Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2012, Vol. 7 Issue (6) : 495-505    https://doi.org/10.1007/s11515-012-1191-5
REVIEW
Acid stress response in environmental and clinical strains of enteric bacteria
Gabriel J. SWENSON1,3(), J. STOCHASTIC1, Franklyn F. BOLANDER, Jr.1, Richard A. LONG1,2
1. Biological Sciences, University of South Carolina, Columbia, SC 29208, USA; 2. Marine Science Program, University of South Carolina, Columbia, SC 29208, USA; 3. Biology Department, Paine College, Augusta, GA 30901, USA
 Download: PDF(217 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The success of many enteric bacteria is hinged on the ability to tolerate environmental stress such as extreme acidity. The acid stress response (ASR) has been investigated in many enteric bacteria and has been shown to involve variable expression of a broad spectrum of genes involved in transcriptional regulation, metabolism, colonization and virulence; representing a linkage between acid tolerance and pathogenicity. Though the majority of ASR studies have been conducted in laboratory conditions and from the perspective of pathogenicity, the role of environmental reservoirs on acid adaptation has recently emerged as an important aspect of pathogenic microbial ecology. This mini-review profiles ASR in three opportunistic enteric pathogens and synthesizes recent work pertaining to the study of this dynamic response.

Keywords acid stress response      enteric bacteria      microbial ecology      transcriptional regulation      virulence     
Corresponding Author(s): SWENSON Gabriel J.,Email:gswenson@paine.edu   
Issue Date: 01 December 2012
 Cite this article:   
Gabriel J. SWENSON,J. STOCHASTIC,Franklyn F. BOLANDER, Jr., et al. Acid stress response in environmental and clinical strains of enteric bacteria[J]. Front Biol, 2012, 7(6): 495-505.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-012-1191-5
https://academic.hep.com.cn/fib/EN/Y2012/V7/I6/495
1 Abuaita B H, Withey J H (2009). Bicarbonate induces Vibrio cholerae virulence gene expression by enhancing ToxT activity. Infect Immun , 77(9): 4111–4120
doi: 10.1128/IAI.00409-09 pmid:19564378
2 Ahmer B M M (2004). Cell-to-cell signaling in Escherichia coli and Salmonella enterica. Mol Microbiol , 52(4): 933–945
3 Angelichio M J, Merrell D S, Camilli A (2004). Spatiotemporal analysis of acid adaptation-mediated Vibrio cholerae hyperinfectivity. Infect Immun , 72(4): 2405–2407
doi: 10.1128/IAI.72.4.2405-2407.2004 pmid:15039369
4 Arnold C N, McElhanon J, Lee A, Leonhart R, Siegele D A (2001). Global analysis of Escherichia coli gene expression during the acetate-induced acid tolerance response. J Bacteriol , 183(7): 2178–2186
doi: 10.1128/JB.183.7.2178-2186.2001 pmid:11244055
5 Assadian N W, Fenn L B, Flores-Ortiz M A, Ali A S (1999). Spatial variability of solutes in a pecan orchard surface-irrigated with untreated ef?uents in the upper Rio Grande River basin. Agric Water Manag , 42(2): 143–156
6 Bader M W, Navarre W W, Shiau W, Nikaido H, Frye J G, McClelland M, Fang F C, Miller S I (2003). Regulation of Salmonella typhimurium virulence gene expression by cationic antimicrobial peptides. Mol Microbiol , 50(1): 219–230
doi: 10.1046/j.1365-2958.2003.03675.x pmid:14507376
7 Baker-Austin C, Dopson M (2007). Life in acid: pH homeostasis in acidophiles. Trends Microbiol , 15(4): 165–171
doi: 10.1016/j.tim.2007.02.005 pmid:17331729
8 Baudart J, Grabulos J, Barusseau J P, Lebaron P (2000). Salmonella spp. and fecal coliform loads in coastal waters from a point vs. nonpoint source of pollution. J Environ Qual , 29(1): 241–250
doi: 10.2134/jeq2000.00472425002900010031x
9 Beales N (2004). Adaptation of microorganisms to cold temperatures, weak acid preservatives, low pH, and osmotic stress: A review. Compr Rev Food Sci F , 3(1): 1–20
doi: 10.1111/j.1541-4337.2004.tb00057.x
10 Bearson B L, Wilson L, Foster J W (1998). A low pH-Inducible, PhoPQ-Dependent acid tolerance response protects Salmonella typhimurium against inorganic acid stress (vol 180, pg 2409, 1998). J Bacteriol , 180(14): 3734–3734
