Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (5) : 356-366    https://doi.org/10.1007/s11515-014-1329-8
REVIEW
Reshaping the chromatin landscape after spinal cord injury
Jamie K. WONG1,Hongyan ZOU1,2,*()
1. Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
2. Department of Neurosurgery, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
 Download: PDF(721 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The pathophysiology underlying spinal cord injury is complex. Mechanistic understanding of the adaptive responses to injury is critical for targeted therapy aimed at reestablishing lost connections between proximal and distal neurons. After injury, cell-type specific gene transcription programs govern distinct cellular behaviors, and chromatin regulators play a central role in shaping the chromatin landscape to adjust transcriptional profiles in a context-dependent manner. In this review, we summarize recent progress on the pleiotropic roles of chromatin regulators in mediating the diverse adaptive behaviors of neurons and glial cells after spinal cord injury, and wherever possible, discuss the underlying mechanisms and genomic targets. We specifically draw attention to the perspective that takes into consideration the impact of epigenetic modulation on axon growth potential, together with its effect on wound-healing properties of glial cells. Epigenetic modulation of chromatin state represents an emerging therapeutic direction to promote neural repair and axon regeneration after spinal cord injury.

Keywords epigenetics      chromatin      spinal cord injury      axon regeneration      neural repair     
Corresponding Author(s): Hongyan ZOU   
Just Accepted Date: 13 August 2014   Online First Date: 02 September 2014    Issue Date: 11 October 2014
 Cite this article:   
Jamie K. WONG,Hongyan ZOU. Reshaping the chromatin landscape after spinal cord injury[J]. Front. Biol., 2014, 9(5): 356-366.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1329-8
https://academic.hep.com.cn/fib/EN/Y2014/V9/I5/356
Fig.1  Histone and DNA modifications. The covalent addition or removal of acetyl groups to the lysine residues on histone N-terminal tails is catalyzed by histone acetyltransferases (HATs) and histone deacetylases (HDACs), respectively. The covalent addition or removal of methyl groups to the lysine residues on histone tails is catalyzed by histone methyltransferases (HMTs) and histone demethylases (HDMs), respectively. The covalent addition of methyl groups to cytosine residues on DNA is catalyzed by DNA methytransferases (DNMTs), whereas the initial step of active DNA demethylation is catalyzed by the TET family of enzymes that convert the 5-methylcytosine (5-mC) to 5-hydroxymethylcytosine (5-hmC). Different colors of histone acetylation (depicted by round shapes) or histone methylation (depicted by star shapes) denote modifications on different lysine residues.
AgentsInjury modelSpeciesTargetTreatmentIn vivo effects
Valproic acidT8 moderate contusionRatClass I HDACs300 mg/kg i.p., twice daily immediately after injury for 2 wks- AcH3, AcH4, Bcl-2, HSP-70- Decreased apoptosis- Improved functional recovery(Lv et al., 2011)
Valproic acidT9 moderate contusionRatClass I HDACs300 mg/kg i.p., twice daily, starting 8 h post injury for 1 wk- ↑?AcH3, BDNF, GDNF- Reduced apoptosis- Smaller lesion volume- Improved functional recovery(Lv et al., 2012)
Valproic acidT9-T10 moderate contusionRatClass I HDACs150 or 300 mg/kg s.c., immediately after injury then every 12 h for 5 d- ↑? H3K9Ac-??↓ MMP-9, blood-spinal cord barrier breakdown, inflammation, apoptosis, lesion volume- Improved functional recovery(Lee et al., 2012)
Valproic acidT9 clip compressionRatClass I HDACs200 mg/kg i.p., twicedaily for 1 wk- ↑?AcH3K, AcH3K18- ↓?ED-1+ macrophages- Smaller lesion volume- Improved functional recovery(Yu et al., 2012)
Valproic acidT9-T10 very severe contusionRatClass I HDACs500 ng/d, osmotic pump for 3 d- ↑?SOD-??↓ macrophages/microglia, astrocytes, P2X4R- Preserved tissue and nerve fibers- Improved functional recovery(Lu et al., 2013)
MS-275C5 dorsal column transectionMouseHDAC1 & 312.5 mg/kg s.c., immediately after injury, then daily for 4 d- ↑? AcH4- ↑?RAG transcription- Enhanced sensory axon regeneration(Finelli et al., 2013)
AAVP/CAFT9-T10 dorsal hemi-crushMousePCAFSciatic nerve injection, 2 wks prior to injury- ↑?H3K9Ac- ↑?RAG expression- Enhanced sensory axon regeneration(Puttagunta et al., 2014)
AVp300Optic nerve crushRatp300Intraocular injection at time of injury- ↑ Ac-p53, -C/EBP, H3K18Ac- ↑? RAG expression- Enhanced optic nerve regeneration- No effect on RGC survival(Gaub et al., 2011)
TSAOptic nerve crushRatClass I/II HDACs1, 10 or 100 ng/mL, injected into the vitreous at the time of injury.- Improved RGC survival- No effect on axon regeneration(Gaub et al., 2011)
Tab.1  Summary of studies employing epigenetic modulators in spinal cord or optic nerve injury models
Fig.2  Nuclear epigenetic events for RAGs induction. In mature neurons in the CNS, pro-growth genes are generally downregulated by a repressive transcriptional complex, which may encompass transcription factor (TF), histone-modifying enzyme (HME) and chromatin remodeler (CR), to compact local chromatin. Upon stimulation, activated proregenerative transcription factors, such as Smad1, are recruited to the respective regulatory elements on specific genomic loci, and orchestrate recruitment of regeneration-associated HMEs and CRs to relax local chromatin, which further facilitates promoter occupancy of TFs, leading to a chromatin landscape favorable for expression of regeneration-associated genes (RAGs).
Fig.3  Injury responses of neurons and glia after SCI. Axon regeneration is controlled by intrinsic proregenerative transcriptional programs and influenced by environmental signals. Myelin debris from demyelinating oligodendrocytes and chondroitin sulfate proteoglycans (CSPG) secreted from reactive astrocytes constitute a roadblock for axonal regeneration. M2 macrophages can promote axonal regrowth. A nuclear program is activated by peripheral axotomy of DRG neurons, leading to increased histone acetylation and induction of RAGs. Histone-modifying enzymes participate in various aspects of injury responses in neurons and glial cells. Note that the epigenetic regulators controlling macrophage polarization have only been demonstrated in non-spinal cord injury settings.
1 Abematsu M, Tsujimura K, Yamano M, Saito M, Kohno K, Kohyama J, Namihira M, Komiya S, Nakashima K (2010). Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J Clin Invest, 120(9): 3255–3266
https://doi.org/10.1172/JCI42957 pmid: 20714104
2 Aguzzi A, Barres B A, Bennett M L (2013). Microglia: scapegoat, saboteur, or something else? Science, 339(6116): 156–161
https://doi.org/10.1126/science.1227901 pmid: 23307732
3 Ashburner B P, Westerheide S D, Baldwin A S Jr (2001). The p65 (RelA) subunit of NF-κB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol, 21(20): 7065–7077
https://doi.org/10.1128/MCB.21.20.7065-7077.2001 pmid: 11564889
4 Bardehle S, Krüger M, Buggenthin F, Schwausch J, Ninkovic J, Clevers H, Snippert H J, Theis F J, Meyer-Luehmann M, Bechmann I, Dimou L, G?tz M (2013). Live imaging of astrocyte responses to acute injury reveals selective juxtavascular proliferation. Nat Neurosci, 16(5): 580–586
https://doi.org/10.1038/nn.3371 pmid: 23542688
5 Barnabé-Heider F, G?ritz C, Sabelstr?m H, Takebayashi H, Pfrieger F W, Meletis K, Frisén J (2010). Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell, 7(4): 470–482
https://doi.org/10.1016/j.stem.2010.07.014 pmid: 20887953
6 Bartholdi D, Schwab M E (1997). Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur J Neurosci, 9(7): 1422–1438
https://doi.org/10.1111/j.1460-9568.1997.tb01497.x pmid: 9240400
7 Beck K D, Nguyen H X, Galvan M D, Salazar D L, Woodruff T M, Anderson A J (2010). Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain, 133(Pt 2): 433–447
https://doi.org/10.1093/brain/awp322 pmid: 20085927
8 Bethea J R, Castro M, Keane R W, Lee T T, Dietrich W D, Yezierski R P (1998). Traumatic spinal cord injury induces nuclear factor-κB activation. J Neurosci, 18(9): 3251–3260
pmid: 9547234
9 Broide R S, Redwine J M, Aftahi N, Young W, Bloom F E, Winrow C J (2007). Distribution of histone deacetylases 1-11 in the rat brain. J Mol Neurosci, 31(1): 47–58
https://doi.org/10.1007/BF02686117 pmid: 17416969
10 Buffo A, Rite I, Tripathi P, Lepier A, Colak D, Horn A P, Mori T, G?tz M (2008). Origin and progeny of reactive gliosis: A source of multipotent cells in the injured brain. Proc Natl Acad Sci USA, 105(9): 3581–3586
https://doi.org/10.1073/pnas.0709002105 pmid: 18299565
11 Carlson S L, Parrish M E, Springer J E, Doty K, Dossett L (1998). Acute inflammatory response in spinal cord following impact injury. Exp Neurol, 151(1): 77–88
https://doi.org/10.1006/exnr.1998.6785 pmid: 9582256
12 Carmel J B, Galante A, Soteropoulos P, Tolias P, Recce M, Young W, Hart R P (2001). Gene expression profiling of acute spinal cord injury reveals spreading inflammatory signals and neuron loss. Physiol Genomics, 7(2): 201–213
pmid: 11773606
13 Chen L F, Fischle W, Verdin E, Greene W C (2001). Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science, 293(5535): 1653–1657
https://doi.org/10.1126/science.1062374 pmid: 11533489
14 Cho Y, Cavalli V (2012). HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration. EMBO J, 31(14): 3063–3078
https://doi.org/10.1038/emboj.2012.160 pmid: 22692128
15 Cho Y, Cavalli V (2014). HDAC signaling in neuronal development and axon regeneration. Curr Opin Neurobiol, 27C: 118–126
https://doi.org/10.1016/j.conb.2014.03.008 pmid: 24727244
16 Cho Y, Sloutsky R, Naegle K M, Cavalli V (2013). Injury-induced HDAC5 nuclear export is essential for axon regeneration. Cell, 155(4): 894–908
https://doi.org/10.1016/j.cell.2013.10.004 pmid: 24209626
17 David S, Kroner A (2011). Repertoire of microglial and macrophage responses after spinal cord injury. Nat Rev Neurosci, 12(7): 388–399
https://doi.org/10.1038/nrn3053 pmid: 21673720
18 de Lima S, Koriyama Y, Kurimoto T, Oliveira J T, Yin Y, Li Y, Gilbert H Y, Fagiolini M, Martinez A M, Benowitz L (2012). Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proc Natl Acad Sci USA, 109(23): 9149–9154
https://doi.org/10.1073/pnas.1119449109 pmid: 22615390
19 De Santa F, Narang V, Yap Z H, Tusi B K, Burgold T, Austenaa L, Bucci G, Caganova M, Notarbartolo S, Casola S, Testa G, Sung W K, Wei C L, Natoli G (2009). Jmjd3 contributes to the control of gene expression in LPS-activated macrophages. EMBO J, 28(21): 3341–3352
https://doi.org/10.1038/emboj.2009.271 pmid: 19779457
20 Elsharkawy A M, Oakley F, Lin F, Packham G, Mann D A, Mann J (2010). The NF-κB p50:p50:HDAC-1 repressor complex orchestrates transcriptional inhibition of multiple pro-inflammatory genes. J Hepatol, 53(3): 519–527
https://doi.org/10.1016/j.jhep.2010.03.025 pmid: 20579762
21 Ernst J, Kheradpour P, Mikkelsen T S, Shoresh N, Ward L D, Epstein C B, Zhang X, Wang L, Issner R, Coyne M, Ku M, Durham T, Kellis M, Bernstein B E (2011). Mapping and analysis of chromatin state dynamics in nine human cell types. Nature, 473(7345): 43–49
https://doi.org/10.1038/nature09906 pmid: 21441907
22 Faraco G, Pittelli M, Cavone L, Fossati S, Porcu M, Mascagni P, Fossati G, Moroni F, Chiarugi A (2009). Histone deacetylase (HDAC) inhibitors reduce the glial inflammatory response in vitro and in vivo. Neurobiol Dis, 36(2): 269–279
https://doi.org/10.1016/j.nbd.2009.07.019 pmid: 19635561
23 Faulkner J R, Herrmann J E, Woo M J, Tansey K E, Doan N B, Sofroniew M V (2004). Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci, 24(9): 2143–2155
https://doi.org/10.1523/JNEUROSCI.3547-03.2004 pmid: 14999065
24 Finelli M J, Wong J K, Zou H (2013). Epigenetic regulation of sensory axon regeneration after spinal cord injury. J Neurosci, 33(50): 19664–19676
https://doi.org/10.1523/JNEUROSCI.0589-13.2013 pmid: 24336730
25 Gaub P, Joshi Y, Wuttke A, Naumann U, Schnichels S, Heiduschka P, Di Giovanni S (2011). The histone acetyltransferase p300 promotes intrinsic axonal regeneration. Brain, 134(Pt 7): 2134–2148
https://doi.org/10.1093/brain/awr142 pmid: 21705428
26 Gaub P, Tedeschi A, Puttagunta R, Nguyen T, Schmandke A, Di Giovanni S (2010). HDAC inhibition promotes neuronal outgrowth and counteracts growth cone collapse through CBP/p300 and P/CAF-dependent p53 acetylation. Cell Death Differ, 17(9): 1392–1408
https://doi.org/10.1038/cdd.2009.216 pmid: 20094059
27 Gensel J C, Nakamura S, Guan Z, van Rooijen N, Ankeny D P, Popovich P G (2009). Macrophages promote axon regeneration with concurrent neurotoxicity. J Neurosci, 29(12): 3956–3968
https://doi.org/10.1523/JNEUROSCI.3992-08.2009 pmid: 19321792
28 Gordon S, Martinez F O (2010). Alternative activation of macrophages: mechanism and functions. Immunity, 32(5): 593–604
https://doi.org/10.1016/j.immuni.2010.05.007 pmid: 20510870
29 G?ritz C, Dias D O, Tomilin N, Barbacid M, Shupliakov O, Frisén J (2011). A pericyte origin of spinal cord scar tissue. Science, 333(6039): 238–242
https://doi.org/10.1126/science.1203165 pmid: 21737741
30 Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G (2014). In Vivo direct reprogramming of reactive glial cells into functional neurons after brain injury and in an Alzheimer’s disease model. Cell Stem Cell, 14(2): 188–202
https://doi.org/10.1016/j.stem.2013.12.001 pmid: 24360883
31 Hsieh J, Nakashima K, Kuwabara T, Mejia E, Gage F H (2004). Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc Natl Acad Sci USA, 101(47): 16659–16664
https://doi.org/10.1073/pnas.0407643101 pmid: 15537713
32 Ishii K, Toda M, Nakai Y, Asou H, Watanabe M, Nakamura M, Yato Y, Fujimura Y, Kawakami Y, Toyama Y, Uyemura K (2001). Increase of oligodendrocyte progenitor cells after spinal cord injury. J Neurosci Res, 65(6): 500–507
https://doi.org/10.1002/jnr.1180 pmid: 11550218
33 Iskandar B J, Rizk E, Meier B, Hariharan N, Bottiglieri T, Finnell R H, Jarrard D F, Banerjee R V, Skene J H, Nelson A, Patel N, Gherasim C, Simon K, Cook T D, Hogan K J (2010). Folate regulation of axonal regeneration in the rodent central nervous system through DNA methylation. J Clin Invest, 120(5): 1603–1616
https://doi.org/10.1172/JCI40000 pmid: 20424322
34 Karow M, Sánchez R, Schichor C, Masserdotti G, Ortega F, Heinrich C, Gascón S, Khan M A, Lie D C, Dellavalle A, Cossu G, Goldbrunner R, G?tz M, Berninger B (2012). Reprogramming of pericyte-derived cells of the adult human brain into induced neuronal cells. Cell Stem Cell, 11(4): 471–476
https://doi.org/10.1016/j.stem.2012.07.007 pmid: 23040476
35 Kigerl K A, Gensel J C, Ankeny D P, Alexander J K, Donnelly D J, Popovich P G (2009). Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci, 29(43): 13435–13444
https://doi.org/10.1523/JNEUROSCI.3257-09.2009 pmid: 19864556
36 Kim J Y, Shen S, Dietz K, He Y, Howell O, Reynolds R, Casaccia P (2010). HDAC1 nuclear export induced by pathological conditions is essential for the onset of axonal damage. Nat Neurosci, 13(2): 180–189
https://doi.org/10.1038/nn.2471 pmid: 20037577
37 Konsoula Z, Barile F A (2012). Epigenetic histone acetylation and deacetylation mechanisms in experimental models of neurodegenerative disorders. J Pharmacol Toxicol Methods, 66(3): 215–220
https://doi.org/10.1016/j.vascn.2012.08.001 pmid: 22902970
38 Kouzarides T (2007). Chromatin modifications and their function. Cell, 128(4): 693–705
https://doi.org/10.1016/j.cell.2007.02.005 pmid: 17320507
39 Lee J Y, Kim H S, Choi H Y, Oh T H, Ju B G, Yune T Y (2012). Valproic acid attenuates blood-spinal cord barrier disruption by inhibiting matrix metalloprotease-9 activity and improves functional recovery after spinal cord injury. J Neurochem, 121(5): 818–829
https://doi.org/10.1111/j.1471-4159.2012.07731.x pmid: 22409448
40 Lindner R, Puttagunta R, Di Giovanni S (2013). Epigenetic regulation of axon outgrowth and regeneration in CNS injury: the first steps forward. Neurotherapeutics, 10(4): 771–781
https://doi.org/10.1007/s13311-013-0203-8 pmid: 23881454
41 Liu H, Hu Q, D’ercole A J, Ye P (2009). Histone deacetylase 11 regulates oligodendrocyte-specific gene expression and cell development in OL-1 oligodendroglia cells. Glia, 57(1): 1–12
https://doi.org/10.1002/glia.20729 pmid: 18627006
42 Liu K, Tedeschi A, Park K K, He Z (2011). Neuronal intrinsic mechanisms of axon regeneration. Annu Rev Neurosci, 34(1): 131–152
https://doi.org/10.1146/annurev-neuro-061010-113723 pmid: 21438684
43 Lu P, Wang Y, Graham L, McHale K, Gao M, Wu D, Brock J, Blesch A, Rosenzweig E S, Havton L A, Zheng B, Conner J M, Marsala M, Tuszynski M H (2012). Long-distance growth and connectivity of neural stem cells after severe spinal cord injury. Cell, 150(6): 1264–1273
https://doi.org/10.1016/j.cell.2012.08.020 pmid: 22980985
44 Lu W H, Wang C Y, Chen P S, Wang J W, Chuang D M, Yang C S, Tzeng S F (2013). Valproic acid attenuates microgliosis in injured spinal cord and purinergic P2X4 receptor expression in activated microglia. J Neurosci Res, 91(5): 694–705
https://doi.org/10.1002/jnr.23200 pmid: 23404572
45 Lv L, Han X, Sun Y, Wang X, Dong Q (2012). Valproic acid improves locomotion in vivo after SCI and axonal growth of neurons in vitro. Exp Neurol, 233(2): 783–790
https://doi.org/10.1016/j.expneurol.2011.11.042 pmid: 22178331
46 Lv L, Sun Y, Han X, Xu C C, Tang Y P, Dong Q (2011). Valproic acid improves outcome after rodent spinal cord injury: potential roles of histone deacetylase inhibition. Brain Res, 1396: 60–68
https://doi.org/10.1016/j.brainres.2011.03.040 pmid: 21439269
47 McTigue D M, Wei P, Stokes B T (2001). Proliferation of NG2-positive cells and altered oligodendrocyte numbers in the contused rat spinal cord. J Neurosci, 21(10): 3392–3400
pmid: 11331369
48 Montgomery R L, Hsieh J, Barbosa A C, Richardson J A, Olson E N (2009). Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development. Proc Natl Acad Sci USA, 106(19): 7876–7881
https://doi.org/10.1073/pnas.0902750106 pmid: 19380719
49 Monti B, Polazzi E, Contestabile A (2009). Biochemical, molecular and epigenetic mechanisms of valproic acid neuroprotection. Curr Mol Pharmacol2: 95–109
50 Mullican S E, Gaddis C A, Alenghat T, Nair M G, Giacomin P R, Everett L J, Feng D, Steger D J, Schug J, Artis D, Lazar M A (2011). Histone deacetylase 3 is an epigenomic brake in macrophage alternative activation. Genes Dev, 25(23): 2480–2488
https://doi.org/10.1101/gad.175950.111 pmid: 22156208
51 Neumann S, Woolf C J (1999). Regeneration of dorsal column fibers into and beyond the lesion site following adult spinal cord injury. Neuron, 23(1): 83–91
https://doi.org/10.1016/S0896-6273(00)80755-2 pmid: 10402195
52 Niu W, Zang T, Zou Y, Fang S, Smith D K, Bachoo R, Zhang C L (2013). In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat Cell Biol, 15(10): 1164–1175
https://doi.org/10.1038/ncb2843 pmid: 24056302
53 Oakley F, Mann J, Nailard S, Smart D E, Mungalsingh N, Constandinou C, Ali S, Wilson S J, Millward-Sadler H, Iredale J P, Mann D A (2005). Nuclear factor-κB1 (p50) limits the inflammatory and fibrogenic responses to chronic injury. Am J Pathol, 166(3): 695–708
https://doi.org/10.1016/S0002-9440(10)62291-2 pmid: 15743782
54 Parikh P, Hao Y, Hosseinkhani M, Patil S B, Huntley G W, Tessier-Lavigne M, Zou H (2011). Regeneration of axons in injured spinal cord by activation of bone morphogenetic protein/Smad1 signaling pathway in adult neurons. Proc Natl Acad Sci USA, 108(19): E99–E107
https://doi.org/10.1073/pnas.1100426108 pmid: 21518886
55 Peleg S (2010). Memory impairment in mice altered histone acetylation is associated with age-dependent. Science, 328: 753–756
https://doi.org/10.1126/science.1186088 pmid: 20448184
56 Ponomarev E D, Maresz K, Tan Y, Dittel B N (2007). CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. J Neurosci, 27(40): 10714–10721
https://doi.org/10.1523/JNEUROSCI.1922-07.2007 pmid: 17913905
57 Popovich P G, Jones T B (2003). Manipulating neuroinflammatory reactions in the injured spinal cord: back to basics. Trends Pharmacol Sci, 24(1): 13–17
https://doi.org/10.1016/S0165-6147(02)00006-8 pmid: 12498725
58 Puttagunta R, Tedeschi A, Sória M G, Hervera A, Lindner R, Rathore K I, Gaub P, Joshi Y, Nguyen T, Schmandke A, Laskowski C J, Boutillier A L, Bradke F, Di Giovanni S (2014). PCAF-dependent epigenetic changes promote axonal regeneration in the central nervous system. Nat Commun, 5: 3527
https://doi.org/10.1038/ncomms4527 pmid: 24686445
59 Ram O, Goren A, Amit I, Shoresh N, Yosef N, Ernst J, Kellis M, Gymrek M, Issner R, Coyne M, Durham T, Zhang X, Donaghey J, Epstein C B, Regev A, Bernstein B E (2011). Combinatorial patterning of chromatin regulators uncovered by genome-wide location analysis in human cells. Cell, 147(7): 1628–1639
https://doi.org/10.1016/j.cell.2011.09.057 pmid: 22196736
60 Richardson P M, Issa V M (1984). Peripheral injury enhances central regeneration of primary sensory neurones. Nature, 309(5971): 791–793
https://doi.org/10.1038/309791a0 pmid: 6204205
61 Rivieccio M A, Brochier C, Willis D E, Walker B A, D’Annibale M A, McLaughlin K, Siddiq A, Kozikowski A P, Jaffrey S R, Twiss J L, Ratan R R, Langley B (2009). HDAC6 is a target for protection and regeneration following injury in the nervous system. Proc Natl Acad Sci USA, 106(46): 19599–19604
https://doi.org/10.1073/pnas.0907935106 pmid: 19884510
62 Sabelstr?m H, Stenudd M, Réu P, Dias D O, Elfineh M, Zdunek S, Damberg P, G?ritz C, Frisén J (2013). Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice. Science, 342(6158): 637–640
https://doi.org/10.1126/science.1242576 pmid: 24179227
63 Shen S, Sandoval J, Swiss V A, Li J, Dupree J, Franklin R J, Casaccia-Bonnefil P (2008). Age-dependent epigenetic control of differentiation inhibitors is critical for remyelination efficiency. Nat Neurosci, 11(9): 1024–1034
https://doi.org/10.1038/nn.2172 pmid: 19160500
64 Silver J, Miller J H (2004). Regeneration beyond the glial scar. Nat Rev Neurosci, 5(2): 146–156
https://doi.org/10.1038/nrn1326 pmid: 14735117
65 Stolt C C, Rehberg S, Ader M, Lommes P, Riethmacher D, Schachner M, Bartsch U, Wegner M (2002). Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev, 16(2): 165–170
https://doi.org/10.1101/gad.215802 pmid: 11799060
66 Su Z, Niu W, Liu M L, Zou Y, Zhang C L (2014). In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun, 5: 3338
https://doi.org/10.1038/ncomms4338 pmid: 24569435
67 Su Z, Yuan Y, Chen J, Zhu Y, Qiu Y, Zhu F, Huang A, He C (2011). Reactive astrocytes inhibit the survival and differentiation of oligodendrocyte precursor cells by secreted TNF-α. J Neurotrauma, 28(6): 1089–1100
https://doi.org/10.1089/neu.2010.1597 pmid: 21309692
68 Suyama K, Watanabe M, Sakai D, Osada T, Imai M, Mochida J (2007). Nkx2.2 expression in differentiation of oligodendrocyte precursor cells and inhibitory factors for differentiation of oligodendrocytes after traumatic spinal cord injury. J Neurotrauma, 24(6): 1013–1025
https://doi.org/10.1089/neu.2006.0151 pmid: 17600517
69 Tang B L (2014). Class II HDACs and neuronal regeneration. J Cell Biochem, 115(7): 1225–1233
https://doi.org/10.1002/jcb.24802 pmid: 24604703
70 Tedeschi A, Nguyen T, Puttagunta R, Gaub P, Di Giovanni S (2009). A p53-CBP/p300 transcription module is required for GAP-43 expression, axon outgrowth, and regeneration. Cell Death Differ, 16(4): 543–554
https://doi.org/10.1038/cdd.2008.175 pmid: 19057620
71 Torper O, Pfisterer U, Wolf D A, Pereira M, Lau S, Jakobsson J, Bj?rklund A, Grealish S, Parmar M (2013). Generation of induced neurons via direct conversion in vivo. Proc Natl Acad Sci USA, 110(17): 7038–7043
https://doi.org/10.1073/pnas.1303829110 pmid: 23530235
72 Totoiu M O, Keirstead H S (2005). Spinal cord injury is accompanied by chronic progressive demyelination. J Comp Neurol, 486(4): 373–383
https://doi.org/10.1002/cne.20517 pmid: 15846782
73 Trakhtenberg E F, Goldberg J L (2012). Epigenetic regulation of axon and dendrite growth. Front Mol Neurosci, 5: 24
https://doi.org/10.3389/fnmol.2012.00024 pmid: 22403528
74 Wang Y, Cheng X, He Q, Zheng Y, Kim D H, Whittemore S R, Cao Q L (2011). Astrocytes from the contused spinal cord inhibit oligodendrocyte differentiation of adult oligodendrocyte precursor cells by increasing the expression of bone morphogenetic proteins. J Neurosci, 31(16): 6053–6058
https://doi.org/10.1523/JNEUROSCI.5524-09.2011 pmid: 21508230
75 Wanner I B, Anderson M A, Song B, Levine J, Fernandez A, Gray-Thompson Z, Ao Y, Sofroniew M V (2013). Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci, 33(31): 12870–12886
https://doi.org/10.1523/JNEUROSCI.2121-13.2013 pmid: 23904622
76 Wisniewski H M, Bloom B R (1975). Primary demyelination as a nonspecific consequence of a cell-mediated immune reaction. J Exp Med, 141(2): 346–359
https://doi.org/10.1084/jem.141.2.346 pmid: 803545
77 Xu J, Fan G, Chen S, Wu Y, Xu X M, Hsu C Y (1998). Methylprednisolone inhibition of TNF-α expression and NF-κB activation after spinal cord injury in rats. Brain Res Mol Brain Res, 59(2): 135–142
https://doi.org/10.1016/S0169-328X(98)00142-9 pmid: 9729336
78 Ye F, Chen Y, Hoang T, Montgomery R L, Zhao X H, Bu H, Hu T, Taketo M M, van Es J H, Clevers H, Hsieh J, Bassel-Duby R, Olson E N, Lu Q R (2009). HDAC1 and HDAC2 regulate oligodendrocyte differentiation by disrupting the β-catenin-TCF interaction. Nat Neurosci, 12(7): 829–838
https://doi.org/10.1038/nn.2333 pmid: 19503085
79 York E M, Petit A, Roskams A J (2013). Epigenetics of neural repair following spinal cord injury. Neurotherapeutics, 10(4): 757–770
https://doi.org/10.1007/s13311-013-0228-z pmid: 24081781
80 Zamanian J L, Xu L, Foo L C, Nouri N, Zhou L, Giffard R G, Barres B A (2012). Genomic analysis of reactive astrogliosis. J Neurosci, 32(18): 6391–6410
https://doi.org/10.1523/JNEUROSCI.6221-11.2012 pmid: 22553043
81 Zhong J, Zou H (2014). BMP signaling in axon regeneration. Curr Opin Neurobiol, 27C: 127–134
https://doi.org/10.1016/j.conb.2014.03.009 pmid: 24713578
82 Zou H, Ho C, Wong K, Tessier-Lavigne M (2009). Axotomy-induced Smad1 activation promotes axonal growth in adult sensory neurons. J Neurosci, 29(22): 7116–7123
https://doi.org/10.1523/JNEUROSCI.5397-08.2009 pmid: 19494134
83 Popovich P G, Longbrake E E (2008). Can the immune system be harnessed to repair the CNS?Nat Rev Neurosci, 9: 481–493
[1] Shipeng Shao, Lei Chang, Yingping Hou, Yujie Sun. Illuminating the structure and dynamics of chromatin by fluorescence labeling[J]. Front. Biol., 2017, 12(4): 241-257.
[2] Karim Mowla, Mohammad Amin Saki, Mohammad Taha Jalali, Zeinab Deris Zayeri. How to manage rheumatoid arthritis according to classic biomarkers and polymorphisms?[J]. Front. Biol., 2017, 12(3): 183-191.
[3] Liang Hu,Edward Trope,Qi-Long Ying. Metabolism of pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 355-365.
[4] Nina K. Latcheva,Rupa Ghosh,Daniel R. Marenda. The epigenetics of CHARGE syndrome[J]. Front. Biol., 2016, 11(2): 85-95.
[5] Xin Xin Yu,Vimala Bondada,Colin Rogers,Carolyn A. Meyer,Chen Guang Yu. Targeting ERK1/2-calpain 1-NF-κB signal transduction in secondary tissue damage and astrogliosis after spinal cord injury[J]. Front. Biol., 2015, 10(5): 427-438.
[6] Joshua D. TOMPKINS,Arthur D. RIGGS. An epigenetic perspective on the failing heart and pluripotent-derived-cardiomyocytes for cell replacement therapy[J]. Front. Biol., 2015, 10(1): 11-27.
[7] Nidhi VISHNOI,Jie YAO. Gene positioning and genome function[J]. Front. Biol., 2014, 9(4): 255-268.
[8] Yiping LI,Chandler L. WALKER,Yi Ping ZHANG,Christopher B. SHIELDS,Xiao-Ming XU. Surgical decompression in acute spinal cord injury: A review of clinical evidence, animal model studies, and potential future directions of investigation[J]. Front. Biol., 2014, 9(2): 127-136.
[9] Chandler L. WALKER, Nai-Kui LIU, Xiao-Ming XU. PTEN/PI3K and MAPK signaling in protection and pathology following CNS injuries[J]. Front Biol, 2013, 8(4): 421-433.
[10] Yiwei LIN, Binhua P. ZHOU. Histone mimics: digging down under[J]. Front Biol, 2013, 8(2): 228-233.
[11] Blanca E. BARRERA-FIGUEROA, Zhigang WU, Renyi LIU. Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution[J]. Front Biol, 2013, 8(2): 189-197.
[12] Feng C. ZHOU. DNA methylation program during development[J]. Front Biol, 2012, 7(6): 485-494.
[13] Ienglam LEI, Mai Har SHAM, Zhong WANG. ATP-dependent chromatin remodeling complex SWI/SNF in cardiogenesis and cardiac progenitor cell development[J]. Front Biol, 2012, 7(3): 202-211.
[14] Weihua QIAO, Liumin FAN. Epigenetics, a mode for plants to respond to abiotic stresses[J]. Front Biol, 2011, 6(6): 477-481.
[15] Afsar U. AHMED. An overview of inflammation: mechanism and consequences[J]. Front Biol, 2011, 6(4): 274-281.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed