Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2010, Vol. 5 Issue (6) : 495-506    https://doi.org/10.1007/s11515-010-0750-x
REVIEW
Two-component signal transduction systems and regulation of virulence factors in Xanthomonas: a perspective
Fang-Fang WANG1,2,3, Li WANG1,3, Wei QIAN1,3()
1. State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; 2. Graduate School, Chinese Academy of Sciences, Beijing 100049, China; 3. National Plant Gene Research Center, Beijing 100101, China
 Download: PDF(327 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Two-component signal transduction systems (TCSTSs), consisting of a histidine kinase and a response regulator, play a critical role in regulating virulence gene expression in Gram-negative phytopathogenic bacteria Xanthomonas spp.. To date, 12 TCSTS genes have been identified, accounting for approximately 10% of the TCSTS genes in each genome that have been experimentally identified to be related to pathogenesis. These TCSTSs modulate the expression of a number of virulence factors through diverse molecular mechanisms such as interacting with DNA, protein-binding and involvement in second messenger metabolism, which generates a high level of regulatory versatility. Here we summarize the current knowledge in this field and discuss the emerging themes and remaining questions that are important in deciphering the signaling network of TCSTSs in Xanthomonas.

Keywords Xanthomonas      two-component signal transduction system      virulence factor     
Corresponding Author(s): QIAN Wei,Email:qianw@im.ac.cn   
Issue Date: 01 December 2010
 Cite this article:   
Fang-Fang WANG,Li WANG,Wei QIAN. Two-component signal transduction systems and regulation of virulence factors in Xanthomonas: a perspective[J]. Front Biol, 2010, 5(6): 495-506.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0750-x
https://academic.hep.com.cn/fib/EN/Y2010/V5/I6/495
Fig.1  The direction of phosphoryl-group transfer is depicted by solid line and the direction of signal transduction is depicted by a dashed line. P in the circular frames represents the phosphoryl group. H, N, G1, F and G2 represent typical conserved motifs in the histidine kinase sensor. D1, D2, and K represent typical conserved motifs in the response regulator. Definition of these motifs is according to a previous study ().
Fig.1  The direction of phosphoryl-group transfer is depicted by solid line and the direction of signal transduction is depicted by a dashed line. P in the circular frames represents the phosphoryl group. H, N, G1, F and G2 represent typical conserved motifs in the histidine kinase sensor. D1, D2, and K represent typical conserved motifs in the response regulator. Definition of these motifs is according to a previous study ().
genomegenome size/mborthodox histidine kinasehybrid histidine kinaseresponse regulatortotal
Xcc 80045.15322054106
Xcc ATCC 339135.08322054106
Xcc B1005.08322054106
Xoo PXO995.24321358104
Xoo KACC103314.9428125292
Xoo MAFF3110134.9428155093
Xcv 85-105.18372361121
Xac 3065.18352158114
Tab.1  Histidine kinases and response regulators encoded by the genomes of
Fig.2  Domain organization of the virulence and avriulence regulatory histidine kinases and response regulators in spp.. The names of the domains are according to those of the pfam database. HK (HisKA, pfam acc. No.: PF07730); HA (HATPase_c, PF02518); REC (Response_reg, PF00072); HPT (PF01672); HD (PF1966); Trans (Trans_reg, PF00486); PAS (PF00989); GGDEF (PF00990); EAL (PF00563) and HAMP (PF00672).
Fig.2  Domain organization of the virulence and avriulence regulatory histidine kinases and response regulators in spp.. The names of the domains are according to those of the pfam database. HK (HisKA, pfam acc. No.: PF07730); HA (HATPase_c, PF02518); REC (Response_reg, PF00072); HPT (PF01672); HD (PF1966); Trans (Trans_reg, PF00486); PAS (PF00989); GGDEF (PF00990); EAL (PF00563) and HAMP (PF00672).
Fig.3  Network of the two-component signal transduction systems in regulating virulence and avirulence factor expressions in spp.. Different colors are applied to different signaling cascades. The RpfC-RpfG system (yellow) positively controls extracellular enzyme and exocellular polysaccharides (EPS) biosynthesis, and negatively regulates diffusible signal factor (DSF) synthesis. The RavS-RavR system (brown) controls EPS biosynthesis by affecting c-di-GMP turnover. VemR (light blue) is probably associated with FleQ. VgrS-VgrR system (pink) regulates EPS biosynthesis and transcription of the genes. HrpG (blue) is the central regulator of type III secretion system (T3SS) and has relationship to the type II secretion system (T2SS). The RaxH-RaxR (light brown) and PhoQ-PhoP (green) systems are involved in expression and modification of the avirulence factor Ax21. OM: outer-membrane; IM: inner-membrane; T1SS: type I secretion system. P in the circular frame indicates the phosphoryl group. Names of the proteins and genes are according to the main text.