11 Bergholz T M, Vanaja S K, Whittam T S (2009). Gene expression induced in Escherichia coli O157:H7 upon exposure to model apple juice. Appl Environ Microbiol , 75(11): 3542–3553
doi: 10.1128/AEM.02841-08 pmid:19346340
12 Beyhan S, Tischler A D, Camilli A, Yildiz F H (2006). Transcriptome and phenotypic responses of Vibrio cholerae to increased cyclic di-GMP level. J Bacteriol , 188(10): 3600–3613
doi: 10.1128/JB.188.10.3600-3613.2006 pmid:16672614
13 Bhagwat A A (2006). Microbiological Safety of Fresh-cut Produce: Where Are We Now? American Society for Microbiology Press , 121–165
14 Bhagwat A A, Bhagwat M (2008). Methods and tools for comparative genomics of foodborne pathogens. Foodborne Pathog Dis , 5(4): 487–497
doi: 10.1089/fpd.2008.0117 pmid:18713064
15 Bhagwat A A, Chan L, Han R, Tan J, Kothary M, Jean-Gilles J, Tall B D (2005). Characterization of enterohemorrhagic Escherichia coli strains based on acid resistance phenotypes. Infect Immun , 73(8): 4993–5003
doi: 10.1128/IAI.73.8.4993-5003.2005 pmid:16041014
16 Blokesch M, Schoolnik G K (2007). Serogroup conversion of Vibrio cholerae in aquatic reservoirs. PLoS Pathog , 3(6): e81
doi: 10.1371/journal.ppat.0030081 pmid:17559304
17 Brandl M T (2006). Fitness of human enteric pathogens on plants and implications for food safety. Annu Rev Phytopathol , 44(1): 367–392
doi: 10.1146/annurev.phyto.44.070505.143359 pmid:16704355
18 Butler S M, Nelson E J, Chowdhury N, Faruque S M, Calderwood S B, Camilli A (2006). Cholera stool bacteria repress chemotaxis to increase infectivity. Mol Microbiol , 60(2): 417–426
doi: 10.1111/j.1365-2958.2006.05096.x pmid:16573690
19 Capozzi V, Fiocco D, Amodio M L, Gallone A, Spano G (2009). Bacterial stressors in minimally processed food. Int J Mol Sci , 10(7): 3076–3105
doi: 10.3390/ijms10073076 pmid:19742126
20 Chang Y Y, Cronan J E Jr (1999). Membrane cyclopropane fatty acid content is a major factor in acid resistance of Escherichia coli. Mol Microbiol , 33(2): 249–259
doi: 10.1046/j.1365-2958.1999.01456.x pmid:10411742
21 Cheville A M, Arnold K W, Buchrieser C, Cheng C M, Kaspar C W (1996). rpoS regulation of acid, heat, and salt tolerance in Escherichia coli O157:H7. Appl Environ Microbiol , 62(5): 1822–1824
22 Chiang S L, Mekalanos J J (1998). Use of signature-tagged transposon mutagenesis to identify Vibrio cholerae genes critical for colonization. Mol Microbiol , 27(4): 797–805
doi: 10.1046/j.1365-2958.1998.00726.x pmid:9515705
23 Choi S H, Baumler D J, Kaspar C W (2000). Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157:H7. Appl Environ Microbiol , 66(9): 3911–3916
doi: 10.1128/AEM.66.9.3911-3916.2000 pmid:10966408
24 Ciaramella M, Napoli A, Rossi M (2005). Another extreme genome: how to live at pH 0. Trends Microbiol , 13(2): 49–51
doi: 10.1016/j.tim.2004.12.001 pmid:15680761
25 Colwell R R (1996). Global climate and infectious disease: the cholera paradigm. Science , 274(5295): 2025–2031
doi: 10.1126/science.274.5295.2025 pmid:8953025
26 Cotter P D, Hill C (2003). Surviving the acid test: responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev , 67(3): 429–453
doi: 10.1128/MMBR.67.3.429-453.2003 pmid:12966143
27 De Angelis M, Gobbetti M (2004). Environmental stress responses in Lactobacillus: a review. Proteomics , 4(1): 106–122
doi: 10.1002/pmic.200300497 pmid:14730676
28 Dong T, Schellhorn H E (2010). Role of RpoS in virulence of pathogens. Infect Immun , 78(3): 887–897
doi: 10.1128/IAI.00882-09 pmid:19948835
29 Doyle M P, Erickson M C (2008). Summer meeting 2007—the problems with fresh produce: an overview. J Appl Microbiol , 105(2): 317–330
doi: 10.1111/j.1365-2672.2008.03746.x pmid:18284485
30 Faruque S M, Biswas K, Udden S M N, Ahmad Q S, Sack D A, Nair G B, Mekalanos J J (2006). Transmissibility of cholera: in vivo-formed biofilms and their relationship to infectivity and persistence in the environment. Proc Natl Acad Sci USA , 103(16): 6350–6355
doi: 10.1073/pnas.0601277103 pmid:16601099
31 Faucher S P, Porwollik S, Dozois C M, McClelland M, Daigle F (2006). Transcriptome of Salmonella enterica Serovar Typhi within macrophages revealed through the selective capture of transcribed sequences. Proc Natl Acad Sci USA , 103(6): 1906–1911
doi: 10.1073/pnas.0509183103 pmid:16443683
32 Flahaut S, Hartke A, Giard J C, Benachour A, Boutibonnes P, Auffray Y (1996). Relationship between stress response toward bile salts, acid and heat treatment in Enterococcus faecalis. FEMS Microbiol Lett , 138(1): 49–54
doi: 10.1111/j.1574-6968.1996.tb08133.x pmid:8674969
33 Foster J W (1991). Salmonella acid shock proteins are required for the adaptive acid tolerance response. J Bacteriol , 173(21): 6896–6902
pmid:1938893
34 Foster J W (1993). The acid tolerance response of Salmonella typhimurium involves transient synthesis of key acid shock proteins. J Bacteriol , 175(7): 1981–1987
pmid:8458840
35 Foster J W (1999). When protons attack: microbial strategies of acid adaptation. Curr Opin Microbiol , 2(2): 170–174
doi: 10.1016/S1369-5274(99)80030-7 pmid:10322170
36 Foster J W (2004). Escherichia coli acid resistance: tales of an amateur acidophile. Nat Rev Microbiol , 2(11): 898–907
doi: 10.1038/nrmicro1021 pmid:15494746
37 Foster J W, Hall H K (1990). Adaptive acidification tolerance response of Salmonella typhimurium. J Bacteriol , 172(2): 771–778
pmid:2404956
38 Foster J W, Spector M P (1995). How Salmonella survive against the odds. Annu Rev Microbiol , 49(1): 145–174
doi: 10.1146/annurev.mi.49.100195.001045 pmid:8561457
39 Foster P L (2007). Stress-induced mutagenesis in bacteria. Crit Rev Biochem Mol Biol , 42(5): 373–397
doi: 10.1080/10409230701648494 pmid:17917873
40 Frees D, Varmanen P, Ingmer H (2001). Inactivation of a gene that is highly conserved in Gram-positive bacteria stimulates degradation of non-native proteins and concomitantly increases stress tolerance in Lactococcus lactis. Mol Microbiol , 41(1): 93–103
doi: 10.1046/j.1365-2958.2001.02503.x pmid:11454203
41 Frees D, Vogensen F K, Ingmer H (2003). Identification of proteins induced at low pH in Lactococcus lactis. Int J Food Microbiol , 87(3): 293–300
doi: 10.1016/S0168-1605(03)00104-1 pmid:14527802
42 Garcia S S, Ake C, Clement B, Huebner H J, Donnelly K C, Shalat S L (2001). Initial results of environmental monitoring in the Texas Rio Grande Valley. Environ Int , 26(7–8): 465–474
doi: 10.1016/S0160-4120(01)00027-7 pmid:11485214
43 Goel A K, Jiang S C (2010). Genetic determinants of virulence, antibiogram and altered biotype among the Vibrio cholerae O1 isolates from different cholera outbreaks in India. Infect Genet Evol , 10(6): 814–819
doi: 10.1016/j.meegid.2009.06.022 pmid:19580888
44 Goodson M, Rowbury R J (1989). Resistance of acid-habituated Escherichia coli to organic acids and its medical and applied significance. Lett Appl Microbiol , 8(6): 211–214 .
45 Greenacre E J, Lucchini S, Hinton J C D, Brocklehurst T F (2006). The lactic acid-induced acid tolerance response in Salmonella enterica Serovar Typhimurium induces sensitivity to hydrogen peroxide. Appl Environ Microbiol , 72(8): 5623–5625
doi: 10.1128/AEM.00538-06 pmid:16885318
46 Hanning I B, Nutt J D, Ricke S C (2009). Salmonellosis outbreaks in the United States due to fresh produce: sources and potential intervention measures. Foodborne Pathog Dis , 6(6): 635–648
doi: 10.1089/fpd.2008.0232 pmid:19580447
47 Hayes E T, Wilks J C, Sanfilippo P, Yohannes E, Tate D P, Jones B D, Radmacher M D, BonDurant S S, Slonczewski J L (2006). Oxygen limitation modulates pH regulation of catabolism and hydrogenases, multidrug transporters, and envelope composition in Escherichia coli K-12. BMC Microbiol , 6(1): 89
doi: 10.1186/1471-2180-6-89 pmid:17026754
48 Heidelberg J F, Eisen J A, Nelson W C, Clayton R A, Gwinn M L, Dodson R J, Haft D H, Hickey E K, Peterson J D, Umayam L, Gill S R, Nelson K E, Read T D, Tettelin H, Richardson D, Ermolaeva M D, Vamathevan J, Bass S, Qin H, Dragoi I, Sellers P, McDonald L, Utterback T, Fleishmann R D, Nierman W C, White O, Salzberg S L, Smith H O, Colwell R R, Mekalanos J J, Venter J C, Fraser C M (2000). DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature , 406(6795): 477–483
doi: 10.1038/35020000 pmid:10952301
49 Hersh B M, Farooq F T, Barstad D N, Blankenhorn D L, Slonczewski J L (1996). A glutamate-dependent acid resistance gene in Escherichia coli. J Bacteriol , 178(13): 3978–3981
pmid:8682809
50 Hommais F, Krin E, Coppée J Y, Lacroix C, Yeramian E, Danchin A, Bertin P (2004). GadE (YhiE): a novel activator involved in the response to acid environment in Escherichia coli. Microbiology , 150(1): 61–72
doi: 10.1099/mic.0.26659-0 pmid:14702398
51 Hsieh J L, Fries J S, Noble R T (2007). Vibrio and phytoplankton dynamics during the summer of 2004 in a eutrophying estuary. Ecol Appl , 17(5): S102–S109
doi: 10.1890/05-1274.1
52 Iyer R, Williams C, Miller C (2003). Arginine-agmatine antiporter in extreme acid resistance in Escherichia coli. J Bacteriol , 185(22): 6556–6561
doi: 10.1128/JB.185.22.6556-6561.2003 pmid:14594828
53 Johnson M D, Burton N A, Gutierrez B, Painter K, Lund P A (2011). RcsB is required for inducible acid resistance in E. coli and acts at gadE dependent and independent promoters, J Bacteriol online
54 Jiang S C, Louis V, Choopun N, Sharma A, Huq A, Colwell R R (2000). Genetic diversity of Vibrio cholerae in Chesapeake Bay determined by amplified fragment length polymorphism fingerprinting. Appl Environ Microbiol , 66(1): 140–147
doi: 10.1128/AEM.66.1.140-147.2000 pmid:10618215
55 Joelsson A, Kan B, Zhu J (2007). Quorum sensing enhances the stress response in Vibrio cholerae. Appl Environ Microbiol , 73(11): 3742–3746
doi: 10.1128/AEM.02804-06 pmid:17434996
56 Kamruzzaman M, Udden S M N, Cameron D E, Calderwood S B, Nair G B, Mekalanos J J, Faruque S M (2010). Quorum-regulated biofilms enhance the development of conditionally viable, environmental Vibrio cholerae. Proc Natl Acad Sci USA , 107(4): 1588–1593
doi: 10.1073/pnas.0913404107 pmid:20080633
57 Kang Y S, Weber K D, Qiu Y, Kiley P J, Blattner F R (2005). Genome-wide expression analysis indicates that FNR of Escherichia coli K-12 regulates a large number of genes of unknown function. J Bacteriol , 187(3): 1135–1160
doi: 10.1128/JB.187.3.1135-1160.2005 pmid:15659690
58 King T, Lucchini S, Hinton J C D, Gobius K (2010). Transcriptomic analysis of Escherichia coli O157:H7 and K-12 cultures exposed to inorganic and organic acids in stationary phase reveals acidulant- and strain-specific acid tolerance responses App. Environ Microbiol , 76(19): 6514–6528
doi: 10.1128/AEM.02392-09
59 Kirkpatrick C, Maurer L M, Oyelakin N E, Yoncheva Y N, Maurer R, Slonczewski J L (2001). Acetate and formate stress: opposite responses in the proteome of Escherichia coli. J Bacteriol , 183(21): 6466–6477
doi: 10.1128/JB.183.21.6466-6477.2001 pmid:11591692
60 Kirn T J, Jude B A, Taylor R K (2005). A colonization factor links Vibrio cholerae environmental survival and human infection. Nature , 438(7069): 863–866
doi: 10.1038/nature04249 pmid:16341015
61 Kirschner A K T, Schlesinger J, Farnleitner A H, Hornek R, Süss B, Golda B, Herzig A, Reitner B (2008). Rapid growth of planktonic Vibrio cholerae non-O1/non-O139 strains in a large alkaline lake in Austria: dependence on temperature and dissolved organic carbon quality. Appl Environ Microbiol , 74(7): 2004–2015
doi: 10.1128/AEM.01739-07 pmid:18245230
62 Kitko R D, Wilks J C, Garduque G M, Slonczewski J L (2010). Osmolytes contribute to pH homeostasis of Escherichia coli. PLoS ONE , 5(4): e10078
doi: 10.1371/journal.pone.0010078 pmid:20386696
63 Koutsoumanis K P, Kendall P A, Sofos J N (2003). Effect of food processing-related stresses on acid tolerance of Listeria monocytogenes. Appl Environ Microbiol , 69(12): 7514–7516
doi: 10.1128/AEM.69.12.7514-7516.2003 pmid:14660405
64 Koutsoumanis K P, Sofos J N (2004). Comparative acid stress response of Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella Typhimurium after habituation at different pH conditions. Lett Appl Microbiol , 38(4): 321–326
doi: 10.1111/j.1472-765X.2004.01491.x pmid:15214733
65 Kovacikova G, Lin W, Skorupski K (2010). The LysR-type virulence activator AphB regulates the expression of genes in Vibrio cholerae in response to low pH and anaerobiosis. J Bacteriol , 192(16): 4181–4191
doi: 10.1128/JB.00193-10 pmid:20562308
66 Kovacikova G, Skorupski K (2002). Binding site requirements of the virulence gene regulator AphB: differential affinities for the Vibrio cholerae classical and El Tor tcpPH promoters. Mol Microbiol , 44(2): 533–547
doi: 10.1046/j.1365-2958.2002.02914.x pmid:11972789
67 Krin E, Danchin A, Soutourina O (2010a). Decrypting the H-NS-dependent regulatory cascade of acid stress resistance in Escherichia coli. BMC Microbiol , 10(1): 273
doi: 10.1186/1471-2180-10-273 pmid:21034467
68 Krin E, Danchin A, Soutourina O (2010b). RcsB plays a central role in H-NS-dependent regulation of motility and acid stress resistance in Escherichia coli. Res Microbiol , 161(5): 363–371
doi: 10.1016/j.resmic.2010.04.002 pmid:20435136
69 Leyer G J, Johnson E A (1992). Acid adaptation promotes survival of Salmonella spp. in cheese. Appl Environ Microbiol , 58(6): 2075–2080
pmid:1622286
70 Leyer G J, Johnson E A (1993). Acid adaptation induces cross-protection against environmental stresses in Salmonella typhimurium. Appl Environ Microbiol , 59(6): 1842–1847
pmid:8328803
71 Li C C, Crawford J A, DiRita V J, Kaper J B (2000). Molecular cloning and transcriptional regulation of ompT, a ToxR-repressed gene in Vibrio cholerae. Mol Microbiol , 35(1): 189–203
doi: 10.1046/j.1365-2958.2000.01699.x pmid:10632889
72 Lin J S, Lee I S, Frey J, Slonczewski J L, Foster J W (1995). Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli. J Bacteriol , 177(14): 4097–4104
pmid:7608084
73 Lin J S, Smith M P, Chapin K C, Baik H S, Bennett G N, Foster J W (1996). Mechanisms of acid resistance in enterohemorrhagic Escherichia coli. Appl Environ Microbiol , 62(9): 3094–3100
pmid:8795195
74 López-Solanilla E, García-Olmedo F, Rodríguez-Palenzuela P (1998). Inactivation of the sapA to sapF locus of Erwinia chrysanthemi reveals common features in plant and animal bacterial pathogenesis. Plant Cell , 10(6): 917–924
pmid:9634580
75 López-Solanilla E, Llama-Palacios A, Collmer A, García-Olmedo F, Rodríguez-Palenzuela P (2001). Relative effects on virulence of mutations in the sap, pel, and hrp loci of Erwinia chrysanthemi. Mol Plant Microbe Interact , 14(3): 386–393
doi: 10.1094/MPMI.2001.14.3.386 pmid:11277436
76 Ma Z, Gong S M, Richard H, Tucker D L, Conway T, Foster J W (2003). GadE (YhiE) activates glutamate decarboxylase-dependent acid resistance in Escherichia coli K-12. Mol Microbiol , 49(5): 1309–1320
doi: 10.1046/j.1365-2958.2003.03633.x pmid:12940989
77 Ma Z, Masuda N, Foster J W (2004). Characterization of EvgAS-YdeO-GadE branched regulatory circuit governing glutamate-dependent acid resistance in Escherichia coli. J Bacteriol , 186(21): 7378–7389
doi: 10.1128/JB.186.21.7378-7389.2004 pmid:15489450
78 Masuda N, Church G M (2003). Regulatory network of acid resistance genes in Escherichia coli. Mol Microbiol , 48(3): 699–712
doi: 10.1046/j.1365-2958.2003.03477.x pmid:12694615
79 Mathur J, Davis B M, Waldor M K (2007). Antimicrobial peptides activate the Vibrio cholerae sigmaE regulon through an OmpU-dependent signalling pathway. Mol Microbiol , 63(3): 848–858
doi: 10.1111/j.1365-2958.2006.05544.x pmid:17181782
80 Mathur J, Waldor M K (2004). The Vibrio cholerae ToxR-regulated porin OmpU confers resistance to antimicrobial peptides. Infect Immun , 72(6): 3577–3583
doi: 10.1128/IAI.72.6.3577-3583.2004 pmid:15155667
81 Matson J S, Withey J H, DiRita V J (2007). Regulatory networks controlling Vibrio cholerae virulence gene expression. Infect Immun , 75(12): 5542–5549
doi: 10.1128/IAI.01094-07 pmid:17875629
82 Maurer L M, Yohannes E, Bondurant S S, Radmacher M, Slonczewski J L (2005). pH regulates genes for flagellar motility, catabolism, and oxidative stress in Escherichia coli K-12. J Bacteriol , 187(1): 304–319
doi: 10.1128/JB.187.1.304-319.2005 pmid:15601715
83 Merrell D S, Bailey C, Kaper J B, Camilli A (2001). The ToxR-mediated organic acid tolerance response of Vibrio cholerae requires OmpU. J Bacteriol , 183(9): 2746–2754
doi: 10.1128/JB.183.9.2746-2754.2001 pmid:11292792
84 Merrell D S, Butler S M, Qadri F, Dolganov N A, Alam A, Cohen M B, Calderwood S B, Schoolnik G K, Camilli A (2002a). Host-induced epidemic spread of the cholera bacterium. Nature , 417(6889): 642–645
doi: 10.1038/nature00778 pmid:12050664
85 Merrell D S, Camilli A (1999). The cadA gene of Vibrio cholerae is induced during infection and plays a role in acid tolerance. Mol Microbiol , 34(4): 836–849
doi: 10.1046/j.1365-2958.1999.01650.x pmid:10564522
86 Merrell D S, Camilli A (2000). Regulation of Vibrio cholerae genes required for acid tolerance by a member of the “ToxR-like” family of transcriptional regulators. J Bacteriol , 182(19): 5342–5350
doi: 10.1128/JB.182.19.5342-5350.2000 pmid:10986235
87 Merrell D S, Camilli A (2002). Acid tolerance of gastrointestinal pathogens. Curr Opin Microbiol , 5(1): 51–55
doi: 10.1016/S1369-5274(02)00285-0 pmid:11834369
88 Merrell D S, Goodrich M L, Otto G, Tompkins L S, Falkow S (2003). pH-regulated gene expression of the gastric pathogen Helicobacter pylori. Infect Immun , 71(6): 3529–3539
doi: 10.1128/IAI.71.6.3529-3539.2003 pmid:12761138
89 Merrell D S, Hava D L, Camilli A (2002b). Identification of novel factors involved in colonization and acid tolerance of Vibrio cholerae. Mol Microbiol , 43(6): 1471–1491
doi: 10.1046/j.1365-2958.2002.02857.x pmid:11952899
90 Mols M, van Kranenburg R, Tempelaars M H, van Schaik W, Moezelaar R, Abee T (2010). Comparative analysis of transcriptional and physiological responses of Bacillus cereus to organic and inorganic acid shocks. Int J Food Microbiol , 137(1): 13–21
doi: 10.1016/j.ijfoodmicro.2009.09.027 pmid:19853945
91 Nachin L, Barras F (2000). External pH: an environmental signal that helps to rationalize pel gene duplication in Erwinia chrysanthemi. Mol Plant Microbe Interact , 13(8): 882–886
doi: 10.1094/MPMI.2000.13.8.882 pmid:10939260
92 Nalin D R (1976). Cholera, copepods, and chitinase. Lancet , 2(7992): 958–960
doi: 10.1016/S0140-6736(76)90915-6 pmid:62179
93 Nalin D R, Daya V, Reid A, Levine M M, Cisneros L (1979). Adsorption and growth of Vibrio cholerae on chitin. Infect Immun , 25(2): 768–770
pmid:489131
94 Nutt J D, Pillai S D, Woodward C L, Sternes K L, Zabala-Díaz I B, Kwon Y M, Ricke S C (2003). Use of a Salmonella typhimurium hilA fusion strain to assess effects of environmental fresh water sources on virulence gene expression. Water Res , 37(14): 3319–3326
doi: 10.1016/S0043-1354(03)00244-6 pmid:12834724
95 Nystr?m T (2004). Stationary-phase physiology. Annu Rev Microbiol , 58(1): 161–181
doi: 10.1146/annurev.micro.58.030603.123818 pmid:15487934
96 Padan E, Bibi E, Ito M, Krulwich T A (2005). Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta , 1717(2): 67–88
doi: 10.1016/j.bbamem.2005.09.010 pmid:16277975
97 Parra-Lopez C, Baer M T, Groisman E A (1993). Molecular genetic analysis of a locus required for resistance to antimicrobial peptides in Salmonella typhimurium. EMBO J , 12(11): 4053–4062
pmid:8223423
98 Peterson K M (2002). Expression of Vibrio cholerae virulence genes in response to environmental signals. Curr Issues Intest Microbiol , 3(2): 29–38
pmid:12400636
99 Polen T, Rittmann D, Wendisch V F, Sahm H (2003). DNA microarray analyses of the long-term adaptive response of Escherichia coli to acetate and propionate. Appl Environ Microbiol , 69(3): 1759–1774
doi: 10.1128/AEM.69.3.1759-1774.2003 pmid:12620868
100 Polo F, Figueras M J, Inza I, Sala J, Fleisher J M, Guarro J (1998). Relationship between presence of Salmonella and indicators of faecal pollution in aquatic habitats. FEMS Microbiol Lett , 160 (2): 253–256
101 Price S B, Cheng C M, Kaspar C W, Wright J C, DeGraves F J, Penfound T A, Castanie-Cornet M P, Foster J W (2000). Role of rpoS in acid resistance and fecal shedding of Escherichia coli O157:H7. Appl Environ Microbiol , 66(2): 632–637
doi: 10.1128/AEM.66.2.632-637.2000 pmid:10653728
102 Price S B, Wright J C, DeGraves F J, Castanie-Comet M P, Foster J W (2004). Acid resistance systems required for survival of Escherichia coli O157: H7 in the bovine gastrointestinal tract and in apple cider are different. Appl Environ Microbiol , 70(8): 4792–4799
doi: 10.1073/pnas.0408238102 pmid:15703297
103 Prost L R, Daley M E, Le Sage V, Bader M W, Le Moual H, Klevit R E, Miller S I (2007). Activation of the bacterial sensor kinase PhoQ by acidic pH. Mol Cell , 26(2): 165–174
doi: 10.1016/j.molcel.2007.03.008 pmid:17466620
104 Provenzano D, Klose K E (2000). Altered expression of the ToxR-regulated porins OmpU and OmpT diminishes Vibrio cholerae bile resistance, virulence factor expression, and intestinal colonization. Proc Natl Acad Sci USA , 97(18): 10220–10224
doi: 10.1073/pnas.170219997 pmid:10944196
105 Pruzzo C, Vezzulli L, Colwell R R (2008). Global impact of Vibrio cholerae interactions with chitin. Environ Microbiol , 10(6): 1400–1410
doi: 10.1111/j.1462-2920.2007.01559.x pmid:18312392
106 Rallu F, Gruss A, Ehrlich S D, Maguin E (2000). Acid- and multistress-resistant mutants of Lactococcus lactis: identification of intracellular stress signals. Mol Microbiol , 35(3): 517–528
doi: 10.1046/j.1365-2958.2000.01711.x pmid:10672175
107 Rehfuss M Y M, Parker C T, Brandl M T (2011). Salmonella transcriptional signature in Tetrahymena phagosomes and role of acid tolerance in passage through the protist. ISME J , 5(2): 262–273
doi: 10.1038/ismej.2010.128 pmid:20686510
108 Reidl J, Klose K E (2002). Vibrio cholerae and cholera: out of the water and into the host. FEMS Microbiol Rev , 26(2): 125–139
doi: 10.1111/j.1574-6976.2002.tb00605.x pmid:12069878
109 Rhee J E, Ju H M, Park U, Park B C, Choi S H (2004). Identification of the Vibrio vulnificus cadC and Evaluation of Its Role in Acid Tolerance. J Microbiol Biotechnol , 14(5): 1093–1098
110 Richard H, Foster J W (2004). Escherichia coli glutamate- and arginine-dependent acid resistance systems increase internal pH and reverse transmembrane potential. J Bacteriol , 186(18): 6032–6041
doi: 10.1128/JB.186.18.6032-6041.2004 pmid:15342572
111 Richards G M, Beuchat L R (2005). Infection of cantaloupe rind with Cladosporium cladosporioides and Penicillium expansum, and associated migration of Salmonella poona into edible tissues. Int J Food Microbiol , 103(1): 1–10
doi: 10.1016/j.ijfoodmicro.2004.05.023 pmid:16023237
112 Rowbury R J (1995). An assessment of environmental factors influencing acid tolerance and sensitivity in Escherichia coli, Salmonella spp. and other enterobacteria. Lett Appl Microbiol , 20(6): 333–337
doi: 10.1111/j.1472-765X.1995.tb01314.x pmid:7786497
113 Rutherford S T, van Kessel J C, Shao Y, Bassler B L (2011). AphA and LuxR/HapR reciprocally control quorum sensing in vibrios. Genes Dev , 25(4): 397–408
doi: 10.1101/gad.2015011 pmid:21325136
114 Schild S, Tamayo R, Nelson E J, Qadri F, Calderwood S B, Camilli A (2007). Genes induced late in infection increase fitness of Vibrio cholerae after release into the environment. Cell Host Microbe , 2(4): 264–277
doi: 10.1016/j.chom.2007.09.004 pmid:18005744
115 Small P, Blankenhorn D, Welty D, Zinser E, Slonczewski J L (1994). Acid and base resistance in Escherichia coli and Shigella flexneri: role of rpoS and growth pH. J Bacteriol , 176(6): 1729–1737
pmid:8132468
116 Song T, Mika F, Lindmark B, Liu Z, Schild S, Bishop A, Zhu J, Camilli A, Johansson J, Vogel J, Wai S N (2008). A new Vibrio cholerae sRNA modulates colonization and affects release of outer membrane vesicles. Mol Microbiol , 70(1): 100–111
doi: 10.1111/j.1365-2958.2008.06392.x pmid:18681937
117 Stincone A, Rahman A S, Antczak P, Henderson I, Cole J, Johnson M D, Lund P (2011). A systems biology approach sheds new light on Escherichia coli acid resistance. Nucl. Acids Res . 39(17): 7512–752
118 Sun Y R, Fukamachi T, Saito H, Kobayashi H (2011). ATP requirement for acidic resistance in Escherichia coli. J Bacteriol , 193(12): 3072–3077
doi: 10.1128/JB.00091-11 pmid:21478347
119 Tamayo R, Patimalla B, Camilli A (2010). Growth in a biofilm induces a hyperinfectious phenotype in Vibrio cholerae. Infect Immun , 78(8): 3560–3569
doi: 10.1128/IAI.00048-10 pmid:20515927
120 Tischler A D, Camilli A (2004). Cyclic diguanylate (c-di-GMP) regulates Vibrio cholerae biofilm formation. Mol Microbiol , 53(3): 857–869
doi: 10.1111/j.1365-2958.2004.04155.x pmid:15255898
121 Tischler A D, Camilli A (2005). Cyclic diguanylate regulates Vibrio cholerae virulence gene expression. Infect Immun , 73(9): 5873–5882
doi: 10.1128/IAI.73.9.5873-5882.2005 pmid:16113306
122 Tucker D L, Tucker N, Conway T (2002). Gene expression profiling of the pH response in Escherichia coli. J Bacteriol , 184(23): 6551–6558
doi: 10.1128/JB.184.23.6551-6558.2002 pmid:12426343
123 Tucker D L, Tucker N, Ma Z, Foster J W, Miranda R L, Cohen P S, Conway T (2003). Genes of the GadX-GadW regulon in Escherichia coli. J Bacteriol , 185(10): 3190–3201
doi: 10.1128/JB.185.10.3190-3201.2003 pmid:12730179
124 van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich S D, Maguin E (2002). Stress responses in lactic acid bacteria. Antonie van Leeuwenhoek , 82(1–4): 187–216
doi: 10.1023/A:1020631532202 pmid:12369188
125 Vezzulli L, Guzmán C A, Colwell R R, Pruzzo C (2008). Dual role colonization factors connecting Vibrio cholerae’s lifestyles in human and aquatic environments open new perspectives for combating infectious diseases. Curr Opin Biotechnol , 19(3): 254–259
doi: 10.1016/j.copbio.2008.04.002 pmid:18501582
126 Wade W N, Beuchat L R (2003). Metabiosis of proteolytic moulds and Salmonella in raw, ripe tomatoes. J Appl Microbiol , 95(3): 437–450
doi: 10.1046/j.1365-2672.2003.01995.x pmid:12911690
127 Wade W N, Vasdinnyei R, Deak T, Beuchat L R (2003). Proteolytic yeasts isolated from raw, ripe tomatoes and metabiotic association of Geotrichum candidum with Salmonella. Int J Food Microbiol , 86(1–2): 101–111
doi: 10.1016/S0168-1605(03)00250-2 pmid:12892925
128 Weber H, Polen T, Heuveling J, Wendisch V F, Hengge R (2005). Genome-wide analysis of the general stress response network in Escherichia coli: sigmaS-dependent genes, promoters, and σ factor selectivity. J Bacteriol , 187(5): 1591–1603
doi: 10.1128/JB.187.5.1591-1603.2005 pmid:15716429
129 Wilmes-Riesenberg M R, Foster J W, Curtiss R 3rd (1997). An altered rpoS allele contributes to the avirulence of Salmonella typhimurium LT2. Infect Immun , 65(1): 203–210
pmid:8975913
130 Withey J H, DiRita V J (2005). Activation of both acfA and acfD transcription by Vibrio cholerae ToxT requires binding to two centrally located DNA sites in an inverted repeat conformation. Mol Microbiol , 56(4): 1062–1077
doi: 10.1111/j.1365-2958.2005.04589.x pmid:15853890
131 Withey J H, DiRita V J (2006). The toxbox: specific DNA sequence requirements for activation of Vibrio cholerae virulence genes by ToxT. Mol Microbiol , 59(6): 1779–1789
doi: 10.1111/j.1365-2958.2006.05053.x pmid:16553883
132 Xie Y, Chou L S, Cutler A, Weimer B (2004). DNA Macroarray profiling of Lactococcus lactis subsp. lactis IL1403 gene expression during environmental stresses. Appl Environ Microbiol , 70(11): 6738–6747
doi: 10.1128/AEM.70.11.6738-6747.2004 pmid:15528540
133 Zhu J, Mekalanos J J (2003). Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev Cell , 5(4): 647–656
doi: 10.1016/S1534-5807(03)00295-8 pmid:14536065
134 Zo Y G, Chokesajjawatee N, Grim C, Arakawa E, Watanabe H, Colwell R R (2009). Diversity and seasonality of bioluminescent Vibrio cholerae populations in Chesapeake Bay. Appl Environ Microbiol , 75(1): 135–146
doi: 10.1128/AEM.02894-07 pmid:19011071
135 Zwir I, Shin D, Kato A, Nishino K, Latifi T, Solomon F, Hare J M, Huang H, Groisman E A (2005). Dissecting the PhoP regulatory network of Escherichia coli and Salmonella enterica. Proc Natl Acad Sci USA , 102(8): 2862–2867
doi: 10.1073/pnas.0408238102 pmid:15703297
[1] Li XU,Yancheng LIU. Protein secretion systems in bacterial pathogens[J]. Front. Biol., 2014, 9(6): 437-447.
[2] Vipul SHUKLA,Runqing LU. IRF4 and IRF8: governing the virtues of B lymphocytes[J]. Front. Biol., 2014, 9(4): 269-282.
[3] Iouri CHEPELEV, Xin CHEN. Alternative splicing switching in stem cell lineages[J]. Front Biol, 2013, 8(1): 50-59.
[4] Kazuhiro TANAKA, Nikhat J. SIDDIQI, Abdullah S. ALHOMIDA, Akhlaq A. FAROOQUI, Wei-Yi ONG. Differential regulation of cPLA2 and iPLA2 expression in the brain[J]. Front Biol, 2012, 7(6): 514-521.
[5] Fang-Fang WANG, Li WANG, Wei QIAN. Two-component signal transduction systems and regulation of virulence factors in Xanthomonas: a perspective[J]. Front Biol, 2010, 5(6): 495-506.
[6] Jinbiao MA, Ying HUANG, . Post-transcriptional regulation of miRNA biogenesis and functions[J]. Front. Biol., 2010, 5(1): 32-40.
[7] ZHU Daling, LI Aihua, WANG Jianguo, LI Ming, CAI Taozhen, HU Jing. Correlation between the distribution pattern of virulence genes and virulence of Aeromonas hydrophila strains[J]. Front. Biol., 2007, 2(2): 176-179.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed