Min L, Doi J, Miyauchi A, Witters L A, Nakamura H, Okamoto M (2006). Silencing the constitutive active transcription factor CREB by the LKB1-SIK signaling cascade. FEBS J , 273(12): 2730–2748
doi: 10.1111/j.1742-4658.2006.05291.x pmid:16817901
35 Katoh Y, Takemori H, Min L, Muraoka M, Doi J, Horike N, Okamoto M (2004b). Salt-inducible kinase-1 represses cAMP response element-binding protein activity both in the nucleus and in the cytoplasm. Eur J Biochem , 271(21): 4307–4319
doi: 10.1111/j.1432-1033.2004.04372.x pmid:15511237
36 Koo S H, Flechner L, Qi L, Zhang X, Screaton R A, Jeffries S, Hedrick S, Xu W, Boussouar F, Brindle P, Takemori H, Montminy M (2005). The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature , 437(7062): 1109–1111
doi: 10.1038/nature03967 pmid:16148943
37 Kozhemyakina E, Cohen T, Yao T P, Lassar A B (2009). Parathyroid hormone-related peptide represses chondrocyte hypertrophy through a protein phosphatase 2A/histone deacetylase 4/MEF2 pathway. Mol Cell Biol , 29(21): 5751–5762
doi: 10.1128/MCB.00415-09 pmid:19704004
38 Lanjuin A, Sengupta P (2002). Regulation of chemosensory receptor expression and sensory signaling by the KIN-29 Ser/Thr kinase. Neuron , 33(3): 369–381
doi: 10.1016/S0896-6273(02)00572-X pmid:11832225
39 Le Lay J, Tuteja G, White P, Dhir R, Ahima R, Kaestner K H (2009). CRTC2 (TORC2) contributes to the transcriptional response to fasting in the liver but is not required for the maintenance of glucose homeostasis. Cell Metab , 10(1): 55–62
doi: 10.1016/j.cmet.2009.06.006 pmid:19583954
40 Lerner R G, Depatie C, Rutter G A, Screaton R A, Balthasar N (2009). A role for the CREB co-activator CRTC2 in the hypothalamic mechanisms linking glucose sensing with gene regulation. EMBO Rep , 10(10): 1175–1181
doi: 10.1038/embor.2009.177 pmid:19713961
41 Lin X, Takemori H, Katoh Y, Doi J, Horike N, Makino A, Nonaka Y, Okamoto M (2001). Salt-inducible kinase is involved in the ACTH/cAMP-dependent protein kinase signaling in Y1 mouse adrenocortical tumor cells. Mol Endocrinol , 15(8): 1264–1276
doi: 10.1210/me.15.8.1264 pmid:11463852
42 Liu J S, Park E A, Gurney A L, Roesler W J, Hanson R W (1991). Cyclic AMP induction of phosphoenolpyruvate carboxykinase (GTP) gene transcription is mediated by multiple promoter elements. J Biol Chem , 266(28): 19095–19102
pmid:1655770
43 Lizcano J M, G?ransson O, Toth R, Deak M, Morrice N A, Boudeau J, Hawley S A, Udd L, M?kel? T P, Hardie D G, Alessi D R (2004). LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J , 23(4): 833–843
doi: 10.1038/sj.emboj.7600110 pmid:14976552
44 Magnusson I, Rothman D L, Katz L D, Shulman R G, Shulman G I (1992). Increased rate of gluconeogenesis in type II diabetes mellitus. A 13C nuclear magnetic resonance study. J Clin Invest , 90(4): 1323–1327
doi: 10.1172/JCI115997 pmid:1401068