Fig.3  Network of the two-component signal transduction systems in regulating virulence and avirulence factor expressions in spp.. Different colors are applied to different signaling cascades. The RpfC-RpfG system (yellow) positively controls extracellular enzyme and exocellular polysaccharides (EPS) biosynthesis, and negatively regulates diffusible signal factor (DSF) synthesis. The RavS-RavR system (brown) controls EPS biosynthesis by affecting c-di-GMP turnover. VemR (light blue) is probably associated with FleQ. VgrS-VgrR system (pink) regulates EPS biosynthesis and transcription of the genes. HrpG (blue) is the central regulator of type III secretion system (T3SS) and has relationship to the type II secretion system (T2SS). The RaxH-RaxR (light brown) and PhoQ-PhoP (green) systems are involved in expression and modification of the avirulence factor Ax21. OM: outer-membrane; IM: inner-membrane; T1SS: type I secretion system. P in the circular frame indicates the phosphoryl group. Names of the proteins and genes are according to the main text.
1 Alfano J R, Collmer A (2004). Type III secretion system effector proteins: double agents in bacterial disease and plant defense. Annu Rev Phytopathol , 42: 385–414
doi: 10.1146/annurev.phyto.42.040103.110731
2 Andrade M O, Alegria M C, Guzzo C R, Docena C, Rosa M C, Ramos C H, Farah C S (2006). The HD-GYP domain of RpfG mediates a direct linkage between the Rpf quorum-sensing pathway and a subset of diguanylate cyclase proteins in the phytopathogen Xanthomonas axonopodis pv citri. Mol Microbiol , 62(2): 537–551
doi: 10.1111/j.1365-2958.2006.05386.x
3 Barakat M, Ortet P, Jourlin-Castelli C, Ansaldi M, Méjean V, Whitworth D E (2009). P2CS: a two-component system resource for prokaryotic signal transduction research. BMC Genomics , 10: 315
doi: 10.1186/1471-2164-10-315
4 Burdman S, Shen Y, Lee S W, Xue Q, Ronald P (2004). RaxH/RaxR: a two-component regulatory system in Xanthomonas oryzae pv. oryzae required for AvrXa21 activity. Mol Plant Microbe Interact , 17(6): 602–612
doi: 10.1094/MPMI.2004.17.6.602
5 Büttner D, Bonas U (2010). Regulation and secretion of Xanthomonas virulence factors. FEMS Microbiol Rev , 34(2): 107–133
doi: 10.1111/j.1574-6976.2009.00192.x
6 Chatterjee S, Wistrom C, Lindow S E (2008). A cell-cell signaling sensor is required for virulence and insect transmission of Xylella fastidiosa. Proc Natl Acad Sci U S A , 105(7): 2670–2675
doi: 10.1073/pnas.0712236105
7 da Silva A C, Ferro J A, Reinach F C, Farah C S, Furlan L R, Quaggio R B, Monteiro-Vitorello C B, Van Sluys M A, Almeida N F, Alves L M, do Amaral A M, Bertolini M C, Camargo L E, Camarotte G, Cannavan F, Cardozo J, Chambergo F, Ciapina L P, Cicarelli R M, Coutinho L L, Cursino-Santos J R, El-Dorry H, Faria J B, Ferreira A J, Ferreira R C, Ferro M I, Formighieri E F, Franco M C, Greggio C C, Gruber A, Katsuyama A M, Kishi L T, Leite R P, Lemos E G, Lemos M V, Locali E C, Machado M A, Madeira A M, Martinez-Rossi N M, Martins E C, Meidanis J, Menck C F, Miyaki C Y, Moon D H, Moreira L M, Novo M T, Okura V K, Oliveira M C, Oliveira V R, Pereira H A, Rossi A, Sena J A, Silva C, de Souza R F, Spinola L A, Takita M A, Tamura R E, Teixeira E C, Tezza R I, Trindade dos Santos M, Truffi D, Tsai S M, White F F, Setubal J C, Kitajima J P (2002). Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature , 417(6887): 459–463
doi: 10.1038/417459a
8 da Silva F G, Shen Y, Dardick C, Burdman S, Yadav R C, de Leon A L, Ronald P C (2004). Bacterial genes involved in type I secretion and sulfation are required to elicit the rice Xa21-mediated innate immune response. Mol Plant Microbe Interact , 17(6): 593–601
doi: 10.1094/MPMI.2004.17.6.593
9 Dekkers L C, Bloemendaal C J, de Weger L A, Wijffelman C A, Spaink H P, Lugtenberg B J (1998). A two-component system plays an important role in the root-colonizing ability of Pseudomonas fluorescens strain WCS365. Mol Plant Microbe Interact , 11(1): 45–56
doi: 10.1094/MPMI.1998.11.1.45
10 Dow J M, Crossman L, Findlay K, He Y Q, Feng J X, Tang J L (2003). Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A , 100(19): 10995–11000
doi: 10.1073/pnas.1833360100
11 Dow J M, Daniels M J (1994). Pathogenicity determinants and global regulation of pathogenicity of Xanthomonas campestris pv. campestris. Curr Top Microbiol Immunol , 192: 29–41
12 Dow M (2008). Diversification of the function of cell-to-cell signaling in regulation of virulence within plant pathogenic xanthomonads. Sci Signal , 1(21): pe23
doi: 10.1126/stke.121pe23
13 Flor H H (1974). Current status of the gene-for-gene concept. Annu Rev Phytopathol , 9: 275–296
doi: 10.1146/annurev.py.09.090171.001423
14 Furutani A, Tsuge S, Ohnishi K, Hikichi Y, Oku T, Tsuno K, Inoue Y, Ochiai H, Kaku H, Kubo Y (2004). Evidence for HrpXo-dependent expression of type II secretory proteins in Xanthomonas oryzae pv. oryzae. J Bacteriol , 186(5): 1374–1380
doi: 10.1128/JB.186.5.1374-1380.2004
15 Galperin M Y (2005). A census of membrane-bound and intracellular signal transduction proteins in bacteria: bacterial IQ, extroverts and introverts. BMC Microbiol , 5: 35
doi: 10.1186/1471-2180-5-35
16 Gao R, Stock A M (2009). Biological insights from structures of two-component proteins. Annu Rev Microbiol , 63: 133–154
doi: 10.1146/annurev.micro.091208.073214
17 Goodman A L, Merighi M, Hyodo M, Ventre I, Filloux A, Lory S (2009). Direct interaction between sensor kinase proteins mediates acute and chronic disease phenotypes in a bacterial pathogen. Genes Dev , 23(2): 249–259
doi: 10.1101/gad.1739009
18 Gotoh Y, Eguchi Y, Watanabe T, Okamoto S, Doi A, Utsumi R (2010). Two-component signal transduction as potential drug targets in pathogenic bacteria. Curr Opin Microbiol , 13(2): 232–239
doi: 10.1016/j.mib.2010.01.008
19 Goulian M (2010). Two-component signaling circuit structure and properties. Curr Opin Microbiol , 13(2): 184–189
doi: 10.1016/j.mib.2010.01.009
20 Grebe T W, Stock J B (1999). The histidine protein kinase superfamily. Adv Microb Physiol , 41: 139–227
doi: 10.1016/S0065-2911(08)60167-8
21 Gudesblat G E, Torres P S, Vojnov A A (2009). Xanthomonas campestris overcomes Arabidopsis stomatal innate immunity through a DSF cell-to-cell signal-regulated virulence factor. Plant Physiol , 149(2): 1017–1027
doi: 10.1104/pp.108.126870
22 He Y W, Boon C, Zhou L, Zhang L H (2009). Co-regulation of Xanthomonas campestris virulence by quorum sensing and a novel two-component regulatory system RavS/RavR. Mol Microbiol , 71(6): 1464–1476
doi: 10.1111/j.1365-2958.2009.06617.x
23 He Y W, Ng A Y, Xu M, Lin K, Wang L H, Dong Y H, Zhang L H (2007). Xanthomonas campestris cell-cell communication involves a putative nucleotide receptor protein Clp and a hierarchical signalling network. Mol Microbiol , 64(2): 281–292
doi: 10.1111/j.1365-2958.2007.05670.x
24 He Y W, Wang C, Zhou L, Song H, Dow J M, Zhang L H (2006). Dual signaling functions of the hybrid sensor kinase RpfC of Xanthomonas campestris involve either phosphorelay or receiver domain-protein interaction. J Biol Chem , 281(44): 33414–33421
doi: 10.1074/jbc.M606571200
25 He Y W, Zhang L H (2008). Quorum sensing and virulence regulation in Xanthomonas campestris. FEMS Microbiol Rev , 32(5): 842–857
doi: 10.1111/j.1574-6976.2008.00120.x
26 Hefti M H, Fran?oijs K J, de Vries S C, Dixon R, Vervoort J (2004). The PAS fold. A redefinition of the PAS domain based upon structural prediction. Eur J Biochem , 271(6): 1198–1208
doi: 10.1111/j.1432-1033.2004.04023.x
27 H?rak R, Ilves H, Pruunsild P, Kuljus M, Kivisaar M (2004). The ColR-ColS two-component signal transduction system is involved in regulation of Tn4652 transposition in Pseudomonas putida under starvation conditions. Mol Microbiol , 54(3): 795–807
doi: 10.1111/j.1365-2958.2004.04311.x
28 Huang D L, Tang D J, Liao Q, Li X Q, He Y Q, Feng J X, Jiang B L, Lu G T, Tang J L (2009). The Zur of Xanthomonas campestris is involved in hypersensitive response and positively regulates the expression of the hrp cluster via hrpX but not hrpG. Mol Plant Microbe Interact , 22(3): 321–329
doi: 10.1094/MPMI-22-3-0321
29 Jones J D, Dangl J L (2006). The plant immune system. Nature , 444(7117): 323–329
doi: 10.1038/nature05286
30 Laub M T, Goulian M (2007). Specificity in two-component signal transduction pathways. Annu Rev Genet , 41: 121–145
doi: 10.1146/annurev.genet.41.042007.170548
31 Leduc J L, Roberts G P (2009). Cyclic di-GMP allosterically inhibits the CRP-like protein (Clp) of Xanthomonas axonopodis pv. citri. J Bacteriol , 191(22): 7121–7122
doi: 10.1128/JB.00845-09
32 Lee S W, Han S W, Bartley L E, Ronald P C (2006). From the Academy: Colloquium review. Unique characteristics of Xanthomonas oryzae pv. oryzae AvrXa21 and implications for plant innate immunity. Proc Natl Acad Sci U S A , 103(49): 18395–18400
doi: 10.1073/pnas.0605508103
33 Lee S W, Han S W, Sririyanum M, Park C J, Seo Y S, Ronald P C (2009). A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science , 326(5954): 850–853
doi: 10.1126/science.1173438
34 Lee S W, Jeong K S, Han S W, Lee S E, Phee B K, Hahn T R, Ronald P (2008). The Xanthomonas oryzae pv. oryzae PhoPQ two-component system is required for AvrXA21 activity, hrpG expression, and virulence. J Bacteriol , 190(6): 2183–2197
doi: 10.1128/JB.01406-07
35 Ng W L, Bassler B L (2009). Bacterial quorum-sensing network architectures. Annu Rev Genet , 43: 197–222
doi: 10.1146/annurev-genet-102108-134304
36 Ninfa A J, Magasanik B (1986). Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc Natl Acad Sci U S A , 83(16): 5909–5913
doi: 10.1073/pnas.83.16.5909
37 Nixon B T, Ronson C W, Ausubel F M (1986). Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc Natl Acad Sci U S A , 83(20): 7850–7854
doi: 10.1073/pnas.83.20.7850
38 No?l L, Thieme F, Nennstiel D, Bonas U (2001). cDNA-AFLP analysis unravels a genome-wide hrpG-regulon in the plant pathogen Xanthomonas campestris pv. vesicatoria. Mol Microbiol , 41(6): 1271–1281
doi: 10.1046/j.1365-2958.2001.02567.x
39 Osbourn A E, Clarke B R, Stevens B J, Daniels M J (1990). Use of oligonucleotide probes to identify members of two-component regulatory systems in Xanthomonas campestris pathovar campestris. Mol Gen Genet , 222(1): 145–151
40 Parkinson J S, Kofoid E C (1992). Communication modules in bacterial signaling proteins. Annu Rev Genet , 26: 71–112
doi: 10.1146/annurev.ge.26.120192.000443
41 Paul R, Jaeger T, Abel S, Wiederkehr I, Folcher M, Biondi E G, Laub M T, Jenal U (2008). Allosteric regulation of histidine kinases by their cognate response regulator determines cell fate. Cell , 133(3): 452–461
42 Perez J C, Shin D, Zwir I, Latifi T, Hadley T J, Groisman E A (2009). Evolution of a bacterial regulon controlling virulence and Mg(2+) homeostasis. PLoS Genet , 5(3): e1000428
doi: 10.1371/journal.pgen.1000428
43 Prost L R, Miller S I (2008). The Salmonellae PhoQ sensor: mechanisms of detection of phagosome signals. Cell Microbiol , 10(3): 576–582
doi: 10.1111/j.1462-5822.2007.01111.x
44 Qian W, Han Z J, He C (2008a). Two-component signal transduction systems of Xanthomonas spp.: a lesson from genomics. Mol Plant Microbe Interact , 21(2): 151–161
doi: 10.1094/MPMI-21-2-0151
45 Qian W, Han Z J, Tao J, He C Z (2008b). Genome-scale mutagenesis and phenotypic characterization of two-component signal transduction systems in Xanthomonas campestris pv. campestris ATCC 33913. Mol Plant Microbe Interact , 21(8): 1128–1138
doi: 10.1094/MPMI-21-8-1128
46 Qian W, Jia Y, Ren S X, He Y Q, Feng J X, Lu L F, Sun Q, Ying G, Tang D J, Tang H, Wu W, Hao P, Wang L, Jiang B L, Zeng S, Gu W Y, Lu G, Rong L, Tian Y, Yao Z, Fu G, Chen B, Fang R, Qiang B, Chen Z, Zhao G P, Tang J L, He C (2005). Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res , 15(6): 757–767
doi: 10.1101/gr.3378705
47 Raghavan V, Groisman E A (2010). Orphan and hybrid two-component system proteins in health and disease. Curr Opin Microbiol , 13(2): 226–231
doi: 10.1016/j.mib.2009.12.010
48 Ryan R P, Fouhy Y, Lucey J F, Crossman L C, Spiro S, He Y W, Zhang L H, Heeb S, Cámara M, Williams P, Dow J M (2006). Cell-cell signaling in Xanthomonas campestris involves an HD-GYP domain protein that functions in cyclic di-GMP turnover. Proc Natl Acad Sci U S A , 103(17): 6712–6717
doi: 10.1073/pnas.0600345103
49 Ryan R P, McCarthy Y, Andrade M, Farah C S, Armitage J P, Dow J M (2010). Cell-cell signal-dependent dynamic interactions between HD-GYP and GGDEF domain proteins mediate virulence in Xanthomonas campestris. Proc Natl Acad Sci U S A , 107(13): 5989–5994
doi: 10.1073/pnas.0912839107
50 Silversmith R E (2010). Auxiliary phosphatases in two-component signal transduction. Curr Opin Microbiol , 13(2): 177–183
doi: 10.1016/j.mib.2010.01.004
51 Skerker J M, Prasol M S, Perchuk B S, Biondi E G, Laub M T (2005). Two-component signal transduction pathways regulating growth and cell cycle progression in a bacterium: a system-level analysis. PLoS Biol , 3(10): e334
doi: 10.1371/journal.pbio.0030334
52 Slater H, Alvarez-Morales A, Barber C E, Daniels M J, Dow J M (2000). A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Mol Microbiol , 38(5): 986–1003
doi: 10.1046/j.1365-2958.2000.02196.x
53 Song W Y, Wang G L, Chen L L, Kim H S, Pi L Y, Holsten T, Gardner J, Wang B, Zhai W X, Zhu L H, Fauquet C, Ronald P (1995). A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science , 270(5243): 1804–1806
doi: 10.1126/science.270.5243.1804
54 Stock A M, Robinson V L, Goudreau P N (2000). Two-component signal transduction. Annu Rev Biochem , 69: 183–215
doi: 10.1146/annurev.biochem.69.1.183
55 Swartz T E, Tseng T S, Frederickson M A, Paris G, Comerci D J, Rajashekara G, Kim J G, Mudgett M B, Splitter G A, Ugalde R A, Goldbaum F A, Briggs W R, Bogomolni R A (2007). Blue-light-activated histidine kinases: two-component sensors in bacteria. Science , 317(5841): 1090–1093
doi: 10.1126/science.1144306
56 Swings J G, Civerolo E L (1993). Xanthomonas. London: Chapman & Hall
57 Szczesny R, Jordan M, Schramm C, Schulz S, Cogez V, Bonas U, Büttner D (2010). Functional characterization of the Xcs and Xps type II secretion systems from the plant pathogenic bacterium Xanthomonas campestris pv vesicatoria. New Phytol , 187(4): 983–1002
doi: 10.1111/j.1469-8137.2010.03312.x
58 Tamayo R, Pratt J T, Camilli A (2007). Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu Rev Microbiol , 61: 131–148
doi: 10.1146/annurev.micro.61.080706.093426
59 Tang J L, Feng J X, Li Q Q, Wen H X, Zhou D L, Wilson T J, Dow J M, Ma Q S, Daniels M J (1996). Cloning and characterization of the rpfC gene of Xanthomonas oryzae pv. oryzae: involvement in exopolysaccharide production and virulence to rice. Mol Plant Microbe Interact , 9(7): 664–666
60 Tang J L, Liu Y N, Barber C E, Dow J M, Wootton J C, Daniels M J (1991). Genetic and molecular analysis of a cluster of rpf genes involved in positive regulation of synthesis of extracellular enzymes and polysaccharide in Xanthomonas campestris pathovar campestris. Mol Gen Genet , 226(3): 409–417
doi: 10.1007/BF00260653
61 Tao F, He Y W, Wu D H, Swarup S, Zhang L H (2010). The cyclic nucleotide monophosphate domain of Xanthomonas campestris global regulator Clp defines a new class of cyclic di-GMP effectors. J Bacteriol , 192(4): 1020–1029
doi: 10.1128/JB.01253-09
62 Tao J, He C (2010). Response regulator, VemR, positively regulates the virulence and adaptation of Xanthomonas campestris pv. campestris. FEMS Microbiol Lett , 304(1): 20–28
doi: 10.1111/j.1574-6968.2009.01892.x
63 Tsuge S, Nakayama T, Terashima S, Ochiai H, Furutani A, Oku T, Tsuno K, Kubo Y, Kaku H (2006). Gene involved in transcriptional activation of the hrp regulatory gene hrpG in Xanthomonas oryzae pv. oryzae. J Bacteriol , 188(11): 4158–4162
doi: 10.1128/JB.00006-06
64 Wang L, Rong W, He C (2008). Two Xanthomonas extracellular polygalacturonases, PghAxc and PghBxc, are regulated by type III secretion regulators HrpX and HrpG and are required for virulence. Mol Plant Microbe Interact , 21(5): 555–563
doi: 10.1046/j.1365-2958.2003.03883.x
65 Wang L H, He Y, Gao Y, Wu J E, Dong Y H, He C, Wang S X, Weng L X, Xu J L, Tay L, Fang R X, Zhang L H (2004). A bacterial cell-cell communication signal with cross-kingdom structural analogues. Mol Microbiol , 51(3): 903–912
doi: 10.1094/MPMI-21-5-0555
66 Wei K, Tang D J, He Y Q, Feng J X, Jiang B L, Lu G T, Chen B, Tang J L (2007). hpaR, a putative marR family transcriptional regulator, is positively controlled by HrpG and HrpX and involved in the pathogenesis, hypersensitive response, and extracellular protease production of Xanthomonas campestris pathovar campestris. J Bacteriol , 189(5): 2055–2062
doi: 10.1128/JB.01331-06
67 Wengelnik K, Bonas U (1996). HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria. J Bacteriol , 178(12): 3462–3469
68 Wengelnik K, Van den Ackerveken G, Bonas U (1996). HrpG, a key hrp regulatory protein of Xanthomonas campestris pv. vesicatoria is homologous to two-component response regulators. Mol Plant Microbe Interact , 9(8): 704–712
69 Yamazaki A, Hirata H, Tsuyumu S (2008). HrpG regulates type II secretory proteins in Xanthomonas axonopodis pv. citri. J Gen Plant Pathol , 74: 138–150
doi: 10.1007/s10327-008-0075-7
70 Zhang S S, He Y Q, Xu L M, Chen B W, Jiang B L, Liao J, Cao J R, Liu D, Huang Y Q, Liang X X, Tang D J, Lu G T, Tang J L (2008). A putative colR(XC1049)-colS(XC1050) two-component signal transduction system in Xanthomonas campestris positively regulates hrpC and hrpE operons and is involved in virulence, the hypersensitive response and tolerance to various stresses. Res Microbiol , 159(7-8): 569–578
[1] Li XU,Yancheng LIU. Protein secretion systems in bacterial pathogens[J]. Front. Biol., 2014, 9(6): 437-447.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed