Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (4) : 255-268    https://doi.org/10.1007/s11515-014-1313-3
REVIEW
Gene positioning and genome function
Nidhi VISHNOI,Jie YAO()
Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06520, USA
 Download: PDF(794 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The eukaryotic genome is packaged as chromatin within the three-dimensional nuclear space. Decades of cytological studies have revealed that chromosomes and genes are non-randomly localized within the nucleus and such organizations have important roles on genome function. However, several fundamental questions remain to be resolved. For example, what is required for the preferential localization of a gene to a nuclear landmark? What is the mechanism underlying gene repositioning in the nucleus? How does subnuclear gene positioning regulate gene transcription? Recent studies have revealed that several factors such as DNA sequence composition, specific regulatory sequences, epigenetic modifications, chromatin remodelers, post-transcriptional regulators and nuclear architectural proteins can influence chromatin dynamics and gene positioning in a gene-specific manner among organisms from yeast to human. In this review, we discuss some recent findings as well as experimental tools to investigate subnuclear gene positioning and to explore its implications in genome functions.

Keywords nucleus      transcription      gene positioning      epigenetics      nuclear lamina      chromatin     
Corresponding Author(s): Jie YAO   
Issue Date: 11 August 2014
 Cite this article:   
Nidhi VISHNOI,Jie YAO. Gene positioning and genome function[J]. Front. Biol., 2014, 9(4): 255-268.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1313-3
https://academic.hep.com.cn/fib/EN/Y2014/V9/I4/255
Fig.1  Gene positioning and transcriptional status. The cartoon depicts positioning of transgenes or endogenous genes to different subnuclear compartments and their transcriptional status. Genes or transgenes associated with NPCs, Cajal bodies and transcriptional factories are generally active; genes or transgenes associated with the NL or nucleoli are often inactive.
Fig.2  Imaging tools to detect gene positioning. (A) DNA FISH. Adherent cells grown in cover glasses or chamber slides were fixed with formaldehyde, denatured and hybridized with digoxigenin (DIG) or Biotin-labeled DNA probes (red). After incubation with fluorescently-labeled antibodies, FISH signals could be visualized under a fluorescent microscope. (B) lacO/lacI system. The lacO repeats were stably inserted adjacent to a gene of interest. The fluorescently-tagged lacO binding lac repressor (red) was expressed in these cells. Binding of lacI repressor to lacO repeats enabled the visualization of these loci in live cells. (C) m6A tracer technology. The E. coli adenine methyltransferase Dam enzyme was fused with Lamin B1 and expressed in cells. The genomic regions in molecular contact with Lamin B1 were tagged in vivo with adenine-6-methylation (m6A) (red). When m6A-Tracer — a fluorescently-tagged DpnI truncation mutant that binds to Gm6ATC (green) — was expressed in cells, the LADs could be visualized and tracked.
Fig.3  Spatial compartmentalization at the nuclear periphery. Immunofluorescence staining of TAF3 and histone modifications was performed in mouse C2C12 myoblasts. TAF3, H3K4me3, H3K36me3 (green) were all localized away from the nuclear periphery which was labeled by anti-Lamin B (red). The H3K9me3 mark was present at both the nuclear interior and the nuclear periphery. Scale bar: 2 μm.
1 Abruzzi K C, Belostotsky D A, Chekanova J A, Dower K, Rosbash M (2006). 3′-end formation signals modulate the association of genes with the nuclear periphery as well as mRNP dot formation. EMBO J, 25(18): 4253–4262
doi: 10.1038/sj.emboj.7601305 pmid: 16946703
2 Ahmed S, Brickner D G, Light W H, Cajigas I, McDonough M, Froyshteter A B, Volpe T, Brickner J H (2010). DNA zip codes control an ancient mechanism for gene targeting to the nuclear periphery. Nat Cell Biol, 12(2): 111–118
doi: 10.1038/ncb2011 pmid: 20098417
3 Andrulis E D, Neiman A M, Zappulla D C, Sternglanz R (1998). Perinuclear localization of chromatin facilitates transcriptional silencing. Nature, 394(6693): 592–595
doi: 10.1038/29100 pmid: 9707122
4 Ballester M, Kress C, Hue-Beauvais C, Kiêu K, Lehmann G, Adenot P, Devinoy E (2008). The nuclear localization of WAP and CSN genes is modified by lactogenic hormones in HC11 cells. J Cell Biochem, 105(1): 262–270
doi: 10.1002/jcb.21823 pmid: 18500724
5 Belmont A S, Li G, Sudlow G, Robinett C (1999). Visualization of large-scale chromatin structure and dynamics using the lac operator/lac repressor reporter system. Methods Cell Biol, 58: 203–222
doi: 10.1016/S0091-679X(08)61957-3 pmid: 9891383
6 Berezney R, Dubey D D, Huberman J A (2000). Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci. Chromosoma, 108(8): 471–484
doi: 10.1007/s004120050399 pmid: 10794569
7 Bian Q, Khanna N, Alvikas J, Belmont A S (2013). β-Globin cis-elements determine differential nuclear targeting through epigenetic modifications. J Cell Biol, 203(5): 767–783
doi: 10.1083/jcb.201305027 pmid: 24297746
8 Blobel G (1985). Gene gating: a hypothesis. Proc Natl Acad Sci USA, 82(24): 8527–8529
doi: 10.1073/pnas.82.24.8527 pmid: 3866238
9 Boyle S, Gilchrist S, Bridger J M, Mahy N L, Ellis J A, Bickmore W A (2001). The spatial organization of human chromosomes within the nuclei of normal and emerin-mutant cells. Hum Mol Genet, 10(3): 211–219
doi: 10.1093/hmg/10.3.211 pmid: 11159939
10 Branco M R, Pombo A (2006). Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations. PLoS Biol, 4(5): e138
doi: 10.1371/journal.pbio.0040138 pmid: 16623600
11 Brickner D G, Cajigas I, Fondufe-Mittendorf Y, Ahmed S, Lee P C, Widom J, Brickner J H (2007). H2A.Z-mediated localization of genes at the nuclear periphery confers epigenetic memory of previous transcriptional state. PLoS Biol, 5(4): e81
doi: 10.1371/journal.pbio.0050081 pmid: 17373856
12 Brickner J H, Walter P (2004). Gene recruitment of the activated INO1 locus to the nuclear membrane. PLoS Biol, 2(11): e342
doi: 10.1371/journal.pbio.0020342 pmid: 15455074
13 Brown C R, Kennedy C J, Delmar V A, Forbes D J, Silver P A (2008a). Global histone acetylation induces functional genomic reorganization at mammalian nuclear pore complexes. Genes Dev, 22(5): 627–639
doi: 10.1101/gad.1632708 pmid: 18316479
14 Brown J M, Green J, das Neves R P, Wallace H A, Smith A J, Hughes J, Gray N, Taylor S, Wood W G, Higgs D R, Iborra F J, Buckle V J (2008b). Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J Cell Biol, 182(6): 1083–1097
doi: 10.1083/jcb.200803174 pmid: 18809724
15 Brown J M, Leach J, Reittie J E, Atzberger A, Lee-Prudhoe J, Wood W G, Higgs D R, Iborra F J, Buckle V J (2006). Coregulated human globin genes are frequently in spatial proximity when active. J Cell Biol, 172(2): 177–187
doi: 10.1083/jcb.200507073 pmid: 16418531
16 Brown K E, Baxter J, Graf D, Merkenschlager M, Fisher A G (1999). Dynamic repositioning of genes in the nucleus of lymphocytes preparing for cell division. Mol Cell, 3(2): 207–217
doi: 10.1016/S1097-2765(00)80311-1 pmid: 10078203
17 Brown K E, Guest S S, Smale S T, Hahm K, Merkenschlager M, Fisher A G (1997). Association of transcriptionally silent genes with Ikaros complexes at centromeric heterochromatin. Cell, 91(6): 845–854
doi: 10.1016/S0092-8674(00)80472-9 pmid: 9413993
18 Cabal G G, Genovesio A, Rodriguez-Navarro S, Zimmer C, Gadal O, Lesne A, Buc H, Feuerbach-Fournier F, Olivo-Marin J C, Hurt E C, Nehrbass U (2006). SAGA interacting factors confine sub-diffusion of transcribed genes to the nuclear envelope. Nature, 441(7094): 770–773
doi: 10.1038/nature04752 pmid: 16760982
19 Capelson M, Liang Y, Schulte R, Mair W, Wagner U, Hetzer M W (2010). Chromatin-bound nuclear pore components regulate gene expression in higher eukaryotes. Cell, 140(3): 372–383
doi: 10.1016/j.cell.2009.12.054 pmid: 20144761
20 Casolari J M, Brown C R, Drubin D A, Rando O J, Silver P A (2005). Developmentally induced changes in transcriptional program alter spatial organization across chromosomes. Genes Dev, 19(10): 1188–1198
doi: 10.1101/gad.1307205 pmid: 15905407
21 Casolari J M, Brown C R, Komili S, West J, Hieronymus H, Silver P A (2004). Genome-wide localization of the nuclear transport machinery couples transcriptional status and nuclear organization. Cell, 117(4): 427–439
doi: 10.1016/S0092-8674(04)00448-9 pmid: 15137937
22 Chan E A, Teng G, Corbett E, Choudhury K R, Bassing C H, Schatz D G, Krangel M S (2013). Peripheral subnuclear positioning suppresses Tcrb recombination and segregates Tcrb alleles from RAG2. Proc Natl Acad Sci USA, 110(48): E4628–E4637
doi: 10.1073/pnas.1310846110 pmid: 24218622
23 Chen B, Gilbert L A, Cimini B A, Schnitzbauer J, Zhang W, Li G W, Park J, Blackburn E H, Weissman J S, Qi L S, Huang B (2013). Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell, 155(7): 1479–1491
doi: 10.1016/j.cell.2013.12.001 pmid: 24360272
24 Chuang C H, Carpenter A E, Fuchsova B, Johnson T, de Lanerolle P, Belmont A S (2006). Long-range directional movement of an interphase chromosome site. Curr Biol, 16(8): 825–831
doi: 10.1016/j.cub.2006.03.059 pmid: 16631592
25 Croft J A, Bridger J M, Boyle S, Perry P, Teague P, Bickmore W A (1999). Differences in the localization and morphology of chromosomes in the human nucleus. J Cell Biol, 145(6): 1119–1131
doi: 10.1083/jcb.145.6.1119 pmid: 10366586
26 Csink A K, Henikoff S (1996). Genetic modification of heterochromatic association and nuclear organization in Drosophila. Nature, 381(6582): 529–531
doi: 10.1038/381529a0 pmid: 8632827
27 de Wit E, de Laat W (2012). A decade of 3C technologies: insights into nuclear organization. Genes Dev, 26(1): 11–24
doi: 10.1101/gad.179804.111 pmid: 22215806
28 Dekker J, Rippe K, Dekker M, Kleckner N (2002). Capturing chromosome conformation. Science, 295(5558): 1306–1311
doi: 10.1126/science.1067799 pmid: 11847345
29 Deng W, Blobel G A (2013). Manipulating nuclear architecture. Curr Opin Genet Dev, 25C: 1–7
pmid: 24584091
30 Deng W, Lee J, Wang H, Miller J, Reik A, Gregory P D, Dean A, Blobel G A (2012). Controlling long-range genomic interactions at a native locus by targeted tethering of a looping factor. Cell, 149(6): 1233–1244
doi: 10.1016/j.cell.2012.03.051 pmid: 22682246
31 Dernburg A F, Broman K W, Fung J C, Marshall W F, Philips J, Agard D A, Sedat J W (1996). Perturbation of nuclear architecture by long-distance chromosome interactions. Cell, 85(5): 745–759
doi: 10.1016/S0092-8674(00)81240-4 pmid: 8646782
32 Dieppois G, Iglesias N, Stutz F (2006). Cotranscriptional recruitment to the mRNA export receptor Mex67p contributes to nuclear pore anchoring of activated genes. Mol Cell Biol, 26(21): 7858–7870
doi: 10.1128/MCB.00870-06 pmid: 16954382
33 Dimitrova D S, Gilbert D M (1999). The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell, 4(6): 983–993
doi: 10.1016/S1097-2765(00)80227-0 pmid: 10635323
34 Dirks R W, de Pauw E S, Raap A K (1997). Splicing factors associate with nuclear HCMV-IE transcripts after transcriptional activation of the gene, but dissociate upon transcription inhibition: evidence for a dynamic organization of splicing factors. J Cell Sci, 110(Pt 4): 515–522
pmid: 9067603
35 Dostie J, Richmond T A, Arnaout R A, Selzer R R, Lee W L, Honan T A, Rubio E D, Krumm A, Lamb J, Nusbaum C, Green R D, Dekker J (2006). Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res, 16(10): 1299–1309
doi: 10.1101/gr.5571506 pmid: 16954542
36 Drubin D A, Garakani A M, Silver P A (2006). Motion as a phenotype: the use of live-cell imaging and machine visual screening to characterize transcription-dependent chromosome dynamics. BMC Cell Biol, 7(1): 19
doi: 10.1186/1471-2121-7-19 pmid: 16635267
37 Dundr M, Ospina J K, Sung M H, John S, Upender M, Ried T, Hager G L, Matera A G (2007). Actin-dependent intranuclear repositioning of an active gene locus in vivo. J Cell Biol, 179(6): 1095–1103
doi: 10.1083/jcb.200710058 pmid: 18070915
38 Ferrai C, de Castro I J, Lavitas L, Chotalia M, Pombo A (2010). Gene positioning. Cold Spring Harb Perspect Biol, 2(6): a000588
doi: 10.1101/cshperspect.a000588 pmid: 20484389
39 Finlan L E, Sproul D, Thomson I, Boyle S, Kerr E, Perry P, Ylstra B, Chubb J R, Bickmore W A (2008). Recruitment to the nuclear periphery can alter expression of genes in human cells. PLoS Genet, 4(3): e1000039
doi: 10.1371/journal.pgen.1000039 pmid: 18369458
40 Fraser P, Bickmore W (2007). Nuclear organization of the genome and the potential for gene regulation. Nature, 447(7143): 413–417
doi: 10.1038/nature05916 pmid: 17522674
41 Gaj T, Gersbach C A, Barbas C F 3rd (2013). ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol, 31(7): 397–405
doi: 10.1016/j.tibtech.2013.04.004 pmid: 23664777
42 Germann S, Juul-Jensen T, Letarnec B, Gaudin V (2006). DamID, a new tool for studying plant chromatin profiling in vivo, and its use to identify putative LHP1 target loci. Plant J, 48(1): 153–163
doi: 10.1111/j.1365-313X.2006.02859.x pmid: 16972870
43 Geyer P K, Vitalini M W, Wallrath L L (2011). Nuclear organization: taking a position on gene expression. Curr Opin Cell Biol, 23(3): 354–359
doi: 10.1016/j.ceb.2011.03.002 pmid: 21450447
44 Gilbert D M (2001). Nuclear position leaves its mark on replication timing. J Cell Biol, 152(2): F11–F15
doi: 10.1083/jcb.152.2.F11 pmid: 11266441
45 Green E M, Jiang Y, Joyner R, Weis K (2012). A negative feedback loop at the nuclear periphery regulates GAL gene expression. Mol Biol Cell, 23(7): 1367–1375
doi: 10.1091/mbc.E11-06-0547 pmid: 22323286
46 Guelen L, Pagie L, Brasset E, Meuleman W, Faza M B, Talhout W, Eussen B H, de Klein A, Wessels L, de Laat W, van Steensel B (2008). Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature, 453(7197): 948–951
doi: 10.1038/nature06947 pmid: 18463634
47 Haaf T, Schmid M (1991). Chromosome topology in mammalian interphase nuclei. Exp Cell Res, 192(2): 325–332
doi: 10.1016/0014-4827(91)90048-Y pmid: 1988281
48 Hepperger C, Mannes A, Merz J, Peters J, Dietzel S (2008). Three-dimensional positioning of genes in mouse cell nuclei. Chromosoma, 117(6): 535–551
doi: 10.1007/s00412-008-0168-2 pmid: 18597102
49 Hewitt S L, High F A, Reiner S L, Fisher A G, Merkenschlager M (2004). Nuclear repositioning marks the selective exclusion of lineage-inappropriate transcription factor loci during T helper cell differentiation. Eur J Immunol, 34(12): 3604–3613
doi: 10.1002/eji.200425469 pmid: 15484194
50 Hofmann W A, Johnson T, Klapczynski M, Fan J L, de Lanerolle P (2006). From transcription to transport: emerging roles for nuclear myosin I. Biochem Cell Biol, 84(4): 418–426
doi: 10.1139/o06-069 pmid: 16936815
51 Horike S, Cai S, Miyano M, Cheng J F, Kohwi-Shigematsu T (2005). Loss of silent-chromatin looping and impaired imprinting of DLX5 in Rett syndrome. Nat Genet, 37(1): 31–40
pmid: 15608638
52 Ishii K, Arib G, Lin C, Van Houwe G, Laemmli U K (2002). Chromatin boundaries in budding yeast: the nuclear pore connection. Cell, 109(5): 551–562
doi: 10.1016/S0092-8674(02)00756-0 pmid: 12062099
53 Isogai Y, Tjian R (2003). Targeting genes and transcription factors to segregated nuclear compartments. Curr Opin Cell Biol, 15(3): 296–303
doi: 10.1016/S0955-0674(03)00052-8 pmid: 12787771
54 Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E (2012). A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 337(6096): 816–821
doi: 10.1126/science.1225829 pmid: 22745249
55 Jost K L, Haase S, Smeets D, Schrode N, Schmiedel J M, Bertulat B, Herzel H, Cremer M, Cardoso M C (2011). 3D-Image analysis platform monitoring relocation of pluripotency genes during reprogramming. Nucleic Acids Res, 39(17): e113
doi: 10.1093/nar/gkr486 pmid: 21700670
56 Kalverda B, Fornerod M (2010). Characterization of genome-nucleoporin interactions in Drosophila links chromatin insulators to the nuclear pore complex. Cell Cycle, 9(24): 4812–4817
doi: 10.4161/cc.9.24.14328 pmid: 21150273
57 Kalverda B, Pickersgill H, Shloma V V, Fornerod M (2010). Nucleoporins directly stimulate expression of developmental and cell-cycle genes inside the nucleoplasm. Cell, 140(3): 360–371
doi: 10.1016/j.cell.2010.01.011 pmid: 20144760
58 Kind J, Pagie L, Ortabozkoyun H, Boyle S, de Vries S S, Janssen H, Amendola M, Nolen L D, Bickmore W A, van Steensel B (2013). Single-cell dynamics of genome-nuclear lamina interactions. Cell, 153(1): 178–192
doi: 10.1016/j.cell.2013.02.028 pmid: 23523135
59 Kind J, van Steensel B (2010). Genome-nuclear lamina interactions and gene regulation. Curr Opin Cell Biol, 22(3): 320–325
doi: 10.1016/j.ceb.2010.04.002 pmid: 20444586
60 Kohwi M, Lupton J R, Lai S L, Miller M R, Doe C Q (2013). Developmentally regulated subnuclear genome reorganization restricts neural progenitor competence in Drosophila. Cell, 152(1-2): 97–108
doi: 10.1016/j.cell.2012.11.049 pmid: 23332748
61 Kosak S T, Skok J A, Medina K L, Riblet R, Le Beau M M, Fisher A G, Singh H (2002). Subnuclear compartmentalization of immunoglobulin loci during lymphocyte development. Science, 296(5565): 158–162
doi: 10.1126/science.1068768 pmid: 11935030
62 Kouzine F, Liu J, Sanford S, Chung H J, Levens D (2004). The dynamic response of upstream DNA to transcription-generated torsional stress. Nat Struct Mol Biol, 11(11): 1092–1100
doi: 10.1038/nsmb848 pmid: 15502847
63 Kress C, Kiêu K, Droineau S, Galio L, Devinoy E (2011). Specific positioning of the casein gene cluster in active nuclear domains in luminal mammary epithelial cells. Chromosome Res, 19(8): 979–997
doi: 10.1007/s10577-011-9249-9 pmid: 22033805
64 Kumaran R I, Spector D L (2008). A genetic locus targeted to the nuclear periphery in living cells maintains its transcriptional competence. J Cell Biol, 180(1): 51–65
doi: 10.1083/jcb.200706060 pmid: 18195101
65 Kundu S, Horn P J, Peterson C L (2007). SWI/SNF is required for transcriptional memory at the yeast GAL gene cluster. Genes Dev, 21(8): 997–1004
doi: 10.1101/gad.1506607 pmid: 17438002
66 Lamond A I, Sleeman J E (2003). Nuclear substructure and dynamics. Curr Biol, 13(21): R825–R828
doi: 10.1016/j.cub.2003.10.012 pmid: 14588256
67 Lanct?t C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007). Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet, 8(2): 104–115
doi: 10.1038/nrg2041 pmid: 17230197
68 Lawrence J B, Clemson C M (2008). Gene associations: true romance or chance meeting in a nuclear neighborhood? J Cell Biol, 182(6): 1035–1038
doi: 10.1083/jcb.200808121 pmid: 18809719
69 Lee H, Quinn J C, Prasanth K V, Swiss V A, Economides K D, Camacho M M, Spector D L, Abate-Shen C (2006). PIAS1 confers DNA-binding specificity on the Msx1 homeoprotein. Genes Dev, 20(7): 784–794
doi: 10.1101/gad.1392006 pmid: 16600910
70 Levsky J M, Singer R H (2003). Fluorescence in situ hybridization: past, present and future. J Cell Sci, 116(Pt 14): 2833–2838
doi: 10.1242/jcs.00633 pmid: 12808017
71 Lieberman-Aiden E, van Berkum N L, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie B R, Sabo P J, Dorschner M O, Sandstrom R, Bernstein B, Bender M A, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny L A, Lander E S, Dekker J (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science, 326(5950): 289–293
doi: 10.1126/science.1181369 pmid: 19815776
72 Lionnet T, Czaplinski K, Darzacq X, Shav-Tal Y, Wells A L, Chao J A, Park H Y, de Turris V, Lopez-Jones M, Singer R H (2011). A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat Methods, 8(2): 165–170
doi: 10.1038/nmeth.1551 pmid: 21240280
73 Luperchio T R, Wong X, Reddy K L (2014). Genome regulation at the peripheral zone: lamina associated domains in development and disease. Curr Opin Genet Dev, 25C: 50–61
doi: 10.1016/j.gde.2013.11.021 pmid: 24556270
74 Luthra R, Kerr S C, Harreman M T, Apponi L H, Fasken M B, Ramineni S, Chaurasia S, Valentini S R, Corbett A H (2007). Actively transcribed GAL genes can be physically linked to the nuclear pore by the SAGA chromatin modifying complex. J Biol Chem, 282(5): 3042–3049
doi: 10.1074/jbc.M608741200 pmid: 17158105
75 Marko J F, Poirier M G (2003). Micromechanics of chromatin and chromosomes. Biochem Cell Biol, 81(3): 209–220
doi: 10.1139/o03-047 pmid: 12897855
76 Mattout A, Meshorer E (2010). Chromatin plasticity and genome organization in pluripotent embryonic stem cells. Curr Opin Cell Biol, 22(3): 334–341
doi: 10.1016/j.ceb.2010.02.001 pmid: 20226651
77 Matzke A J, Huettel B, van der Winden J, Matzke M (2005). Use of two-color fluorescence-tagged transgenes to study interphase chromosomes in living plants. Plant Physiol, 139(4): 1586–1596
doi: 10.1104/pp.105.071068 pmid: 16339805
78 Meaburn K J, Gudla P R, Khan S, Lockett S J, Misteli T (2009). Disease-specific gene repositioning in breast cancer. J Cell Biol, 187(6): 801–812
doi: 10.1083/jcb.200909127 pmid: 19995938
79 Meaburn K J, Misteli T (2008). Locus-specific and activity-independent gene repositioning during early tumorigenesis. J Cell Biol, 180(1): 39–50
doi: 10.1083/jcb.200708204 pmid: 18195100
80 Meister P, Towbin B D, Pike B L, Ponti A, Gasser S M (2010). The spatial dynamics of tissue-specific promoters during C. elegans development. Genes Dev, 24(8): 766–782
doi: 10.1101/gad.559610 pmid: 20395364
81 Meuleman W, Peric-Hupkes D, Kind J, Beaudry J B, Pagie L, Kellis M, Reinders M, Wessels L, van Steensel B (2013). Constitutive nuclear lamina-genome interactions are highly conserved and associated with A/T-rich sequence. Genome Res, 23(2): 270–280
doi: 10.1101/gr.141028.112 pmid: 23124521
82 Mewborn S K, Puckelwartz M J, Abuisneineh F, Fahrenbach J P, Zhang Y, MacLeod H, Dellefave L, Pytel P, Selig S, Labno C M, Reddy K, Singh H, McNally E (2010). Altered chromosomal positioning, compaction, and gene expression with a lamin A/C gene mutation. PLoS ONE, 5(12): e14342
doi: 10.1371/journal.pone.0014342 pmid: 21179469
83 Misteli T (2007). Beyond the sequence: cellular organization of genome function. Cell, 128(4): 787–800
doi: 10.1016/j.cell.2007.01.028 pmid: 17320514
84 Miyanari Y, Ziegler-Birling C, Torres-Padilla M E (2013). Live visualization of chromatin dynamics with fluorescent TALEs. Nat Struct Mol Biol, 20(11): 1321–1324
doi: 10.1038/nsmb.2680 pmid: 24096363
85 Moen P T Jr, Johnson C V, Byron M, Shopland L S, de la Serna I L, Imbalzano A N, Lawrence J B (2004). Repositioning of muscle-specific genes relative to the periphery of SC-35 domains during skeletal myogenesis. Mol Biol Cell, 15(1): 197–206
doi: 10.1091/mbc.E03-06-0388 pmid: 14617810
86 Nagano T, Lubling Y, Stevens T J, Schoenfelder S, Yaffe E, Dean W, Laue E D, Tanay A, Fraser P (2013). Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature, 502(7469): 59–64
doi: 10.1038/nature12593 pmid: 24067610
87 Naumova N, Smith E M, Zhan Y, Dekker J (2012). Analysis of long-range chromatin interactions using Chromosome Conformation Capture. Methods, 58(3): 192–203
doi: 10.1016/j.ymeth.2012.07.022 pmid: 22903059
88 Németh A, Conesa A, Santoyo-Lopez J, Medina I, Montaner D, Péterfia B, Solovei I, Cremer T, Dopazo J, L?ngst G (2010). Initial genomics of the human nucleolus. PLoS Genet, 6(3): e1000889
doi: 10.1371/journal.pgen.1000889 pmid: 20361057
89 Neumann F R, Dion V, Gehlen L R, Tsai-Pflugfelder M, Schmid R, Taddei A, Gasser S M (2012). Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination. Genes Dev, 26(4): 369–383
doi: 10.1101/gad.176156.111 pmid: 22345518
90 O’Gorman S, Fox D T, Wahl G M (1991). Recombinase-mediated gene activation and site-specific integration in mammalian cells. Science, 251(4999): 1351–1355
doi: 10.1126/science. pmid: 1900642
91 Osborne C S, Chakalova L, Brown K E, Carter D, Horton A, Debrand E, Goyenechea B, Mitchell J A, Lopes S, Reik W, Fraser P (2004). Active genes dynamically colocalize to shared sites of ongoing transcription. Nat Genet, 36(10): 1065–1071
doi: 10.1038/ng1423 pmid: 15361872
92 Osborne C S, Chakalova L, Mitchell J A, Horton A, Wood A L, Bolland D J, Corcoran A E, Fraser P (2007). Myc dynamically and preferentially relocates to a transcription factory occupied by Igh. PLoS Biol, 5(8): e192
doi: 10.1371/journal.pbio.0050192 pmid: 17622196
93 Parada L, Misteli T (2002). Chromosome positioning in the interphase nucleus. Trends Cell Biol, 12(9): 425–432
doi: 10.1016/S0962-8924(02)02351-6 pmid: 12220863
94 Patel N S, Rhinn M, Semprich C I, Halley P A, Dollé P, Bickmore W A, Storey K G (2013). FGF signalling regulates chromatin organisation during neural differentiation via mechanisms that can be uncoupled from transcription. PLoS Genet, 9(7): e1003614
doi: 10.1371/journal.pgen.1003614 pmid: 23874217
95 Pederson T (2002). Dynamics and genome-centricity of interchromatin domains in the nucleus. Nat Cell Biol, 4(12): E287–E291
doi: 10.1038/ncb1202-e287 pmid: 12461535
96 Peric-Hupkes D, Meuleman W, Pagie L, Bruggeman S W, Solovei I, Brugman W, Gr?f S, Flicek P, Kerkhoven R M, van Lohuizen M, Reinders M, Wessels L, van Steensel B (2010). Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. Mol Cell, 38(4): 603–613
doi: 10.1016/j.molcel.2010.03.016 pmid: 20513434
97 Pickersgill H, Kalverda B, de Wit E, Talhout W, Fornerod M, van Steensel B (2006). Characterization of the Drosophila melanogaster genome at the nuclear lamina. Nat Genet, 38(9): 1005–1014
doi: 10.1038/ng1852 pmid: 16878134
98 Ragoczy T, Bender M A, Telling A, Byron R, Groudine M (2006). The locus control region is required for association of the murine beta-globin locus with engaged transcription factories during erythroid maturation. Genes Dev, 20(11): 1447–1457
doi: 10.1101/gad.1419506 pmid: 16705039
99 Reddy K L, Zullo J M, Bertolino E, Singh H (2008). Transcriptional repression mediated by repositioning of genes to the nuclear lamina. Nature, 452(7184): 243–247
doi: 10.1038/nature06727 pmid: 18272965
100 Robinett C C, Straight A, Li G, Willhelm C, Sudlow G, Murray A, Belmont A S (1996). In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J Cell Biol, 135(6 Pt 2): 1685–1700
doi: 10.1083/jcb.135.6.1685 pmid: 8991083
101 Rohner S, Kalck V, Wang X, Ikegami K, Lieb J D, Gasser S M, Meister P (2013). Promoter- and RNA polymerase II-dependent hsp-16 gene association with nuclear pores in Caenorhabditis elegans. J Cell Biol, 200(5): 589–604
doi: 10.1083/jcb.201207024 pmid: 23460676
102 Sarma N J, Haley T M, Barbara K E, Buford T D, Willis K A, Santangelo G M (2007). Glucose-responsive regulators of gene expression in Saccharomyces cerevisiae function at the nuclear periphery via a reverse recruitment mechanism. Genetics, 175(3): 1127–1135
doi: 10.1534/genetics.106.068932 pmid: 17237508
103 Schermelleh L, Carlton P M, Haase S, Shao L, Winoto L, Kner P, Burke B, Cardoso M C, Agard D A, Gustafsson M G, Leonhardt H, Sedat J W (2008). Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science, 320(5881): 1332–1336
doi: 10.1126/science.1156947 pmid: 18535242
104 Schmid M, Arib G, Laemmli C, Nishikawa J, Durussel T, Laemmli U K (2006). Nup-PI: the nucleopore-promoter interaction of genes in yeast. Mol Cell, 21(3): 379–391
doi: 10.1016/j.molcel.2005.12.012 pmid: 16455493
105 Schoenfelder S, Sexton T, Chakalova L, Cope N F, Horton A, Andrews S, Kurukuti S, Mitchell J A, Umlauf D, Dimitrova D S, Eskiw C H, Luo Y, Wei C L, Ruan Y, Bieker J J, Fraser P (2010). Preferential associations between co-regulated genes reveal a transcriptional interactome in erythroid cells. Nat Genet, 42(1): 53–61
doi: 10.1038/ng.496 pmid: 20010836
106 Schr?ck E, du Manoir S, Veldman T, Schoell B, Wienberg J, Ferguson-Smith M A, Ning Y, Ledbetter D H, Bar-Am I, Soenksen D, Garini Y, Ried T (1996). Multicolor spectral karyotyping of human chromosomes. Science, 273(5274): 494–497
doi: 10.1126/science.273.5274.494 pmid: 8662537
107 Sexton T, Schober H, Fraser P, Gasser S M (2007). Gene regulation through nuclear organization. Nat Struct Mol Biol, 14(11): 1049–1055
doi: 10.1038/nsmb1324 pmid: 17984967
108 Simonis M, Klous P, Splinter E, Moshkin Y, Willemsen R, de Wit E, van Steensel B, de Laat W (2006). Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet, 38(11): 1348–1354
doi: 10.1038/ng1896 pmid: 17033623
109 Simonis M, Kooren J, de Laat W (2007). An evaluation of 3C-based methods to capture DNA interactions. Nat Methods, 4(11): 895–901
doi: 10.1038/nmeth1114 pmid: 17971780
110 Solovei I, Cavallo A, Schermelleh L, Jaunin F, Scasselati C, Cmarko D, Cremer C, Fakan S, Cremer T (2002). Spatial preservation of nuclear chromatin architecture during three-dimensional fluorescence in situ hybridization (3D-FISH). Exp Cell Res, 276(1): 10–23
doi: 10.1006/excr.2002.5513 pmid: 11978004
111 Solovei I, Kreysing M, Lanct?t C, K?sem S, Peichl L, Cremer T, Guck J, Joffe B (2009). Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell, 137(2): 356–368
doi: 10.1016/j.cell.2009.01.052 pmid: 19379699
112 Spector D L (2001). Nuclear domains. J Cell Sci, 114(Pt 16): 2891–2893
pmid: 11686292
113 Splinter E, de Wit E, Nora E P, Klous P, van de Werken H J, Zhu Y, Kaaij L J, van Ijcken W, Gribnau J, Heard E, de Laat W (2011). The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. Genes Dev, 25(13): 1371–1383
doi: 10.1101/gad.633311 pmid: 21690198
114 Steglich B, Filion G J, van Steensel B, Ekwall K (2012). The inner nuclear membrane proteins Man1 and Ima1 link to two different types of chromatin at the nuclear periphery in S. pombe. Nucleus, 3(1): 77–87
doi: 10.4161/nucl.18825 pmid: 22156748
115 Sun H B, Shen J, Yokota H (2000). Size-dependent positioning of human chromosomes in interphase nuclei. Biophys J, 79(1): 184–190
doi: 10.1016/S0006-3495(00)76282-5 pmid: 10866946
116 Szczerbal I, Foster H A, Bridger J M (2009). The spatial repositioning of adipogenesis genes is correlated with their expression status in a porcine mesenchymal stem cell adipogenesis model system. Chromosoma, 118(5): 647–663
doi: 10.1007/s00412-009-0225-5 pmid: 19585140
117 Taddei A (2007). Active genes at the nuclear pore complex. Curr Opin Cell Biol, 19(3): 305–310
doi: 10.1016/j.ceb.2007.04.012 pmid: 17467257
118 Taddei A, Van Houwe G, Hediger F, Kalck V, Cubizolles F, Schober H, Gasser S M (2006). Nuclear pore association confers optimal expression levels for an inducible yeast gene. Nature, 441(7094): 774–778
doi: 10.1038/nature04845 pmid: 16760983
119 Takizawa T, Gudla P R, Guo L, Lockett S, Misteli T (2008a). Allele-specific nuclear positioning of the monoallelically expressed astrocyte marker GFAP. Genes Dev, 22(4): 489–498
doi: 10.1101/gad.1634608 pmid: 18281462
120 Takizawa T, Meaburn K J, Misteli T (2008b). The meaning of gene positioning. Cell, 135(1): 9–13
doi: 10.1016/j.cell.2008.09.026 pmid: 18854147
121 Tanabe H, Müller S, Neusser M, von Hase J, Calcagno E, Cremer M, Solovei I, Cremer C, Cremer T (2002). Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proc Natl Acad Sci USA, 99(7): 4424–4429
doi: 10.1073/pnas.072618599 pmid: 11930003
122 Tolhuis B, Blom M, Kerkhoven R M, Pagie L, Teunissen H, Nieuwland M, Simonis M, de Laat W, van Lohuizen M, van Steensel B (2011). Interactions among Polycomb domains are guided by chromosome architecture. PLoS Genet, 7(3): e1001343
doi: 10.1371/journal.pgen.1001343 pmid: 21455484
123 Towbin B D, González-Aguilera C, Sack R, Gaidatzis D, Kalck V, Meister P, Askjaer P, Gasser S M (2012). Step-wise methylation of histone H3K9 positions heterochromatin at the nuclear periphery. Cell, 150(5): 934–947
doi: 10.1016/j.cell.2012.06.051 pmid: 22939621
124 Towbin B D, Meister P, Pike B L, Gasser S M (2010). Repetitive transgenes in C. elegans accumulate heterochromatic marks and are sequestered at the nuclear envelope in a copy-number- and lamin-dependent manner. Cold Spring Harb Symp Quant Biol, 75(0): 555–565
doi: 10.1101/sqb.2010.75.041 pmid: 21467137
125 Tumbar T, Belmont A S (2001). Interphase movements of a DNA chromosome region modulated by VP16 transcriptional activator. Nat Cell Biol, 3(2): 134–139
doi: 10.1038/35055033 pmid: 11175745
126 van Koningsbruggen S, Gierlinski M, Schofield P, Martin D, Barton G J, Ariyurek Y, den Dunnen J T, Lamond A I (2010). High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell, 21(21): 3735–3748
doi: 10.1091/mbc.E10-06-0508 pmid: 20826608
127 van Steensel B, Dekker J (2010). Genomics tools for unraveling chromosome architecture. Nat Biotechnol, 28(10): 1089–1095
doi: 10.1038/nbt.1680 pmid: 20944601
128 van Steensel B, Henikoff S (2000). Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol, 18(4): 424–428
doi: 10.1038/74487 pmid: 10748524
129 Vaquerizas J M, Suyama R, Kind J, Miura K, Luscombe N M, Akhtar A (2010). Nuclear pore proteins nup153 and megator define transcriptionally active regions in the Drosophila genome. PLoS Genet, 6(2): e1000846
doi: 10.1371/journal.pgen.1000846 pmid: 20174442
130 Vermeulen M, Mulder K W, Denissov S, Pijnappel W W, van Schaik F M, Varier R A, Baltissen M P, Stunnenberg H G, Mann M, Timmers H T (2007). Selective anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell, 131(1): 58–69
doi: 10.1016/j.cell.2007.08.016 pmid: 17884155