45 Mayr B, Montminy M (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol , 2(8): 599–609
doi: 10.1038/35085068 pmid:11483993
46 Mayr B M, Canettieri G, Montminy M R (2001). Distinct effects of cAMP and mitogenic signals on CREB-binding protein recruitment impart specificity to target gene activation via CREB. Proc Natl Acad Sci U S A , 98(19): 10936–10941
doi: 10.1073/pnas.191152098 pmid:11535812
47 Moller D E (2001). New drug targets for type 2 diabetes and the metabolic syndrome. Nature , 414(6865): 821–827
doi: 10.1038/414821a pmid:11742415
48 Momcilovic M, Hong S P, Carlson M (2006). Mammalian TAK1 activates Snf1 protein kinase in yeast and phosphorylates AMP-activated protein kinase in vitro. J Biol Chem , 281(35): 25336–25343
doi: 10.1074/jbc.M604399200 pmid:16835226
49 Muraoka M, Fukushima A, Viengchareun S, Lombès M, Kishi F, Miyauchi A, Kanematsu M, Doi J, Kajimura J, Nakai R, Uebi T, Okamoto M, Takemori H (2009). Involvement of SIK2/TORC2 signaling cascade in the regulation of insulin-induced PGC-1alpha and UCP-1 gene expression in brown adipocytes. Am J Physiol Endocrinol Metab , 296(6): E1430–E1439
doi: 10.1152/ajpendo.00024.2009 pmid:19351809
50 Okamoto M, Takemori H, Katoh Y (2004). Salt-inducible kinase in steroidogenesis and adipogenesis. Trends Endocrinol Metab , 15(1): 21–26
doi: 10.1016/j.tem.2003.11.002 pmid:14693422
51 Raghow R, Yellaturu C, Deng X, Park E A, Elam M B (2008). SREBPs: the crossroads of physiological and pathological lipid homeostasis. Trends Endocrinol Metab , 19(2): 65–73
doi: 10.1016/j.tem.2007.10.009 pmid:18291668
52 Ravnskjaer K, Kester H, Liu Y, Zhang X, Lee D, Yates J R 3rd, Montminy M (2007). Cooperative interactions between CBP and TORC2 confer selectivity to CREB target gene expression. EMBO J , 26(12): 2880–2889
doi: 10.1038/sj.emboj.7601715 pmid:17476304
53 Romito A, Lonardo E, Roma G, Minchiotti G, Ballabio A, Cobellis G (2010). Lack of sik1 in mouse embryonic stem cells impairs cardiomyogenesis by down-regulating the cyclin-dependent kinase inhibitor p57kip2. PLoS One , 5(2): e9029
doi: 10.1371/journal.pone.0009029 pmid:20140255
54 Ruiz J C, Conlon F L, Robertson E J (1994). Identification of novel protein kinases expressed in the myocardium of the developing mouse heart. Mech Dev , 48(3): 153–164
doi: 10.1016/0925-4773(94)90056-6 pmid:7893599
55 Saberi M, Bjelica D, Schenk S, Imamura T, Bandyopadhyay G, Li P, Vargeese C, Wang W, Bowman K, Zhang Y, Polisky B, Olefsky J M (2009). Novel liver-specific TORC2 siRNA corrects hyperglycemia in rodent models of type 2 diabetes. Am J Physiol Endocrinol Metab , 297(5): e1137–e1146
56 Sakamoto K, McCarthy A, Smith D, Green K A, Grahame Hardie D, Ashworth A, Alessi D R (2005). Deficiency of LKB1 in skeletal muscle prevents AMPK activation and glucose uptake during contraction. EMBO J , 24(10): 1810–1820
doi: 10.1038/sj.emboj.7600667 pmid:15889149
57 Salway J G (2004). Metabolism at a Glance. 3rd Edition, MA: Blackwell Publishing, Ltd.
58 Samuel V T, Beddow S A, Iwasaki T, Zhang X M, Chu X, Still C D, Gerhard G S, Shulman G I (2009). Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with Type 2 Diabetes. Proc Natl Acad Sci U S A , 106(29): 12121–12126
doi: 10.1073/pnas.0812547106 pmid:19587243
59 Sasaki T, Takemori H, Yagita Y, Terasaki Y, Uebi T, Horike N, Takagi H, Susumu T, Teraoka H, Kusano K, Hatano O, Oyama N, Sugiyama Y, Sakoda S, Kitagawa K (2011). SIK2 is a key regulator for neuronal survival after ischemia via TORC1-CREB. Neuron , 69(1): 106–119
doi: 10.1016/j.neuron.2010.12.004 pmid:21220102
60 Screaton R A, Conkright M D, Katoh Y, Best J L, Canettieri G, Jeffries S, Guzman E, Niessen S, Yates J R 3rd, Takemori H, Okamoto M, Montminy M (2004). The CREB coactivator TORC2 functions as a calcium- and cAMP-sensitive coincidence detector. Cell , 119(1): 61–74
doi: 10.1016/j.cell.2004.09.015 pmid:15454081
61 Shaw R J, Kosmatka M, Bardeesy N, Hurley R L, Witters L A, DePinho R A, Cantley L C (2004). The tumor suppressor LKB1 kinase directly activates AMP-activated kinase and regulates apoptosis in response to energy stress. Proc Natl Acad Sci U S A , 101(10): 3329–3335
doi: 10.1073/pnas.0308061100 pmid:14985505
62 Shaw R J, Lamia K A, Vasquez D, Koo S H, Bardeesy N, Depinho R A, Montminy M, Cantley L C (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science , 310(5754): 1642–1646
doi: 10.1126/science.1120781 pmid:16308421
63 Song Y, Altarejos J, Goodarzi M O, Inoue H, Guo X, Berdeaux R, Kim J H, Goode J, Igata M, Paz J C, Hogan M F, Singh P K, Goebel N, Vera L, Miller N, Cui J, Jones M R, Chen Y D, Taylor K D, Hsueh W A, Rotter J I, Montminy M, the CHARGE Consortium, the GIANT Consortium (2010). CRTC3 links catecholamine signalling to energy balance. Nature , 468(7326): 933–939
doi: 10.1038/nature09564 pmid:21164481
64 Takemori H, Katoh Y, Horike N, Doi J, Okamoto M (2002). ACTH-induced nucleocytoplasmic translocation of salt-inducible kinase. Implication in the protein kinase A-activated gene transcription in mouse adrenocortical tumor cells. J Biol Chem , 277(44): 42334–42343
doi: 10.1074/jbc.M204602200 pmid:12200423
65 Takemori H, Katoh Hashimoto Y, Nakae J, Olson E N, Okamoto M (2009). Inactivation of HDAC5 by SIK1 in AICAR-treated C2C12 myoblasts. Endocr J , 56(1): 121–130
doi: 10.1507/endocrj.K08E-173 pmid:18946175
66 van der Linden A M, Nolan K M, Sengupta P (2007). KIN-29 SIK regulates chemoreceptor gene expression via an MEF2 transcription factor and a class II HDAC. EMBO J , 26(2): 358–370
pmid:17170704
67 Wang B, Goode J, Best J, Meltzer J, Schilman P E, Chen J, Garza D, Thomas J B, Montminy M (2008). The insulin-regulated CREB coactivator TORC promotes stress resistance in Drosophila. Cell Metab , 7(5): 434–444
doi: 10.1016/j.cmet.2008.02.010 pmid:18460334
68 Wang Y, Inoue H, Ravnskjaer K, Viste K, Miller N, Liu Y, Hedrick S, Vera L, Montminy M (2010). Targeted disruption of the CREB coactivator Crtc2 increases insulin sensitivity. Proc Natl Acad Sci U S A , 107(7): 3087–3092
doi: 10.1073/pnas.0914897107 pmid:20133702
69 Wang Z, Takemori H, Halder S K, Nonaka Y, Okamoto M (1999). Cloning of a novel kinase (SIK) of the SNF1/AMPK family from high salt diet-treated rat adrenal. FEBS Lett , 453(1-2): 135–139
doi: 10.1016/S0014-5793(99)00708-5 pmid:10403390
70 Witczak C A, Fujii N, Hirshman M F, Goodyear L J (2007). Ca2+/calmodulin-dependent protein kinase kinase-alpha regulates skeletal muscle glucose uptake independent of AMP-activated protein kinase and Akt activation. Diabetes , 56(5): 1403–1409
doi: 10.2337/db06-1230 pmid:17287469
71 Xie M, Zhang D, Dyck J R, Li Y, Zhang H, Morishima M, Mann D L, Taffet G E, Baldini A, Khoury D S, Schneider M D (2006). A pivotal role for endogenous TGF-beta-activated kinase-1 in the LKB1/AMP-activated protein kinase energy-sensor pathway. Proc Natl Acad Sci U S A , 103(46): 17378–17383
doi: 10.1073/pnas.0604708103 pmid:17085580
72 Yamashita H, Takenoshita M, Sakurai M, Bruick R K, Henzel W J, Shillinglaw W, Arnot D, Uyeda K (2001). A glucose-responsive transcription factor that regulates carbohydrate metabolism in the liver. Proc Natl Acad Sci U S A , 98(16): 9116–9121
doi: 10.1073/pnas.161284298 pmid:11470916
73 Yoon J C, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn C R, Granner D K, Newgard C B, Spiegelman B M (2001). Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature , 413(6852): 131–138
doi: 10.1038/35093050 pmid:11557972
74 Yoon Y S, Seo W Y, Lee M W, Kim S T, Koo S H (2009). Salt-inducible kinase regulates hepatic lipogenesis by controlling SREBP-1c phosphorylation. J Biol Chem , 284(16): 10446–10452
doi: 10.1074/jbc.M900096200 pmid:19244231
[1] Karimeh Haghani, Pouyan Asadi, Gholamreza Taheripak, Ali Noori-Zadeh, Shahram Darabi, Salar Bakhtiyari. Association of mitochondrial dysfunction and lipid metabolism with type 2 diabetes mellitus: A review of literature[J]. Front. Biol., 2018, 13(6): 406-417.
[2] Johanna Morrow, Kyle T. Willenburg, Emmanuel Liscum. Phototropism in land plants: Molecules and mechanism from light perception to response[J]. Front. Biol., 2018, 13(5): 342-357.
[3] Yujie Deng, Caixia Lin, Huanjiao Jenny Zhou, Wang Min. Smooth muscle cell differentiation: Mechanisms and models for vascular diseases[J]. Front. Biol., 2017, 12(6): 392-405.
[4] Jian Li,Chun Guo,Nickolas Steinauer,Jinsong Zhang. New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins[J]. Front. Biol., 2016, 11(4): 285-304.
[5] Meng WANG,Kasturi BANERJEE,Harriet BAKER,John W. CAVE. Nucleotide sequence conservation of novel and established cis-regulatory sites within the tyrosine hydroxylase gene promoter[J]. Front. Biol., 2015, 10(1): 74-90.
[6] Rebecca M. FOX,Deborah J. ANDREW. Transcriptional regulation of secretory capacity by bZip transcription factors[J]. Front. Biol., 2015, 10(1): 28-51.
[7] Nidhi VISHNOI,Jie YAO. Gene positioning and genome function[J]. Front. Biol., 2014, 9(4): 255-268.
[8] Vipul SHUKLA,Runqing LU. IRF4 and IRF8: governing the virtues of B lymphocytes[J]. Front. Biol., 2014, 9(4): 269-282.
[9] Yaojuan LU,Longwei QIAO,Guanghua LEI,Ranim R. MIRA,Junxia GU,Qiping ZHENG. Col10a1 gene expression and chondrocyte hypertrophy during skeletal development and disease[J]. Front. Biol., 2014, 9(3): 195-204.
[10] Yunsong LAI, Huanxiu LI, Masumi YAMAGISHI. A review of target gene specificity of flavonoid R2R3-MYB transcription factors and a discussion of factors contributing to the target gene selectivity[J]. Front Biol, 2013, 8(6): 577-598.
[11] P. Shannon PENDERGRAST, Tom VOLPE. MicroRNA rules: Made to be broken[J]. Front Biol, 2013, 8(5): 468-474.
[12] Li FAN. How two helicases work together within the TFIIH complex, a perspective from structural studies of XPB and XPD helicases[J]. Front Biol, 2013, 8(4): 363-368.
[13] Iouri CHEPELEV, Xin CHEN. Alternative splicing switching in stem cell lineages[J]. Front Biol, 2013, 8(1): 50-59.
[14] Kazuhiro TANAKA, Nikhat J. SIDDIQI, Abdullah S. ALHOMIDA, Akhlaq A. FAROOQUI, Wei-Yi ONG. Differential regulation of cPLA2 and iPLA2 expression in the brain[J]. Front Biol, 2012, 7(6): 514-521.
[15] Gabriel J. SWENSON, J. STOCHASTIC, Franklyn F. BOLANDER, Jr., Richard A. LONG. Acid stress response in environmental and clinical strains of enteric bacteria[J]. Front Biol, 2012, 7(6): 495-505.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed