|
|
Gene positioning and genome function |
Nidhi VISHNOI,Jie YAO( ) |
Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA |
|
|
Abstract The eukaryotic genome is packaged as chromatin within the three-dimensional nuclear space. Decades of cytological studies have revealed that chromosomes and genes are non-randomly localized within the nucleus and such organizations have important roles on genome function. However, several fundamental questions remain to be resolved. For example, what is required for the preferential localization of a gene to a nuclear landmark? What is the mechanism underlying gene repositioning in the nucleus? How does subnuclear gene positioning regulate gene transcription? Recent studies have revealed that several factors such as DNA sequence composition, specific regulatory sequences, epigenetic modifications, chromatin remodelers, post-transcriptional regulators and nuclear architectural proteins can influence chromatin dynamics and gene positioning in a gene-specific manner among organisms from yeast to human. In this review, we discuss some recent findings as well as experimental tools to investigate subnuclear gene positioning and to explore its implications in genome functions.
|
Keywords
nucleus
transcription
gene positioning
epigenetics
nuclear lamina
chromatin
|
Corresponding Author(s):
Jie YAO
|
Issue Date: 11 August 2014
|
|
1 |
Abruzzi K C, Belostotsky D A, Chekanova J A, Dower K, Rosbash M (2006). 3′-end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation. EMBO J, 25(18): 4253–4262 doi: 10.1038/sj.emboj.7601305 pmid: 16946703
|
2 |
Ahmed S, Brickner D G, Light W H, Cajigas I, McDonough M, Froyshteter A B, Volpe T, Brickner J H (2010). DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery. Nat Cell Biol, 12(2): 111–118 doi: 10.1038/ncb2011 pmid: 20098417
|
3 |
Andrulis E D, Neiman A M, Zappulla D C, Sternglanz R (1998). Perinuclear localization of chromatin facilitates transcriptional silencing. Nature, 394(6693): 592–595 doi: 10.1038/29100 pmid: 9707122
|
4 |
Ballester M, Kress C, Hue-Beauvais C, Kiêu K, Lehmann G, Adenot P, Devinoy E (2008). The nuclear localization of WAP and CSN genes is modified by lactogenic hormones in HC11 cells. J Cell Biochem, 105(1): 262–270 doi: 10.1002/jcb.21823 pmid: 18500724
|
5 |
Belmont A S, Li G, Sudlow G, Robinett C (1999). Visualization of large-scale chromatin structure and dynamics using the lac operator/lac repressor reporter system. Methods Cell Biol, 58: 203–222 doi: 10.1016/S0091-679X(08)61957-3 pmid: 9891383
|
6 |
Berezney R, Dubey D D, Huberman J A (2000). Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma, 108(8): 471–484 doi: 10.1007/s004120050399 pmid: 10794569
|
7 |
Bian Q, Khanna N, Alvikas J, Belmont A S (2013). β-Globin cis-elements determine differential nuclear targeting through epigenetic modifications. J Cell Biol, 203(5): 767–783 doi: 10.1083/jcb.201305027 pmid: 24297746
|
8 |
Blobel G (1985). Gene gating: a hypothesis. Proc Natl Acad Sci USA, 82(24): 8527–8529 doi: 10.1073/pnas.82.24.8527 pmid: 3866238
|
9 |
Boyle S, Gilchrist S, Bridger J M, Mahy N L, Ellis J A, Bickmore W A (2001). The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet, 10(3): 211–219 doi: 10.1093/hmg/10.3.211 pmid: 11159939
|
10 |
Branco M R, Pombo A (2006). Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol, 4(5): e138 doi: 10.1371/journal.pbio.0040138 pmid: 16623600
|
11 |
Brickner D G, Cajigas I, Fondufe-Mittendorf Y, Ahmed S, Lee P C, Widom J, Brickner J H (2007). H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol, 5(4): e81 doi: 10.1371/journal.pbio.0050081 pmid: 17373856
|
12 |
Brickner J H, Walter P (2004). Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol, 2(11): e342 doi: 10.1371/journal.pbio.0020342 pmid: 15455074
|
13 |
Brown C R, Kennedy C J, Delmar V A, Forbes D J, Silver P A (2008a). Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev, 22(5): 627–639 doi: 10.1101/gad.1632708 pmid: 18316479
|
14 |
Brown J M, Green J, das Neves R P, Wallace H A, Smith A J, Hughes J, Gray N, Taylor S, Wood W G, Higgs D R, Iborra F J, Buckle V J (2008b). Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J Cell Biol, 182(6): 1083–1097 doi: 10.1083/jcb.200803174 pmid: 18809724
|
15 |
Brown J M, Leach J, Reittie J E, Atzberger A, Lee-Prudhoe J, Wood W G, Higgs D R, Iborra F J, Buckle V J (2006). Coregulated human globin genes are frequently in spatial proximity when active. J Cell Biol, 172(2): 177–187 doi: 10.1083/jcb.200507073 pmid: 16418531
|
16 |
Brown K E, Baxter J, Graf D, Merkenschlager M, Fisher A G (1999). Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell, 3(2): 207–217 doi: 10.1016/S1097-2765(00)80311-1 pmid: 10078203
|
17 |
Brown K E, Guest S S, Smale S T, Hahm K, Merkenschlager M, Fisher A G (1997). Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell, 91(6): 845–854 doi: 10.1016/S0092-8674(00)80472-9 pmid: 9413993
|
18 |
Cabal G G, Genovesio A, Rodriguez-Navarro S, Zimmer C, Gadal O, Lesne A, Buc H, Feuerbach-Fournier F, Olivo-Marin J C, Hurt E C, Nehrbass U (2006). SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature, 441(7094): 770–773 doi: 10.1038/nature04752 pmid: 16760982
|
19 |
Capelson M, Liang Y, Schulte R, Mair W, Wagner U, Hetzer M W (2010). Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell, 140(3): 372–383 doi: 10.1016/j.cell.2009.12.054 pmid: 20144761
|
20 |
Casolari J M, Brown C R, Drubin D A, Rando O J, Silver P A (2005). Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. Genes Dev, 19(10): 1188–1198 doi: 10.1101/gad.1307205 pmid: 15905407
|
21 |
Casolari J M, Brown C R, Komili S, West J, Hieronymus H, Silver P A (2004). Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell, 117(4): 427–439 doi: 10.1016/S0092-8674(04)00448-9 pmid: 15137937
|
22 |
Chan E A, Teng G, Corbett E, Choudhury K R, Bassing C H, Schatz D G, Krangel M S (2013). Peripheral subnuclear positioning suppresses Tcrb recombination and segregates Tcrb alleles from RAG2. Proc Natl Acad Sci USA, 110(48): E4628–E4637 doi: 10.1073/pnas.1310846110 pmid: 24218622
|
23 |
Chen B, Gilbert L A, Cimini B A, Schnitzbauer J, Zhang W, Li G W, Park J, Blackburn E H, Weissman J S, Qi L S, Huang B (2013). Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 155(7): 1479–1491 doi: 10.1016/j.cell.2013.12.001 pmid: 24360272
|
24 |
Chuang C H, Carpenter A E, Fuchsova B, Johnson T, de Lanerolle P, Belmont A S (2006). Long-range directional movement of an interphase chromosome site. Curr Biol, 16(8): 825–831 doi: 10.1016/j.cub.2006.03.059 pmid: 16631592
|
25 |
Croft J A, Bridger J M, Boyle S, Perry P, Teague P, Bickmore W A (1999). Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol, 145(6): 1119–1131 doi: 10.1083/jcb.145.6.1119 pmid: 10366586
|
26 |
Csink A K, Henikoff S (1996). Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature, 381(6582): 529–531 doi: 10.1038/381529a0 pmid: 8632827
|
27 |
de Wit E, de Laat W (2012). A decade of 3C technologies: insights into nuclear organization. Genes Dev, 26(1): 11–24 doi: 10.1101/gad.179804.111 pmid: 22215806
|
28 |
Dekker J, Rippe K, Dekker M, Kleckner N (2002). Capturing chromosome conformation. Science, 295(5558): 1306–1311 doi: 10.1126/science.1067799 pmid: 11847345
|
29 |
Deng W, Blobel G A (2013). Manipulating nuclear architecture. Curr Opin Genet Dev, 25C: 1–7 pmid: 24584091
|
30 |
Deng W, Lee J, Wang H, Miller J, Reik A, Gregory P D, Dean A, Blobel G A (2012). Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell, 149(6): 1233–1244 doi: 10.1016/j.cell.2012.03.051 pmid: 22682246
|
31 |
Dernburg A F, Broman K W, Fung J C, Marshall W F, Philips J, Agard D A, Sedat J W (1996). Perturbation of nuclear architecture by long-distance chromosome interactions. Cell, 85(5): 745–759 doi: 10.1016/S0092-8674(00)81240-4 pmid: 8646782
|
32 |
Dieppois G, Iglesias N, Stutz F (2006). Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes. Mol Cell Biol, 26(21): 7858–7870 doi: 10.1128/MCB.00870-06 pmid: 16954382
|
33 |
Dimitrova D S, Gilbert D M (1999). The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell, 4(6): 983–993 doi: 10.1016/S1097-2765(00)80227-0 pmid: 10635323
|
34 |
Dirks R W, de Pauw E S, Raap A K (1997). Splicing factors associate with nuclear HCMV-IE transcripts after transcriptional activation of the gene, but dissociate upon transcription inhibition: evidence for a dynamic organization of splicing factors. J Cell Sci, 110(Pt 4): 515–522 pmid: 9067603
|
35 |
Dostie J, Richmond T A, Arnaout R A, Selzer R R, Lee W L, Honan T A, Rubio E D, Krumm A, Lamb J, Nusbaum C, Green R D, Dekker J (2006). Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res, 16(10): 1299–1309 doi: 10.1101/gr.5571506 pmid: 16954542
|
36 |
Drubin D A, Garakani A M, Silver P A (2006). Motion as a phenotype: the use of live-cell imaging and machine visual screening to characterize transcription-dependent chromosome dynamics. BMC Cell Biol, 7(1): 19 doi: 10.1186/1471-2121-7-19 pmid: 16635267
|
37 |
Dundr M, Ospina J K, Sung M H, John S, Upender M, Ried T, Hager G L, Matera A G (2007). Actin-dependent intranuclear repositioning of an active gene locus in vivo. J Cell Biol, 179(6): 1095–1103 doi: 10.1083/jcb.200710058 pmid: 18070915
|
38 |
Ferrai C, de Castro I J, Lavitas L, Chotalia M, Pombo A (2010). Gene positioning. Cold Spring Harb Perspect Biol, 2(6): a000588 doi: 10.1101/cshperspect.a000588 pmid: 20484389
|
39 |
Finlan L E, Sproul D, Thomson I, Boyle S, Kerr E, Perry P, Ylstra B, Chubb J R, Bickmore W A (2008). Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet, 4(3): e1000039 doi: 10.1371/journal.pgen.1000039 pmid: 18369458
|
40 |
Fraser P, Bickmore W (2007). Nuclear organization of the genome and the potential for gene regulation. Nature, 447(7143): 413–417 doi: 10.1038/nature05916 pmid: 17522674
|
41 |
Gaj T, Gersbach C A, Barbas C F 3rd (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 31(7): 397–405 doi: 10.1016/j.tibtech.2013.04.004 pmid: 23664777
|
42 |
Germann S, Juul-Jensen T, Letarnec B, Gaudin V (2006). DamID, a new tool for studying plant chromatin profiling in vivo, and its use to identify putative LHP1 target loci. Plant J, 48(1): 153–163 doi: 10.1111/j.1365-313X.2006.02859.x pmid: 16972870
|
43 |
Geyer P K, Vitalini M W, Wallrath L L (2011). Nuclear organization: taking a position on gene expression. Curr Opin Cell Biol, 23(3): 354–359 doi: 10.1016/j.ceb.2011.03.002 pmid: 21450447
|
44 |
Gilbert D M (2001). Nuclear position leaves its mark on replication timing. J Cell Biol, 152(2): F11–F15 doi: 10.1083/jcb.152.2.F11 pmid: 11266441
|
45 |
Green E M, Jiang Y, Joyner R, Weis K (2012). A negative feedback loop at the nuclear periphery regulates GAL gene expression. Mol Biol Cell, 23(7): 1367–1375 doi: 10.1091/mbc.E11-06-0547 pmid: 22323286
|
46 |
Guelen L, Pagie L, Brasset E, Meuleman W, Faza M B, Talhout W, Eussen B H, de Klein A, Wessels L, de Laat W, van Steensel B (2008). Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature, 453(7197): 948–951 doi: 10.1038/nature06947 pmid: 18463634
|
47 |
Haaf T, Schmid M (1991). Chromosome topology in mammalian interphase nuclei. Exp Cell Res, 192(2): 325–332 doi: 10.1016/0014-4827(91)90048-Y pmid: 1988281
|
48 |
Hepperger C, Mannes A, Merz J, Peters J, Dietzel S (2008). Three-dimensional positioning of genes in mouse cell nuclei. Chromosoma, 117(6): 535–551 doi: 10.1007/s00412-008-0168-2 pmid: 18597102
|
49 |
Hewitt S L, High F A, Reiner S L, Fisher A G, Merkenschlager M (2004). Nuclear repositioning marks the selective exclusion of lineage-inappropriate transcription factor loci during T helper cell differentiation. Eur J Immunol, 34(12): 3604–3613 doi: 10.1002/eji.200425469 pmid: 15484194
|
50 |
Hofmann W A, Johnson T, Klapczynski M, Fan J L, de Lanerolle P (2006). From transcription to transport: emerging roles for nuclear myosin I. Biochem Cell Biol, 84(4): 418–426 doi: 10.1139/o06-069 pmid: 16936815
|
51 |
Horike S, Cai S, Miyano M, Cheng J F, Kohwi-Shigematsu T (2005). Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet, 37(1): 31–40 pmid: 15608638
|
52 |
Ishii K, Arib G, Lin C, Van Houwe G, Laemmli U K (2002). Chromatin boundaries in budding yeast: the nuclear pore connection. Cell, 109(5): 551–562 doi: 10.1016/S0092-8674(02)00756-0 pmid: 12062099
|
53 |
Isogai Y, Tjian R (2003). Targeting genes and transcription factors to segregated nuclear compartments. Curr Opin Cell Biol, 15(3): 296–303 doi: 10.1016/S0955-0674(03)00052-8 pmid: 12787771
|
54 |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816–821 doi: 10.1126/science.1225829 pmid: 22745249
|
55 |
Jost K L, Haase S, Smeets D, Schrode N, Schmiedel J M, Bertulat B, Herzel H, Cremer M, Cardoso M C (2011). 3D-Image analysis platform monitoring relocation of pluripotency genes during reprogramming. Nucleic Acids Res, 39(17): e113 doi: 10.1093/nar/gkr486 pmid: 21700670
|
56 |
Kalverda B, Fornerod M (2010). Characterization of genome-nucleoporin interactions in Drosophila links chromatin insulators to the nuclear pore complex. Cell Cycle, 9(24): 4812–4817 doi: 10.4161/cc.9.24.14328 pmid: 21150273
|
57 |
Kalverda B, Pickersgill H, Shloma V V, Fornerod M (2010). Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell, 140(3): 360–371 doi: 10.1016/j.cell.2010.01.011 pmid: 20144760
|
58 |
Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries S S, Janssen H, Amendola M, Nolen L D, Bickmore W A, van Steensel B (2013). Single-cell dynamics of genome-nuclear lamina interactions. Cell, 153(1): 178–192 doi: 10.1016/j.cell.2013.02.028 pmid: 23523135
|
59 |
Kind J, van Steensel B (2010). Genome-nuclear lamina interactions and gene regulation. Curr Opin Cell Biol, 22(3): 320–325 doi: 10.1016/j.ceb.2010.04.002 pmid: 20444586
|
60 |
Kohwi M, Lupton J R, Lai S L, Miller M R, Doe C Q (2013). Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila. Cell, 152(1-2): 97–108 doi: 10.1016/j.cell.2012.11.049 pmid: 23332748
|
61 |
Kosak S T, Skok J A, Medina K L, Riblet R, Le Beau M M, Fisher A G, Singh H (2002). Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science, 296(5565): 158–162 doi: 10.1126/science.1068768 pmid: 11935030
|
62 |
Kouzine F, Liu J, Sanford S, Chung H J, Levens D (2004). The dynamic response of upstream DNA to transcription-generated torsional stress. Nat Struct Mol Biol, 11(11): 1092–1100 doi: 10.1038/nsmb848 pmid: 15502847
|
63 |
Kress C, Kiêu K, Droineau S, Galio L, Devinoy E (2011). Specific positioning of the casein gene cluster in active nuclear domains in luminal mammary epithelial cells. Chromosome Res, 19(8): 979–997 doi: 10.1007/s10577-011-9249-9 pmid: 22033805
|
64 |
Kumaran R I, Spector D L (2008). A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J Cell Biol, 180(1): 51–65 doi: 10.1083/jcb.200706060 pmid: 18195101
|
65 |
Kundu S, Horn P J, Peterson C L (2007). SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev, 21(8): 997–1004 doi: 10.1101/gad.1506607 pmid: 17438002
|
66 |
Lamond A I, Sleeman J E (2003). Nuclear substructure and dynamics. Curr Biol, 13(21): R825–R828 doi: 10.1016/j.cub.2003.10.012 pmid: 14588256
|
67 |
Lanct?t C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007). Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet, 8(2): 104–115 doi: 10.1038/nrg2041 pmid: 17230197
|
68 |
Lawrence J B, Clemson C M (2008). Gene associations: true romance or chance meeting in a nuclear neighborhood? J Cell Biol, 182(6): 1035–1038 doi: 10.1083/jcb.200808121 pmid: 18809719
|
69 |
Lee H, Quinn J C, Prasanth K V, Swiss V A, Economides K D, Camacho M M, Spector D L, Abate-Shen C (2006). PIAS1 confers DNA-binding specificity on the Msx1 homeoprotein. Genes Dev, 20(7): 784–794 doi: 10.1101/gad.1392006 pmid: 16600910
|
70 |
Levsky J M, Singer R H (2003). Fluorescence in situ hybridization: past, present and future. J Cell Sci, 116(Pt 14): 2833–2838 doi: 10.1242/jcs.00633 pmid: 12808017
|
71 |
Lieberman-Aiden E, van Berkum N L, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie B R, Sabo P J, Dorschner M O, Sandstrom R, Bernstein B, Bender M A, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny L A, Lander E S, Dekker J (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326(5950): 289–293 doi: 10.1126/science.1181369 pmid: 19815776
|
72 |
Lionnet T, Czaplinski K, Darzacq X, Shav-Tal Y, Wells A L, Chao J A, Park H Y, de Turris V, Lopez-Jones M, Singer R H (2011). A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat Methods, 8(2): 165–170 doi: 10.1038/nmeth.1551 pmid: 21240280
|
73 |
Luperchio T R, Wong X, Reddy K L (2014). Genome regulation at the peripheral zone: lamina associated domains in development and disease. Curr Opin Genet Dev, 25C: 50–61 doi: 10.1016/j.gde.2013.11.021 pmid: 24556270
|
74 |
Luthra R, Kerr S C, Harreman M T, Apponi L H, Fasken M B, Ramineni S, Chaurasia S, Valentini S R, Corbett A H (2007). Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. J Biol Chem, 282(5): 3042–3049 doi: 10.1074/jbc.M608741200 pmid: 17158105
|
75 |
Marko J F, Poirier M G (2003). Micromechanics of chromatin and chromosomes. Biochem Cell Biol, 81(3): 209–220 doi: 10.1139/o03-047 pmid: 12897855
|
76 |
Mattout A, Meshorer E (2010). Chromatin plasticity and genome organization in pluripotent embryonic stem cells. Curr Opin Cell Biol, 22(3): 334–341 doi: 10.1016/j.ceb.2010.02.001 pmid: 20226651
|
77 |
Matzke A J, Huettel B, van der Winden J, Matzke M (2005). Use of two-color fluorescence-tagged transgenes to study interphase chromosomes in living plants. Plant Physiol, 139(4): 1586–1596 doi: 10.1104/pp.105.071068 pmid: 16339805
|
78 |
Meaburn K J, Gudla P R, Khan S, Lockett S J, Misteli T (2009). Disease-specific gene repositioning in breast cancer. J Cell Biol, 187(6): 801–812 doi: 10.1083/jcb.200909127 pmid: 19995938
|
79 |
Meaburn K J, Misteli T (2008). Locus-specific and activity-independent gene repositioning during early tumorigenesis. J Cell Biol, 180(1): 39–50 doi: 10.1083/jcb.200708204 pmid: 18195100
|
80 |
Meister P, Towbin B D, Pike B L, Ponti A, Gasser S M (2010). The spatial dynamics of tissue-specific promoters during C. elegans development. Genes Dev, 24(8): 766–782 doi: 10.1101/gad.559610 pmid: 20395364
|
81 |
Meuleman W, Peric-Hupkes D, Kind J, Beaudry J B, Pagie L, Kellis M, Reinders M, Wessels L, van Steensel B (2013). Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res, 23(2): 270–280 doi: 10.1101/gr.141028.112 pmid: 23124521
|
82 |
Mewborn S K, Puckelwartz M J, Abuisneineh F, Fahrenbach J P, Zhang Y, MacLeod H, Dellefave L, Pytel P, Selig S, Labno C M, Reddy K, Singh H, McNally E (2010). Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation. PLoS ONE, 5(12): e14342 doi: 10.1371/journal.pone.0014342 pmid: 21179469
|
83 |
Misteli T (2007). Beyond the sequence: cellular organization of genome function. Cell, 128(4): 787–800 doi: 10.1016/j.cell.2007.01.028 pmid: 17320514
|
84 |
Miyanari Y, Ziegler-Birling C, Torres-Padilla M E (2013). Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct Mol Biol, 20(11): 1321–1324 doi: 10.1038/nsmb.2680 pmid: 24096363
|
85 |
Moen P T Jr, Johnson C V, Byron M, Shopland L S, de la Serna I L, Imbalzano A N, Lawrence J B (2004). Repositioning of muscle-specific genes relative to the periphery of SC-35 domains during skeletal myogenesis. Mol Biol Cell, 15(1): 197–206 doi: 10.1091/mbc.E03-06-0388 pmid: 14617810
|
86 |
Nagano T, Lubling Y, Stevens T J, Schoenfelder S, Yaffe E, Dean W, Laue E D, Tanay A, Fraser P (2013). Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 502(7469): 59–64 doi: 10.1038/nature12593 pmid: 24067610
|
87 |
Naumova N, Smith E M, Zhan Y, Dekker J (2012). Analysis of long-range chromatin interactions using Chromosome Conformation Capture. Methods, 58(3): 192–203 doi: 10.1016/j.ymeth.2012.07.022 pmid: 22903059
|
88 |
Németh A, Conesa A, Santoyo-Lopez J, Medina I, Montaner D, Péterfia B, Solovei I, Cremer T, Dopazo J, L?ngst G (2010). Initial genomics of the human nucleolus. PLoS Genet, 6(3): e1000889 doi: 10.1371/journal.pgen.1000889 pmid: 20361057
|
89 |
Neumann F R, Dion V, Gehlen L R, Tsai-Pflugfelder M, Schmid R, Taddei A, Gasser S M (2012). Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev, 26(4): 369–383 doi: 10.1101/gad.176156.111 pmid: 22345518
|
90 |
O’Gorman S, Fox D T, Wahl G M (1991). Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science, 251(4999): 1351–1355 doi: 10.1126/science. pmid: 1900642
|
91 |
Osborne C S, Chakalova L, Brown K E, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell J A, Lopes S, Reik W, Fraser P (2004). Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet, 36(10): 1065–1071 doi: 10.1038/ng1423 pmid: 15361872
|
92 |
Osborne C S, Chakalova L, Mitchell J A, Horton A, Wood A L, Bolland D J, Corcoran A E, Fraser P (2007). Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol, 5(8): e192 doi: 10.1371/journal.pbio.0050192 pmid: 17622196
|
93 |
Parada L, Misteli T (2002). Chromosome positioning in the interphase nucleus. Trends Cell Biol, 12(9): 425–432 doi: 10.1016/S0962-8924(02)02351-6 pmid: 12220863
|
94 |
Patel N S, Rhinn M, Semprich C I, Halley P A, Dollé P, Bickmore W A, Storey K G (2013). FGF signalling regulates chromatin organisation during neural differentiation via mechanisms that can be uncoupled from transcription. PLoS Genet, 9(7): e1003614 doi: 10.1371/journal.pgen.1003614 pmid: 23874217
|
95 |
Pederson T (2002). Dynamics and genome-centricity of interchromatin domains in the nucleus. Nat Cell Biol, 4(12): E287–E291 doi: 10.1038/ncb1202-e287 pmid: 12461535
|
96 |
Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman S W, Solovei I, Brugman W, Gr?f S, Flicek P, Kerkhoven R M, van Lohuizen M, Reinders M, Wessels L, van Steensel B (2010). Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell, 38(4): 603–613 doi: 10.1016/j.molcel.2010.03.016 pmid: 20513434
|
97 |
Pickersgill H, Kalverda B, de Wit E, Talhout W, Fornerod M, van Steensel B (2006). Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet, 38(9): 1005–1014 doi: 10.1038/ng1852 pmid: 16878134
|
98 |
Ragoczy T, Bender M A, Telling A, Byron R, Groudine M (2006). The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. Genes Dev, 20(11): 1447–1457 doi: 10.1101/gad.1419506 pmid: 16705039
|
99 |
Reddy K L, Zullo J M, Bertolino E, Singh H (2008). Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature, 452(7184): 243–247 doi: 10.1038/nature06727 pmid: 18272965
|
100 |
Robinett C C, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont A S (1996). In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol, 135(6 Pt 2): 1685–1700 doi: 10.1083/jcb.135.6.1685 pmid: 8991083
|
101 |
Rohner S, Kalck V, Wang X, Ikegami K, Lieb J D, Gasser S M, Meister P (2013). Promoter- and RNA polymerase II-dependent hsp-16 gene association with nuclear pores in Caenorhabditis elegans. J Cell Biol, 200(5): 589–604 doi: 10.1083/jcb.201207024 pmid: 23460676
|
102 |
Sarma N J, Haley T M, Barbara K E, Buford T D, Willis K A, Santangelo G M (2007). Glucose-responsive regulators of gene expression in Saccharomyces cerevisiae function at the nuclear periphery via a reverse recruitment mechanism. Genetics, 175(3): 1127–1135 doi: 10.1534/genetics.106.068932 pmid: 17237508
|
103 |
Schermelleh L, Carlton P M, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso M C, Agard D A, Gustafsson M G, Leonhardt H, Sedat J W (2008). Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science, 320(5881): 1332–1336 doi: 10.1126/science.1156947 pmid: 18535242
|
104 |
Schmid M, Arib G, Laemmli C, Nishikawa J, Durussel T, Laemmli U K (2006). Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol Cell, 21(3): 379–391 doi: 10.1016/j.molcel.2005.12.012 pmid: 16455493
|
105 |
Schoenfelder S, Sexton T, Chakalova L, Cope N F, Horton A, Andrews S, Kurukuti S, Mitchell J A, Umlauf D, Dimitrova D S, Eskiw C H, Luo Y, Wei C L, Ruan Y, Bieker J J, Fraser P (2010). Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet, 42(1): 53–61 doi: 10.1038/ng.496 pmid: 20010836
|
106 |
Schr?ck E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith M A, Ning Y, Ledbetter D H, Bar-Am I, Soenksen D, Garini Y, Ried T (1996). Multicolor spectral karyotyping of human chromosomes. Science, 273(5274): 494–497 doi: 10.1126/science.273.5274.494 pmid: 8662537
|
107 |
Sexton T, Schober H, Fraser P, Gasser S M (2007). Gene regulation through nuclear organization. Nat Struct Mol Biol, 14(11): 1049–1055 doi: 10.1038/nsmb1324 pmid: 17984967
|
108 |
Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006). Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet, 38(11): 1348–1354 doi: 10.1038/ng1896 pmid: 17033623
|
109 |
Simonis M, Kooren J, de Laat W (2007). An evaluation of 3C-based methods to capture DNA interactions. Nat Methods, 4(11): 895–901 doi: 10.1038/nmeth1114 pmid: 17971780
|
110 |
Solovei I, Cavallo A, Schermelleh L, Jaunin F, Scasselati C, Cmarko D, Cremer C, Fakan S, Cremer T (2002). Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res, 276(1): 10–23 doi: 10.1006/excr.2002.5513 pmid: 11978004
|
111 |
Solovei I, Kreysing M, Lanct?t C, K?sem S, Peichl L, Cremer T, Guck J, Joffe B (2009). Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell, 137(2): 356–368 doi: 10.1016/j.cell.2009.01.052 pmid: 19379699
|
112 |
Spector D L (2001). Nuclear domains. J Cell Sci, 114(Pt 16): 2891–2893 pmid: 11686292
|
113 |
Splinter E, de Wit E, Nora E P, Klous P, van de Werken H J, Zhu Y, Kaaij L J, van Ijcken W, Gribnau J, Heard E, de Laat W (2011). The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev, 25(13): 1371–1383 doi: 10.1101/gad.633311 pmid: 21690198
|
114 |
Steglich B, Filion G J, van Steensel B, Ekwall K (2012). The inner nuclear membrane proteins Man1 and Ima1 link to two different types of chromatin at the nuclear periphery in S. pombe. Nucleus, 3(1): 77–87 doi: 10.4161/nucl.18825 pmid: 22156748
|
115 |
Sun H B, Shen J, Yokota H (2000). Size-dependent positioning of human chromosomes in interphase nuclei. Biophys J, 79(1): 184–190 doi: 10.1016/S0006-3495(00)76282-5 pmid: 10866946
|
116 |
Szczerbal I, Foster H A, Bridger J M (2009). The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system. Chromosoma, 118(5): 647–663 doi: 10.1007/s00412-009-0225-5 pmid: 19585140
|
117 |
Taddei A (2007). Active genes at the nuclear pore complex. Curr Opin Cell Biol, 19(3): 305–310 doi: 10.1016/j.ceb.2007.04.012 pmid: 17467257
|
118 |
Taddei A, Van Houwe G, Hediger F, Kalck V, Cubizolles F, Schober H, Gasser S M (2006). Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature, 441(7094): 774–778 doi: 10.1038/nature04845 pmid: 16760983
|
119 |
Takizawa T, Gudla P R, Guo L, Lockett S, Misteli T (2008a). Allele-specific nuclear positioning of the monoallelically expressed astrocyte marker GFAP. Genes Dev, 22(4): 489–498 doi: 10.1101/gad.1634608 pmid: 18281462
|
120 |
Takizawa T, Meaburn K J, Misteli T (2008b). The meaning of gene positioning. Cell, 135(1): 9–13 doi: 10.1016/j.cell.2008.09.026 pmid: 18854147
|
121 |
Tanabe H, Müller S, Neusser M, von Hase J, Calcagno E, Cremer M, Solovei I, Cremer C, Cremer T (2002). Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci USA, 99(7): 4424–4429 doi: 10.1073/pnas.072618599 pmid: 11930003
|
122 |
Tolhuis B, Blom M, Kerkhoven R M, Pagie L, Teunissen H, Nieuwland M, Simonis M, de Laat W, van Lohuizen M, van Steensel B (2011). Interactions among Polycomb domains are guided by chromosome architecture. PLoS Genet, 7(3): e1001343 doi: 10.1371/journal.pgen.1001343 pmid: 21455484
|
123 |
Towbin B D, González-Aguilera C, Sack R, Gaidatzis D, Kalck V, Meister P, Askjaer P, Gasser S M (2012). Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell, 150(5): 934–947 doi: 10.1016/j.cell.2012.06.051 pmid: 22939621
|
124 |
Towbin B D, Meister P, Pike B L, Gasser S M (2010). Repetitive transgenes in C. elegans accumulate heterochromatic marks and are sequestered at the nuclear envelope in a copy-number- and lamin-dependent manner. Cold Spring Harb Symp Quant Biol, 75(0): 555–565 doi: 10.1101/sqb.2010.75.041 pmid: 21467137
|
125 |
Tumbar T, Belmont A S (2001). Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nat Cell Biol, 3(2): 134–139 doi: 10.1038/35055033 pmid: 11175745
|
126 |
van Koningsbruggen S, Gierlinski M, Schofield P, Martin D, Barton G J, Ariyurek Y, den Dunnen J T, Lamond A I (2010). High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell, 21(21): 3735–3748 doi: 10.1091/mbc.E10-06-0508 pmid: 20826608
|
127 |
van Steensel B, Dekker J (2010). Genomics tools for unraveling chromosome architecture. Nat Biotechnol, 28(10): 1089–1095 doi: 10.1038/nbt.1680 pmid: 20944601
|
128 |
van Steensel B, Henikoff S (2000). Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol, 18(4): 424–428 doi: 10.1038/74487 pmid: 10748524
|
129 |
Vaquerizas J M, Suyama R, Kind J, Miura K, Luscombe N M, Akhtar A (2010). Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet, 6(2): e1000846 doi: 10.1371/journal.pgen.1000846 pmid: 20174442
|
130 |
Vermeulen M, Mulder K W, Denissov S, Pijnappel W W, van Schaik F M, Varier R A, Baltissen M P, Stunnenberg H G, Mann M, Timmers H T (2007). Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell, 131(1): 58–69 doi: 10.1016/j.cell.2007.08.016 pmid: 17884155
|
131 |
Vodala S, Abruzzi K C, Rosbash M (2008). The nuclear exosome and adenylation regulate posttranscriptional tethering of yeast GAL genes to the nuclear periphery. Mol Cell, 31(1): 104–113 doi: 10.1016/j.molcel.2008.05.015 pmid: 18614049
|
132 |
Vogel M J, Peric-Hupkes D, van Steensel B (2007). Detection of in vivo protein-DNA interactions using<?Pub Caret?> DamID in mammalian cells. Nat Protoc, 2(6): 1467–1478 doi: 10.1038/nprot.2007.148 pmid: 17545983
|
133 |
Williams R R, Azuara V, Perry P, Sauer S, Dvorkina M, J?rgensen H, Roix J, McQueen P, Misteli T, Merkenschlager M, Fisher A G (2006). Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J Cell Sci, 119(Pt 1): 132–140 doi: 10.1242/jcs.02727 pmid: 16371653
|
134 |
Wu F, Yao J (2013). Spatial compartmentalization at the nuclear periphery characterized by genome-wide mapping. BMC Genomics, 14(1): 591 doi: 10.1186/1471-2164-14-591 pmid: 23987233
|
135 |
Xing Y, Johnson C V, Moen P T Jr, McNeil J A, Lawrence J (1995). Nonrandom gene organization: structural arrangements of specific pre-mRNA transcription and splicing with SC-35 domains. J Cell Biol, 131(6 Pt 2): 1635–1647 doi: 10.1083/jcb.131.6.1635 pmid: 8557734
|
136 |
Yao J, Fetter R D, Hu P, Betzig E, Tjian R (2011). Subnuclear segregation of genes and core promoter factors in myogenesis. Genes Dev, 25(6): 569–580 doi: 10.1101/gad.2021411 pmid: 21357673
|
137 |
Zink D, Amaral M D, Englmann A, Lang S, Clarke L A, Rudolph C, Alt F, Luther K, Braz C, Sadoni N, Rosenecker J, Schindelhauer D (2004). Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J Cell Biol, 166(6): 815–825 doi: 10.1083/jcb.200404107 pmid: 15364959
|
138 |
Zullo J M, Demarco I A, Piqué-Regi R, Gaffney D J, Epstein C B, Spooner C J, Luperchio T R, Bernstein B E, Pritchard J K, Reddy K L, Singh H (2012). DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell, 149(7): 1474–1487 doi: 10.1016/j.cell.2012.04.035 pmid: 22726435
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|