|
|
Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution |
Blanca E. BARRERA-FIGUEROA1, Zhigang WU2, Renyi LIU2( ) |
1. Departamento de Biotecnologia, Universidad del Papaloapan, Tuxtepec, Oaxaca 68301, Mexico; 2. Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA |
|
|
Abstract Abiotic stresses such as drought, cold, and high salinity are among the most adverse factors that affect plant growth and yield in the field. MicroRNAs are small RNA molecules that regulate gene expression in a sequence-specific manner and play an important role in plant stress response. Identifying abiotic stress-associated microRNAs and understanding their function will help develop new strategies for improvement of plant stress tolerance. Here we highlight recent advances in our understanding of abiotic stress-associated miRNAs in various plants, with focus on their discovery, expression analysis, and evolution.
|
Keywords
microRNA
abiotic stress
epigenetics
gene expression
evolution
|
Corresponding Author(s):
LIU Renyi,Email:renyi.liu@ucr.edu
|
Issue Date: 01 April 2013
|
|
1 |
Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005). Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res , 15(1): 78–91 doi: 10.1101/gr.2908205 pmid:15632092
|
2 |
Addo-Quaye C, Eshoo T W, Bartel D P, Axtell M J (2008). Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol , 18(10): 758–762 doi: 10.1016/j.cub.2008.04.042 pmid:18472421
|
3 |
Allen E, Xie Z, Gustafson A M, Carrington J C (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell , 121(2): 207–221 doi: 10.1016/j.cell.2005.04.004 pmid:15851028
|
4 |
Allen E, Xie Z, Gustafson A M, Sung G H, Spatafora J W, Carrington J C (2004). Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet , 36(12): 1282–1290 doi: 10.1038/ng1478 pmid:15565108
|
5 |
Ambros V, Bartel B, Bartel D P, Burge C B, Carrington J C, Chen X, Dreyfuss G, Eddy S R, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003). A uniform system for microRNA annotation. RNA , 9(3): 277–279 doi: 10.1261/rna.2183803 pmid:12592000
|
6 |
Audic S, Claverie J M (1997). The significance of digital gene expression profiles. Genome Res , 7(10): 986–995 pmid:9331369
|
7 |
Axtell M J, Bowman J L (2008). Evolution of plant microRNAs and their targets. Trends Plant Sci , 13(7): 343–349 doi: 10.1016/j.tplants.2008.03.009 pmid:18502167
|
8 |
Axtell M J, Snyder J A, Bartel D P (2007). Common functions for diverse small RNAs of land plants. Plant Cell , 19(6): 1750–1769 doi: 10.1105/tpc.107.051706 pmid:17601824
|
9 |
Barrera-Figueroa B E, Gao L, Diop N N, Wu Z, Ehlers J D, Roberts P A, Close T J, Zhu J K, Liu R (2011). Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biol , 11(1): 127 doi: 10.1186/1471-2229-11-127 pmid:21923928
|
10 |
Bartel D P (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell , 116(2): 281–297 doi: 10.1016/S0092-8674(04)00045-5 pmid:14744438
|
11 |
Bonnet E, Wuyts J, Rouzé P, Van de Peer Y (2004). Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA , 101(31): 11511–11516 doi: 10.1073/pnas.0404025101 pmid:15272084
|
12 |
Borsani O, Zhu J, Verslues P E, Sunkar R, Zhu J K (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell , 123(7): 1279–1291 doi: 10.1016/j.cell.2005.11.035 pmid:16377568
|
13 |
Boyer J S (1982). Plant productivity and environment. Science , 218(4571): 443–448 doi: 10.1126/science.218.4571.443 pmid:17808529
|
14 |
Bureau T E, Wessler S R (1992). Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell , 4(10): 1283–1294 pmid:1332797
|
15 |
Chen C, Tan R, Wong L, Fekete R, Halsey J (2011). Quantitation of microRNAs by real-time RT-qPCR. Methods Mol Biol , 687: 113–134 doi: 10.1007/978-1-60761-944-4_8 pmid:20967604
|
16 |
Chen X (2005). MicroRNA biogenesis and function in plants. FEBS Lett , 579(26): 5923–5931 doi: 10.1016/j.febslet.2005.07.071 pmid:16144699
|
17 |
Chinnusamy V, Zhu J K (2009). RNA-directed DNA methylation and demethylation in plants. Sci China C Life Sci , 52(4): 331–343 doi: 10.1007/s11427-009-0052-1 pmid:19381459
|
18 |
Chiou T J, Aung K, Lin S I, Wu C C, Chiang S F, Su C L (2006). Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell , 18(2): 412–421 doi: 10.1105/tpc.105.038943 pmid:16387831
|
19 |
Cuperus J T, Fahlgren N, Carrington J C (2011). Evolution and functional diversification of MIRNA genes. Plant Cell , 23(2): 431–442 doi: 10.1105/tpc.110.082784 pmid:21317375
|
20 |
Dai X, Zhuang Z, Zhao P X (2011). Computational analysis of miRNA targets in plants: current status and challenges. Brief Bioinform , 12(2): 115–121 doi: 10.1093/bib/bbq065 pmid:20858738
|
21 |
Dalmay T (2006). Short RNAs in environmental adaptation. Proc Biol Sci , 273(1594): 1579–1585 doi: 10.1098/rspb.2006.3516 pmid:16769627
|
22 |
Devers E A, Branscheid A, May P, Krajinski F (2011). Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in Arbuscular mycorrhizal symbiosis. Plant Physiol , 156(4): 1990–2010 doi: 10.1104/pp.111.172627 pmid:21571671
|
23 |
Dezulian T, Remmert M, Palatnik J F, Weigel D, Huson D H (2006). Identification of plant microRNA homologs. Bioinformatics , 22(3): 359–360 doi: 10.1093/bioinformatics/bti802 pmid:16317073
|
24 |
Ding Y, Chen Z, Zhu C (2011). Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot , 62(10): 3563–3573 doi: 10.1093/jxb/err046 pmid:21362738
|
25 |
Fahlgren N, Howell M D, Kasschau K D, Chapman E J, Sullivan C M, Cumbie J S, Givan S A, Law T F, Grant S R, Dangl J L, Carrington J C (2007). High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE , 2(2): e219 doi: 10.1371/journal.pone.0000219 pmid:17299599
|
26 |
Fahlgren N, Jogdeo S, Kasschau K D, Sullivan C M, Chapman E J, Laubinger S, Smith L M, Dasenko M, Givan S A, Weigel D, Carrington J C (2010). MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell , 22(4): 1074–1089 doi: 10.1105/tpc.110.073999 pmid:20407027
|
27 |
Felippes F F, Schneeberger K, Dezulian T, Huson D H, Weigel D (2008). Evolution of Arabidopsis thaliana microRNAs from random sequences. RNA , 14(12): 2455–2459 doi: 10.1261/rna.1149408 pmid:18952822
|
28 |
Ge Y, Li Y, Zhu Y M, Bai X, Lv D K, Guo D, Ji W, Cai H (2010). Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol , 10(1): 153 doi: 10.1186/1471-2229-10-153 pmid:20653984
|
29 |
German M A, Pillay M, Jeong D H, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis L A, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers B C, Green P J (2008). Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol , 26(8): 941–946 doi: 10.1038/nbt1417 pmid:18542052
|
30 |
Gou J Y, Felippes F F, Liu C J, Weigel D, Wang J W (2011). Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell , 23(4): 1512–1522 doi: 10.1105/tpc.111.084525 pmid:21487097
|
31 |
Jacob F, Monod J (1961). Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol , 3(3): 318–356 doi: 10.1016/S0022-2836(61)80072-7 pmid:13718526
|
32 |
Jia X, Wang W X, Ren L, Chen Q J, Mendu V, Willcut B, Dinkins R, Tang X, Tang G (2009). Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Mol Biol , 71(1-2): 51–59 doi: 10.1007/s11103-009-9508-8 pmid:19533381
|
33 |
Jiang N, Feschotte C, Zhang X, Wessler S R (2004). Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol , 7(2): 115–119 doi: 10.1016/j.pbi.2004.01.004 pmid:15003209
|
34 |
Jin H, Vacic V, Girke T, Lonardi S, Zhu J K (2008). Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis. BMC Mol Biol , 9(1): 6 doi: 10.1186/1471-2199-9-6 pmid:18194570
|
35 |
Johnson C, Bowman L, Adai A T, Vance V, Sundaresan V (2007). CSRDB: a small RNA integrated database and browser resource for cereals. Nucleic Acids Res , 35(Database Database issue): D829–D833 doi: 10.1093/nar/gkl991 pmid:17169981
|
36 |
Jones-Rhoades M W, Bartel D P (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell , 14(6): 787–799 doi: 10.1016/j.molcel.2004.05.027 pmid:15200956
|
37 |
Jones-Rhoades M W, Bartel D P, Bartel B (2006). MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol , 57(1): 19–53 doi: 10.1146/annurev.arplant.57.032905.105218 pmid:16669754
|
38 |
Joung J G, Fei Z (2009). Identification of microRNA regulatory modules in Arabidopsis via a probabilistic graphical model. Bioinformatics , 25(3): 387–393 doi: 10.1093/bioinformatics/btn626 pmid:19056778
|
39 |
Kantar M, Lucas S J, Budak H (2011). miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta , 233(3): 471–484 doi: 10.1007/s00425-010-1309-4 pmid:21069383
|
40 |
Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H (2007). A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev , 21(23): 3123–3134 doi: 10.1101/gad.1595107 pmid:18003861
|
41 |
Langmead B, Trapnell C, Pop M, Salzberg S L (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol , 10(3): R25 doi: 10.1186/gb-2009-10-3-r25 pmid:19261174
|
42 |
Lau N C, Lim L P, Weinstein E G, Bartel D P (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science , 294(5543): 858–862 doi: 10.1126/science.1065062 pmid:11679671
|
43 |
Lelandais-Brière C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, Gouzy J, Crespi M (2009). Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell , 21(9): 2780–2796 doi: 10.1105/tpc.109.068130 pmid:19767456
|
44 |
Li B, Qin Y, Duan H, Yin W, Xia X (2011a). Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot , 62(11): 3765–3779 doi: 10.1093/jxb/err051 pmid:21511902
|
45 |
Li R, Yu C, Li Y, Lam T W, Yiu S M, Kristiansen K, Wang J (2009). SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics , 25(15): 1966–1967 doi: 10.1093/bioinformatics/btp336 pmid:19497933
|
46 |
Li W X, Oono Y, Zhu J, He X J, Wu J M, Iida K, Lu X Y, Cui X, Jin H, Zhu J K (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell , 20(8): 2238–2251 doi: 10.1105/tpc.108.059444 pmid:18682547
|
47 |
Li Y, Li C, Xia J, Jin Y (2011b). Domestication of transposable elements into MicroRNA genes in plants. PLoS ONE , 6(5): e19212 doi: 10.1371/journal.pone.0019212 pmid:21559273
|
48 |
Li Y F, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G, Axtell M J, Zhang W, Sunkar R (2010). Transcriptome-wide identification of microRNA targets in rice. Plant J , 62(5): 742–759 doi: 10.1111/j.1365-313X.2010.04187.x pmid:20202174
|
49 |
Lindow M, Krogh A (2005). Computational evidence for hundreds of non-conserved plant microRNAs. BMC Genomics , 6(1): 119 doi: 10.1186/1471-2164-6-119 pmid:16159385
|
50 |
Liu B, Liu L, Tsykin A, Goodall G J, Green J E, Zhu M, Kim C H, Li J (2010). Identifying functional miRNA-mRNA regulatory modules with correspondence latent dirichlet allocation. Bioinformatics , 26(24): 3105–3111 doi: 10.1093/bioinformatics/btq576 pmid:20956247
|
51 |
Liu H H, Tian X, Li Y J, Wu C A, Zheng C C (2008). Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA , 14(5): 836–843 doi: 10.1261/rna.895308 pmid:18356539
|
52 |
Llave C, Franco-Zorrilla J M, Solano R, Barajas D (2011). Target validation of plant microRNAs. Methods Mol Biol , 732: 187–208 doi: 10.1007/978-1-61779-083-6_14 pmid:21431714
|
53 |
Llave C, Kasschau K D, Rector M A, Carrington J C (2002). Endogenous and silencing-associated small RNAs in plants. Plant Cell , 14(7): 1605–1619 doi: 10.1105/tpc.003210 pmid:12119378
|
54 |
Lu C, Jeong D H, Kulkarni K, Pillay M, Nobuta K, German R, Thatcher S R, Maher C, Zhang L, Ware D, Liu B, Cao X, Meyers B C, Green P J (2008a). Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci USA , 105(12): 4951–4956 doi: 10.1073/pnas.0708743105 pmid:18353984
|
55 |
Lu C, Kulkarni K, Souret F F, MuthuValliappan R, Tej S S, Poethig R S, Henderson I R, Jacobsen S E, Wang W, Green P J, Meyers B C (2006). MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res , 16(10): 1276–1288 doi: 10.1101/gr.5530106 pmid:16954541
|
56 |
Lu C, Meyers B C, Green P J (2007). Construction of small RNA cDNA libraries for deep sequencing. Methods , 43(2): 110–117 doi: 10.1016/j.ymeth.2007.05.002 pmid:17889797
|
57 |
Lu C, Tej S S, Luo S J, Haudenschild C D, Meyers B C, Green P J (2005a). Elucidation of the small RNA component of the transcriptome. Science , 309(5740): 1567–1569 doi: 10.1126/science.1114112 pmid:16141074
|
58 |
Lu S, Sun Y H, Chiang V L (2008b). Stress-responsive microRNAs in Populus. Plant J , 55(1): 131–151 doi: 10.1111/j.1365-313X.2008.03497.x pmid:18363789
|
59 |
Lu S, Sun Y H, Shi R, Clark C, Li L, Chiang V L (2005b). Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell , 17(8): 2186–2203 doi: 10.1105/tpc.105.033456 pmid:15994906
|
60 |
McCormick K P, Willmann M R, Meyers B C (2011). Experimental design, preprocessing, normalization and differential expression analysis of small RNA sequencing experiments. Silence , 2(1): 2 doi: 10.1186/1758-907X-2-2 pmid:21356093
|
61 |
Megraw M, Baev V, Rusinov V, Jensen S T, Kalantidis K, Hatzigeorgiou A G (2006). MicroRNA promoter element discovery in Arabidopsis. RNA , 12(9): 1612–1619 doi: 10.1261/rna.130506 pmid:16888323
|
62 |
Mendes N D, Freitas A T, Sagot M F (2009). Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res , 37(8): 2419–2433 doi: 10.1093/nar/gkp145 pmid:19295136
|
63 |
Meng Y, Shao C, Chen M (2011). Toward microRNA-mediated gene regulatory networks in plants. Brief Bioinform , 12(6): 645–659 doi: 10.1093/bib/bbq091 pmid:21262742
|
64 |
Meyers B C, Axtell M J, Bartel B, Bartel D P, Baulcombe D, Bowman J L, Cao X, Carrington J C, Chen X, Green P J, Griffiths-Jones S, Jacobsen S E, Mallory A C, Martienssen R A, Poethig R S, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu J K (2008). Criteria for annotation of plant MicroRNAs. Plant Cell , 20(12): 3186–3190 doi: 10.1105/tpc.108.064311 pmid:19074682
|
65 |
Nobuta K, Venu R C, Lu C, Beló A, Vemaraju K, Kulkarni K, Wang W Z, Pillay M, Green P J, Wang G L, Meyers B C (2007). An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol , 25(4): 473–477 doi: 10.1038/nbt1291 pmid:17351617
|
66 |
Pak J, Fire A (2007). Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science , 315(5809): 241–244 doi: 10.1126/science.1132839 pmid:17124291
|
67 |
Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J (2010). Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J , 62(6): 960–976 pmid:20230504
|
68 |
Piriyapongsa J, Jordan I K (2008). Dual coding of siRNAs and miRNAs by plant transposable elements. RNA , 14(5): 814–821 doi: 10.1261/rna.916708 pmid:18367716
|
69 |
Pradervand S, Weber J, Lemoine F, Consales F, Paillusson A, Dupasquier M, Thomas J, Richter H, Kaessmann H, Beaudoing E, Hagenbüchle O, Harshman K (2010). Concordance among digital gene expression, microarrays, and qPCR when measuring differential expression of microRNAs. Biotechniques , 48(3): 219–222 doi: 10.2144/000113367 pmid:20359303
|
70 |
Rajagopalan R, Vaucheret H, Trejo J, Bartel D P (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev , 20(24): 3407–3425 doi: 10.1101/gad.1476406 pmid:17182867
|
71 |
Reinhart B J, Bartel D P (2002). Small RNAs correspond to centromere heterochromatic repeats. Science , 297(5588): 1831 doi: 10.1126/science.1077183 pmid:12193644
|
72 |
Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B, Bartel D P (2002). Prediction of plant microRNA targets. Cell , 110(4): 513–520 doi: 10.1016/S0092-8674(02)00863-2 pmid:12202040
|
73 |
Robinson M D, McCarthy D J, Smyth G K (2010). EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics , 26(1): 139–140 doi: 10.1093/bioinformatics/btp616 pmid:19910308
|
74 |
Ron M, Alandete Saez M, Eshed Williams L, Fletcher J C, McCormick S (2010). Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis. Genes Dev , 24(10): 1010–1021 doi: 10.1101/gad.1882810 pmid:20478994
|
75 |
Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J , 31(3): 279–292 doi: 10.1046/j.1365-313X.2002.01359.x pmid:12164808
|
76 |
Song Q X, Liu Y F, Hu X Y, Zhang W K, Ma B, Chen S Y, Zhang J S (2011). Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol , 11(1): 5 doi: 10.1186/1471-2229-11-5 pmid:21219599
|
77 |
Sunkar R, Girke T, Jain P K, Zhu J K (2005). Cloning and characterization of microRNAs from rice. Plant Cell , 17(5): 1397–1411 doi: 10.1105/tpc.105.031682 pmid:15805478
|
78 |
Sunkar R, Jagadeeswaran G (2008). In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol , 8(1): 37 doi: 10.1186/1471-2229-8-37 pmid:18416839
|
79 |
Sunkar R, Kapoor A, Zhu J K (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell , 18(8): 2051–2065 doi: 10.1105/tpc.106.041673 pmid:16861386
|
80 |
Sunkar R, Zhou X F, Zheng Y, Zhang W X, Zhu J K (2008). Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol , 8(1): 25 doi: 10.1186/1471-2229-8-25 pmid:18312648
|
81 |
Sunkar R, Zhu J K (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell , 16(8): 2001–2019 doi: 10.1105/tpc.104.022830 pmid:15258262
|
82 |
Szittya G, Moxon S, Santos D M, Jing R, Fevereiro M P, Moulton V, Dalmay T (2008). High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics , 9(1): 593 doi: 10.1186/1471-2164-9-593 pmid:19068109
|
83 |
Valdés-López O, Yang S S, Aparicio-Fabre R, Graham P H, Reyes J L, Vance C P, Hernández G (2010). MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol , 187(3): 805–818 doi: 10.1111/j.1469-8137.2010.03320.x pmid:20553393
|
84 |
Vaucheret H (2006). Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev , 20(7): 759–771 doi: 10.1101/gad.1410506 pmid:16600909
|
85 |
Vazquez F, Legrand S, Windels D (2010). The biosynthetic pathways and biological scopes of plant small RNAs. Trends Plant Sci , 15(6): 337–345 doi: 10.1016/j.tplants.2010.04.001 pmid:20427224
|
86 |
Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory A C, Hilbert J L, Bartel D P, Crété P (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell , 16(1): 69–79 doi: 10.1016/j.molcel.2004.09.028 pmid:15469823
|
87 |
Vigneault F, Sismour A M, Church G M (2008). Efficient microRNA capture and bar-coding via enzymatic oligonucleotide adenylation. Nat Methods , 5(9): 777–779 doi: 10.1038/nmeth.1244 pmid:19160512
|
88 |
Wang X J, Reyes J L, Chua N H, Gaasterland T (2004). Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol , 5(9): R65 doi: 10.1186/gb-2004-5-9-r65 pmid:15345049
|
89 |
Wei B, Cai T, Zhang R, Li A, Huo N, Li S, Gu Y Q, Vogel J, Jia J, Qi Y, Mao L (2009). Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics , 9(4): 499–511 doi: 10.1007/s10142-009-0128-9 pmid:19499258
|
90 |
Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y (2009). Rice MicroRNA effector complexes and targets. Plant Cell , 21(11): 3421–3435 doi: 10.1105/tpc.109.070938 pmid:19903869
|
91 |
Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010). DNA methylation mediated by a microRNA pathway. Mol Cell , 38(3): 465–475 doi: 10.1016/j.molcel.2010.03.008 pmid:20381393
|
92 |
Xie Z, Allen E, Fahlgren N, Calamar A, Givan S A, Carrington J C (2005). Expression of Arabidopsis MIRNA genes. Plant Physiol , 138(4): 2145–2154 doi: 10.1104/pp.105.062943 pmid:16040653
|
93 |
Xuan P, Guo M, Liu X, Huang Y, Li W, Huang Y (2011). PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs. Bioinformatics , 27(10): 1368–1376 doi: 10.1093/bioinformatics/btr153 pmid:21441575
|
94 |
Zhang B H, Pan X P, Cannon C H, Cobb G P, Anderson T A (2006). Conservation and divergence of plant microRNA genes. Plant J , 46(2): 243–259 doi: 10.1111/j.1365-313X.2006.02697.x pmid:16623887
|
95 |
Zhang J Y, Xu Y Y, Huan Q, Chong K (2009a). Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics , 10(1): 449 doi: 10.1186/1471-2164-10-449 pmid:19772667
|
96 |
Zhang L F, Chia J M, Kumari S, Stein J C, Liu Z J, Narechania A, Maher C A, Guill K, McMullen M D, Ware D (2009b). A genome-wide characterization of microRNA genes in maize. PLoS Genet , 5(11): e1000716 doi: 10.1371/journal.pgen.1000716 pmid:19936050
|
97 |
Zhao M, Ding H, Zhu J K, Zhang F, Li W X (2011). Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol , 190(4): 906–915 doi: 10.1111/j.1469-8137.2011.03647.x pmid:21348874
|
98 |
Zhu J K (2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol , 53(1): 247–273 doi: 10.1146/annurev.arplant.53.091401.143329 pmid:12221975
|
99 |
Zhu Q H, Spriggs A, Matthew L, Fan L, Kennedy G, Gubler F, Helliwell C (2008). A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res , 18(9): 1456–1465 doi: 10.1101/gr.075572.107 pmid:18687877
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|