131 Vodala S, Abruzzi K C, Rosbash M (2008). The nuclear exosome and adenylation regulate posttranscriptional tethering of yeast GAL genes to the nuclear periphery. Mol Cell, 31(1): 104–113
doi: 10.1016/j.molcel.2008.05.015 pmid: 18614049
132 Vogel M J, Peric-Hupkes D, van Steensel B (2007). Detection of in vivo protein-DNA interactions using<?Pub Caret?> DamID in mammalian cells. Nat Protoc, 2(6): 1467–1478
doi: 10.1038/nprot.2007.148 pmid: 17545983
133 Williams R R, Azuara V, Perry P, Sauer S, Dvorkina M, J?rgensen H, Roix J, McQueen P, Misteli T, Merkenschlager M, Fisher A G (2006). Neural induction promotes large-scale chromatin reorganisation of the Mash1 locus. J Cell Sci, 119(Pt 1): 132–140
doi: 10.1242/jcs.02727 pmid: 16371653
134 Wu F, Yao J (2013). Spatial compartmentalization at the nuclear periphery characterized by genome-wide mapping. BMC Genomics, 14(1): 591
doi: 10.1186/1471-2164-14-591 pmid: 23987233
135 Xing Y, Johnson C V, Moen P T Jr, McNeil J A, Lawrence J (1995). Nonrandom gene organization: structural arrangements of specific pre-mRNA transcription and splicing with SC-35 domains. J Cell Biol, 131(6 Pt 2): 1635–1647
doi: 10.1083/jcb.131.6.1635 pmid: 8557734
136 Yao J, Fetter R D, Hu P, Betzig E, Tjian R (2011). Subnuclear segregation of genes and core promoter factors in myogenesis. Genes Dev, 25(6): 569–580
doi: 10.1101/gad.2021411 pmid: 21357673
137 Zink D, Amaral M D, Englmann A, Lang S, Clarke L A, Rudolph C, Alt F, Luther K, Braz C, Sadoni N, Rosenecker J, Schindelhauer D (2004). Transcription-dependent spatial arrangements of CFTR and adjacent genes in human cell nuclei. J Cell Biol, 166(6): 815–825
doi: 10.1083/jcb.200404107 pmid: 15364959
138 Zullo J M, Demarco I A, Piqué-Regi R, Gaffney D J, Epstein C B, Spooner C J, Luperchio T R, Bernstein B E, Pritchard J K, Reddy K L, Singh H (2012). DNA sequence-dependent compartmentalization and silencing of chromatin at the nuclear lamina. Cell, 149(7): 1474–1487
doi: 10.1016/j.cell.2012.04.035 pmid: 22726435
[1] Johanna Morrow, Kyle T. Willenburg, Emmanuel Liscum. Phototropism in land plants: Molecules and mechanism from light perception to response[J]. Front. Biol., 2018, 13(5): 342-357.
[2] Nima Heidary, Hedayat Sahraei, Mohammad Reza Afarinesh, Zahra Bahari, Gholam Hossein Meftahi. Investigating the inhibition of NMDA glutamate receptors in the basolateral nucleus of the amygdala on the pain and inflammation induced by formalin in male Wistar rats[J]. Front. Biol., 2018, 13(2): 149-155.
[3] Yujie Deng, Caixia Lin, Huanjiao Jenny Zhou, Wang Min. Smooth muscle cell differentiation: Mechanisms and models for vascular diseases[J]. Front. Biol., 2017, 12(6): 392-405.
[4] Shipeng Shao, Lei Chang, Yingping Hou, Yujie Sun. Illuminating the structure and dynamics of chromatin by fluorescence labeling[J]. Front. Biol., 2017, 12(4): 241-257.
[5] Karim Mowla, Mohammad Amin Saki, Mohammad Taha Jalali, Zeinab Deris Zayeri. How to manage rheumatoid arthritis according to classic biomarkers and polymorphisms?[J]. Front. Biol., 2017, 12(3): 183-191.
[6] Christopher M. Olsen,Qing-Song Liu. Phosphodiesterase 4 inhibitors and drugs of abuse: current knowledge and therapeutic opportunities[J]. Front. Biol., 2016, 11(5): 376-386.
[7] Liang Hu,Edward Trope,Qi-Long Ying. Metabolism of pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 355-365.
[8] Jian Li,Chun Guo,Nickolas Steinauer,Jinsong Zhang. New insights into transcriptional and leukemogenic mechanisms of AML1-ETO and E2A fusion proteins[J]. Front. Biol., 2016, 11(4): 285-304.
[9] Nina K. Latcheva,Rupa Ghosh,Daniel R. Marenda. The epigenetics of CHARGE syndrome[J]. Front. Biol., 2016, 11(2): 85-95.
[10] Meng WANG,Kasturi BANERJEE,Harriet BAKER,John W. CAVE. Nucleotide sequence conservation of novel and established cis-regulatory sites within the tyrosine hydroxylase gene promoter[J]. Front. Biol., 2015, 10(1): 74-90.
[11] Joshua D. TOMPKINS,Arthur D. RIGGS. An epigenetic perspective on the failing heart and pluripotent-derived-cardiomyocytes for cell replacement therapy[J]. Front. Biol., 2015, 10(1): 11-27.
[12] Rebecca M. FOX,Deborah J. ANDREW. Transcriptional regulation of secretory capacity by bZip transcription factors[J]. Front. Biol., 2015, 10(1): 28-51.
[13] Jamie K. WONG,Hongyan ZOU. Reshaping the chromatin landscape after spinal cord injury[J]. Front. Biol., 2014, 9(5): 356-366.
[14] Vipul SHUKLA,Runqing LU. IRF4 and IRF8: governing the virtues of B lymphocytes[J]. Front. Biol., 2014, 9(4): 269-282.
[15] Yaojuan LU,Longwei QIAO,Guanghua LEI,Ranim R. MIRA,Junxia GU,Qiping ZHENG. Col10a1 gene expression and chondrocyte hypertrophy during skeletal development and disease[J]. Front. Biol., 2014, 9(3): 195-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed