Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (2) : 189-197    https://doi.org/10.1007/s11515-012-1210-6
REVIEW
Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution
Blanca E. BARRERA-FIGUEROA1, Zhigang WU2, Renyi LIU2()
1. Departamento de Biotecnologia, Universidad del Papaloapan, Tuxtepec, Oaxaca 68301, Mexico; 2. Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
 Download: PDF(224 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Abiotic stresses such as drought, cold, and high salinity are among the most adverse factors that affect plant growth and yield in the field. MicroRNAs are small RNA molecules that regulate gene expression in a sequence-specific manner and play an important role in plant stress response. Identifying abiotic stress-associated microRNAs and understanding their function will help develop new strategies for improvement of plant stress tolerance. Here we highlight recent advances in our understanding of abiotic stress-associated miRNAs in various plants, with focus on their discovery, expression analysis, and evolution.

Keywords microRNA      abiotic stress      epigenetics      gene expression      evolution     
Corresponding Author(s): LIU Renyi,Email:renyi.liu@ucr.edu   
Issue Date: 01 April 2013
 Cite this article:   
Blanca E. BARRERA-FIGUEROA,Zhigang WU,Renyi LIU. Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution[J]. Front Biol, 2013, 8(2): 189-197.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-012-1210-6
https://academic.hep.com.cn/fib/EN/Y2013/V8/I2/189
Fig.1  Functional diversification of drought-associated miRNAs. Six plants have been subject to genome-wide surveys for drought-associated miRNAs and only conserved miRNAs that were regulated by drought in at least one plant were shown. Only conserved miRNAs shown in Figure 1 of Cuperus et al. () were considered. Boxes were colored according to range of conservation. The absence of a miRNA in a species was denoted with white color and presence was denoted with other colors. Up- and down-arrows in the boxes indicate whether miRNAs were up- or down-regulated by drought stress. Two arrows in a single box means the expression of the same miRNA family changed in different directions under drought stress in the same species from two or more independent studies.
1 Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005). Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res , 15(1): 78–91
doi: 10.1101/gr.2908205 pmid:15632092
2 Addo-Quaye C, Eshoo T W, Bartel D P, Axtell M J (2008). Endogenous siRNA and miRNA targets identified by sequencing of the Arabidopsis degradome. Curr Biol , 18(10): 758–762
doi: 10.1016/j.cub.2008.04.042 pmid:18472421
3 Allen E, Xie Z, Gustafson A M, Carrington J C (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell , 121(2): 207–221
doi: 10.1016/j.cell.2005.04.004 pmid:15851028
4 Allen E, Xie Z, Gustafson A M, Sung G H, Spatafora J W, Carrington J C (2004). Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet , 36(12): 1282–1290
doi: 10.1038/ng1478 pmid:15565108
5 Ambros V, Bartel B, Bartel D P, Burge C B, Carrington J C, Chen X, Dreyfuss G, Eddy S R, Griffiths-Jones S, Marshall M, Matzke M, Ruvkun G, Tuschl T (2003). A uniform system for microRNA annotation. RNA , 9(3): 277–279
doi: 10.1261/rna.2183803 pmid:12592000
6 Audic S, Claverie J M (1997). The significance of digital gene expression profiles. Genome Res , 7(10): 986–995
pmid:9331369
7 Axtell M J, Bowman J L (2008). Evolution of plant microRNAs and their targets. Trends Plant Sci , 13(7): 343–349
doi: 10.1016/j.tplants.2008.03.009 pmid:18502167
8 Axtell M J, Snyder J A, Bartel D P (2007). Common functions for diverse small RNAs of land plants. Plant Cell , 19(6): 1750–1769
doi: 10.1105/tpc.107.051706 pmid:17601824
9 Barrera-Figueroa B E, Gao L, Diop N N, Wu Z, Ehlers J D, Roberts P A, Close T J, Zhu J K, Liu R (2011). Identification and comparative analysis of drought-associated microRNAs in two cowpea genotypes. BMC Plant Biol , 11(1): 127
doi: 10.1186/1471-2229-11-127 pmid:21923928
10 Bartel D P (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell , 116(2): 281–297
doi: 10.1016/S0092-8674(04)00045-5 pmid:14744438
11 Bonnet E, Wuyts J, Rouzé P, Van de Peer Y (2004). Detection of 91 potential conserved plant microRNAs in Arabidopsis thaliana and Oryza sativa identifies important target genes. Proc Natl Acad Sci USA , 101(31): 11511–11516
doi: 10.1073/pnas.0404025101 pmid:15272084
12 Borsani O, Zhu J, Verslues P E, Sunkar R, Zhu J K (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell , 123(7): 1279–1291
doi: 10.1016/j.cell.2005.11.035 pmid:16377568
13 Boyer J S (1982). Plant productivity and environment. Science , 218(4571): 443–448
doi: 10.1126/science.218.4571.443 pmid:17808529
14 Bureau T E, Wessler S R (1992). Tourist: a large family of small inverted repeat elements frequently associated with maize genes. Plant Cell , 4(10): 1283–1294
pmid:1332797
15 Chen C, Tan R, Wong L, Fekete R, Halsey J (2011). Quantitation of microRNAs by real-time RT-qPCR. Methods Mol Biol , 687: 113–134
doi: 10.1007/978-1-60761-944-4_8 pmid:20967604
16 Chen X (2005). MicroRNA biogenesis and function in plants. FEBS Lett , 579(26): 5923–5931
doi: 10.1016/j.febslet.2005.07.071 pmid:16144699
17 Chinnusamy V, Zhu J K (2009). RNA-directed DNA methylation and demethylation in plants. Sci China C Life Sci , 52(4): 331–343
doi: 10.1007/s11427-009-0052-1 pmid:19381459
18 Chiou T J, Aung K, Lin S I, Wu C C, Chiang S F, Su C L (2006). Regulation of phosphate homeostasis by MicroRNA in Arabidopsis. Plant Cell , 18(2): 412–421
doi: 10.1105/tpc.105.038943 pmid:16387831
19 Cuperus J T, Fahlgren N, Carrington J C (2011). Evolution and functional diversification of MIRNA genes. Plant Cell , 23(2): 431–442
doi: 10.1105/tpc.110.082784 pmid:21317375
20 Dai X, Zhuang Z, Zhao P X (2011). Computational analysis of miRNA targets in plants: current status and challenges. Brief Bioinform , 12(2): 115–121
doi: 10.1093/bib/bbq065 pmid:20858738
21 Dalmay T (2006). Short RNAs in environmental adaptation. Proc Biol Sci , 273(1594): 1579–1585
doi: 10.1098/rspb.2006.3516 pmid:16769627
22 Devers E A, Branscheid A, May P, Krajinski F (2011). Stars and symbiosis: microRNA- and microRNA*-mediated transcript cleavage involved in Arbuscular mycorrhizal symbiosis. Plant Physiol , 156(4): 1990–2010
doi: 10.1104/pp.111.172627 pmid:21571671
23 Dezulian T, Remmert M, Palatnik J F, Weigel D, Huson D H (2006). Identification of plant microRNA homologs. Bioinformatics , 22(3): 359–360
doi: 10.1093/bioinformatics/bti802 pmid:16317073
24 Ding Y, Chen Z, Zhu C (2011). Microarray-based analysis of cadmium-responsive microRNAs in rice (Oryza sativa). J Exp Bot , 62(10): 3563–3573
doi: 10.1093/jxb/err046 pmid:21362738
25 Fahlgren N, Howell M D, Kasschau K D, Chapman E J, Sullivan C M, Cumbie J S, Givan S A, Law T F, Grant S R, Dangl J L, Carrington J C (2007). High-throughput sequencing of Arabidopsis microRNAs: evidence for frequent birth and death of MIRNA genes. PLoS ONE , 2(2): e219
doi: 10.1371/journal.pone.0000219 pmid:17299599
26 Fahlgren N, Jogdeo S, Kasschau K D, Sullivan C M, Chapman E J, Laubinger S, Smith L M, Dasenko M, Givan S A, Weigel D, Carrington J C (2010). MicroRNA gene evolution in Arabidopsis lyrata and Arabidopsis thaliana. Plant Cell , 22(4): 1074–1089
doi: 10.1105/tpc.110.073999 pmid:20407027
27 Felippes F F, Schneeberger K, Dezulian T, Huson D H, Weigel D (2008). Evolution of Arabidopsis thaliana microRNAs from random sequences. RNA , 14(12): 2455–2459
doi: 10.1261/rna.1149408 pmid:18952822
28 Ge Y, Li Y, Zhu Y M, Bai X, Lv D K, Guo D, Ji W, Cai H (2010). Global transcriptome profiling of wild soybean (Glycine soja) roots under NaHCO3 treatment. BMC Plant Biol , 10(1): 153
doi: 10.1186/1471-2229-10-153 pmid:20653984
29 German M A, Pillay M, Jeong D H, Hetawal A, Luo S, Janardhanan P, Kannan V, Rymarquis L A, Nobuta K, German R, De Paoli E, Lu C, Schroth G, Meyers B C, Green P J (2008). Global identification of microRNA-target RNA pairs by parallel analysis of RNA ends. Nat Biotechnol , 26(8): 941–946
doi: 10.1038/nbt1417 pmid:18542052
30 Gou J Y, Felippes F F, Liu C J, Weigel D, Wang J W (2011). Negative regulation of anthocyanin biosynthesis in Arabidopsis by a miR156-targeted SPL transcription factor. Plant Cell , 23(4): 1512–1522
doi: 10.1105/tpc.111.084525 pmid:21487097
31 Jacob F, Monod J (1961). Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol , 3(3): 318–356
doi: 10.1016/S0022-2836(61)80072-7 pmid:13718526
32 Jia X, Wang W X, Ren L, Chen Q J, Mendu V, Willcut B, Dinkins R, Tang X, Tang G (2009). Differential and dynamic regulation of miR398 in response to ABA and salt stress in Populus tremula and Arabidopsis thaliana. Plant Mol Biol , 71(1-2): 51–59
doi: 10.1007/s11103-009-9508-8 pmid:19533381
33 Jiang N, Feschotte C, Zhang X, Wessler S R (2004). Using rice to understand the origin and amplification of miniature inverted repeat transposable elements (MITEs). Curr Opin Plant Biol , 7(2): 115–119
doi: 10.1016/j.pbi.2004.01.004 pmid:15003209
34 Jin H, Vacic V, Girke T, Lonardi S, Zhu J K (2008). Small RNAs and the regulation of cis-natural antisense transcripts in Arabidopsis. BMC Mol Biol , 9(1): 6
doi: 10.1186/1471-2199-9-6 pmid:18194570
35 Johnson C, Bowman L, Adai A T, Vance V, Sundaresan V (2007). CSRDB: a small RNA integrated database and browser resource for cereals. Nucleic Acids Res , 35(Database Database issue): D829–D833
doi: 10.1093/nar/gkl991 pmid:17169981
36 Jones-Rhoades M W, Bartel D P (2004). Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell , 14(6): 787–799
doi: 10.1016/j.molcel.2004.05.027 pmid:15200956
37 Jones-Rhoades M W, Bartel D P, Bartel B (2006). MicroRNAS and their regulatory roles in plants. Annu Rev Plant Biol , 57(1): 19–53
doi: 10.1146/annurev.arplant.57.032905.105218 pmid:16669754
38 Joung J G, Fei Z (2009). Identification of microRNA regulatory modules in Arabidopsis via a probabilistic graphical model. Bioinformatics , 25(3): 387–393
doi: 10.1093/bioinformatics/btn626 pmid:19056778
39 Kantar M, Lucas S J, Budak H (2011). miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta , 233(3): 471–484
doi: 10.1007/s00425-010-1309-4 pmid:21069383
40 Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H (2007). A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev , 21(23): 3123–3134
doi: 10.1101/gad.1595107 pmid:18003861
41 Langmead B, Trapnell C, Pop M, Salzberg S L (2009). Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol , 10(3): R25
doi: 10.1186/gb-2009-10-3-r25 pmid:19261174
42 Lau N C, Lim L P, Weinstein E G, Bartel D P (2001). An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science , 294(5543): 858–862
doi: 10.1126/science.1065062 pmid:11679671
43 Lelandais-Brière C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, Gouzy J, Crespi M (2009). Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell , 21(9): 2780–2796
doi: 10.1105/tpc.109.068130 pmid:19767456
44 Li B, Qin Y, Duan H, Yin W, Xia X (2011a). Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica. J Exp Bot , 62(11): 3765–3779
doi: 10.1093/jxb/err051 pmid:21511902
45 Li R, Yu C, Li Y, Lam T W, Yiu S M, Kristiansen K, Wang J (2009). SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics , 25(15): 1966–1967
doi: 10.1093/bioinformatics/btp336 pmid:19497933
46 Li W X, Oono Y, Zhu J, He X J, Wu J M, Iida K, Lu X Y, Cui X, Jin H, Zhu J K (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. Plant Cell , 20(8): 2238–2251
doi: 10.1105/tpc.108.059444 pmid:18682547
47 Li Y, Li C, Xia J, Jin Y (2011b). Domestication of transposable elements into MicroRNA genes in plants. PLoS ONE , 6(5): e19212
doi: 10.1371/journal.pone.0019212 pmid:21559273
48 Li Y F, Zheng Y, Addo-Quaye C, Zhang L, Saini A, Jagadeeswaran G, Axtell M J, Zhang W, Sunkar R (2010). Transcriptome-wide identification of microRNA targets in rice. Plant J , 62(5): 742–759
doi: 10.1111/j.1365-313X.2010.04187.x pmid:20202174
49 Lindow M, Krogh A (2005). Computational evidence for hundreds of non-conserved plant microRNAs. BMC Genomics , 6(1): 119
doi: 10.1186/1471-2164-6-119 pmid:16159385
50 Liu B, Liu L, Tsykin A, Goodall G J, Green J E, Zhu M, Kim C H, Li J (2010). Identifying functional miRNA-mRNA regulatory modules with correspondence latent dirichlet allocation. Bioinformatics , 26(24): 3105–3111
doi: 10.1093/bioinformatics/btq576 pmid:20956247
51 Liu H H, Tian X, Li Y J, Wu C A, Zheng C C (2008). Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA , 14(5): 836–843
doi: 10.1261/rna.895308 pmid:18356539
52 Llave C, Franco-Zorrilla J M, Solano R, Barajas D (2011). Target validation of plant microRNAs. Methods Mol Biol , 732: 187–208
doi: 10.1007/978-1-61779-083-6_14 pmid:21431714
53 Llave C, Kasschau K D, Rector M A, Carrington J C (2002). Endogenous and silencing-associated small RNAs in plants. Plant Cell , 14(7): 1605–1619
doi: 10.1105/tpc.003210 pmid:12119378
54 Lu C, Jeong D H, Kulkarni K, Pillay M, Nobuta K, German R, Thatcher S R, Maher C, Zhang L, Ware D, Liu B, Cao X, Meyers B C, Green P J (2008a). Genome-wide analysis for discovery of rice microRNAs reveals natural antisense microRNAs (nat-miRNAs). Proc Natl Acad Sci USA , 105(12): 4951–4956
doi: 10.1073/pnas.0708743105 pmid:18353984
55 Lu C, Kulkarni K, Souret F F, MuthuValliappan R, Tej S S, Poethig R S, Henderson I R, Jacobsen S E, Wang W, Green P J, Meyers B C (2006). MicroRNAs and other small RNAs enriched in the Arabidopsis RNA-dependent RNA polymerase-2 mutant. Genome Res , 16(10): 1276–1288
doi: 10.1101/gr.5530106 pmid:16954541
56 Lu C, Meyers B C, Green P J (2007). Construction of small RNA cDNA libraries for deep sequencing. Methods , 43(2): 110–117
doi: 10.1016/j.ymeth.2007.05.002 pmid:17889797
57 Lu C, Tej S S, Luo S J, Haudenschild C D, Meyers B C, Green P J (2005a). Elucidation of the small RNA component of the transcriptome. Science , 309(5740): 1567–1569
doi: 10.1126/science.1114112 pmid:16141074
58 Lu S, Sun Y H, Chiang V L (2008b). Stress-responsive microRNAs in Populus. Plant J , 55(1): 131–151
doi: 10.1111/j.1365-313X.2008.03497.x pmid:18363789
59 Lu S, Sun Y H, Shi R, Clark C, Li L, Chiang V L (2005b). Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell , 17(8): 2186–2203
doi: 10.1105/tpc.105.033456 pmid:15994906
60 McCormick K P, Willmann M R, Meyers B C (2011). Experimental design, preprocessing, normalization and differential expression analysis of small RNA sequencing experiments. Silence , 2(1): 2
doi: 10.1186/1758-907X-2-2 pmid:21356093
61 Megraw M, Baev V, Rusinov V, Jensen S T, Kalantidis K, Hatzigeorgiou A G (2006). MicroRNA promoter element discovery in Arabidopsis. RNA , 12(9): 1612–1619
doi: 10.1261/rna.130506 pmid:16888323
62 Mendes N D, Freitas A T, Sagot M F (2009). Current tools for the identification of miRNA genes and their targets. Nucleic Acids Res , 37(8): 2419–2433
doi: 10.1093/nar/gkp145 pmid:19295136
63 Meng Y, Shao C, Chen M (2011). Toward microRNA-mediated gene regulatory networks in plants. Brief Bioinform , 12(6): 645–659
doi: 10.1093/bib/bbq091 pmid:21262742
64 Meyers B C, Axtell M J, Bartel B, Bartel D P, Baulcombe D, Bowman J L, Cao X, Carrington J C, Chen X, Green P J, Griffiths-Jones S, Jacobsen S E, Mallory A C, Martienssen R A, Poethig R S, Qi Y, Vaucheret H, Voinnet O, Watanabe Y, Weigel D, Zhu J K (2008). Criteria for annotation of plant MicroRNAs. Plant Cell , 20(12): 3186–3190
doi: 10.1105/tpc.108.064311 pmid:19074682
65 Nobuta K, Venu R C, Lu C, Beló A, Vemaraju K, Kulkarni K, Wang W Z, Pillay M, Green P J, Wang G L, Meyers B C (2007). An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol , 25(4): 473–477
doi: 10.1038/nbt1291 pmid:17351617
66 Pak J, Fire A (2007). Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science , 315(5809): 241–244
doi: 10.1126/science.1132839 pmid:17124291
67 Pantaleo V, Szittya G, Moxon S, Miozzi L, Moulton V, Dalmay T, Burgyan J (2010). Identification of grapevine microRNAs and their targets using high-throughput sequencing and degradome analysis. Plant J , 62(6): 960–976
pmid:20230504
68 Piriyapongsa J, Jordan I K (2008). Dual coding of siRNAs and miRNAs by plant transposable elements. RNA , 14(5): 814–821
doi: 10.1261/rna.916708 pmid:18367716
69 Pradervand S, Weber J, Lemoine F, Consales F, Paillusson A, Dupasquier M, Thomas J, Richter H, Kaessmann H, Beaudoing E, Hagenbüchle O, Harshman K (2010). Concordance among digital gene expression, microarrays, and qPCR when measuring differential expression of microRNAs. Biotechniques , 48(3): 219–222
doi: 10.2144/000113367 pmid:20359303
70 Rajagopalan R, Vaucheret H, Trejo J, Bartel D P (2006). A diverse and evolutionarily fluid set of microRNAs in Arabidopsis thaliana. Genes Dev , 20(24): 3407–3425
doi: 10.1101/gad.1476406 pmid:17182867
71 Reinhart B J, Bartel D P (2002). Small RNAs correspond to centromere heterochromatic repeats. Science , 297(5588): 1831
doi: 10.1126/science.1077183 pmid:12193644
72 Rhoades M W, Reinhart B J, Lim L P, Burge C B, Bartel B, Bartel D P (2002). Prediction of plant microRNA targets. Cell , 110(4): 513–520
doi: 10.1016/S0092-8674(02)00863-2 pmid:12202040
73 Robinson M D, McCarthy D J, Smyth G K (2010). EdgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics , 26(1): 139–140
doi: 10.1093/bioinformatics/btp616 pmid:19910308
74 Ron M, Alandete Saez M, Eshed Williams L, Fletcher J C, McCormick S (2010). Proper regulation of a sperm-specific cis-nat-siRNA is essential for double fertilization in Arabidopsis. Genes Dev , 24(10): 1010–1021
doi: 10.1101/gad.1882810 pmid:20478994
75 Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J , 31(3): 279–292
doi: 10.1046/j.1365-313X.2002.01359.x pmid:12164808
76 Song Q X, Liu Y F, Hu X Y, Zhang W K, Ma B, Chen S Y, Zhang J S (2011). Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing. BMC Plant Biol , 11(1): 5
doi: 10.1186/1471-2229-11-5 pmid:21219599
77 Sunkar R, Girke T, Jain P K, Zhu J K (2005). Cloning and characterization of microRNAs from rice. Plant Cell , 17(5): 1397–1411
doi: 10.1105/tpc.105.031682 pmid:15805478
78 Sunkar R, Jagadeeswaran G (2008). In silico identification of conserved microRNAs in large number of diverse plant species. BMC Plant Biol , 8(1): 37
doi: 10.1186/1471-2229-8-37 pmid:18416839
79 Sunkar R, Kapoor A, Zhu J K (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell , 18(8): 2051–2065
doi: 10.1105/tpc.106.041673 pmid:16861386
80 Sunkar R, Zhou X F, Zheng Y, Zhang W X, Zhu J K (2008). Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol , 8(1): 25
doi: 10.1186/1471-2229-8-25 pmid:18312648
81 Sunkar R, Zhu J K (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell , 16(8): 2001–2019
doi: 10.1105/tpc.104.022830 pmid:15258262
82 Szittya G, Moxon S, Santos D M, Jing R, Fevereiro M P, Moulton V, Dalmay T (2008). High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics , 9(1): 593
doi: 10.1186/1471-2164-9-593 pmid:19068109
83 Valdés-López O, Yang S S, Aparicio-Fabre R, Graham P H, Reyes J L, Vance C P, Hernández G (2010). MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol , 187(3): 805–818
doi: 10.1111/j.1469-8137.2010.03320.x pmid:20553393
84 Vaucheret H (2006). Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev , 20(7): 759–771
doi: 10.1101/gad.1410506 pmid:16600909
85 Vazquez F, Legrand S, Windels D (2010). The biosynthetic pathways and biological scopes of plant small RNAs. Trends Plant Sci , 15(6): 337–345
doi: 10.1016/j.tplants.2010.04.001 pmid:20427224
86 Vazquez F, Vaucheret H, Rajagopalan R, Lepers C, Gasciolli V, Mallory A C, Hilbert J L, Bartel D P, Crété P (2004). Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol Cell , 16(1): 69–79
doi: 10.1016/j.molcel.2004.09.028 pmid:15469823
87 Vigneault F, Sismour A M, Church G M (2008). Efficient microRNA capture and bar-coding via enzymatic oligonucleotide adenylation. Nat Methods , 5(9): 777–779
doi: 10.1038/nmeth.1244 pmid:19160512
88 Wang X J, Reyes J L, Chua N H, Gaasterland T (2004). Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol , 5(9): R65
doi: 10.1186/gb-2004-5-9-r65 pmid:15345049
89 Wei B, Cai T, Zhang R, Li A, Huo N, Li S, Gu Y Q, Vogel J, Jia J, Qi Y, Mao L (2009). Novel microRNAs uncovered by deep sequencing of small RNA transcriptomes in bread wheat (Triticum aestivum L.) and Brachypodium distachyon (L.) Beauv. Funct Integr Genomics , 9(4): 499–511
doi: 10.1007/s10142-009-0128-9 pmid:19499258
90 Wu L, Zhang Q, Zhou H, Ni F, Wu X, Qi Y (2009). Rice MicroRNA effector complexes and targets. Plant Cell , 21(11): 3421–3435
doi: 10.1105/tpc.109.070938 pmid:19903869
91 Wu L, Zhou H, Zhang Q, Zhang J, Ni F, Liu C, Qi Y (2010). DNA methylation mediated by a microRNA pathway. Mol Cell , 38(3): 465–475
doi: 10.1016/j.molcel.2010.03.008 pmid:20381393
92 Xie Z, Allen E, Fahlgren N, Calamar A, Givan S A, Carrington J C (2005). Expression of Arabidopsis MIRNA genes. Plant Physiol , 138(4): 2145–2154
doi: 10.1104/pp.105.062943 pmid:16040653
93 Xuan P, Guo M, Liu X, Huang Y, Li W, Huang Y (2011). PlantMiRNAPred: efficient classification of real and pseudo plant pre-miRNAs. Bioinformatics , 27(10): 1368–1376
doi: 10.1093/bioinformatics/btr153 pmid:21441575
94 Zhang B H, Pan X P, Cannon C H, Cobb G P, Anderson T A (2006). Conservation and divergence of plant microRNA genes. Plant J , 46(2): 243–259
doi: 10.1111/j.1365-313X.2006.02697.x pmid:16623887
95 Zhang J Y, Xu Y Y, Huan Q, Chong K (2009a). Deep sequencing of Brachypodium small RNAs at the global genome level identifies microRNAs involved in cold stress response. BMC Genomics , 10(1): 449
doi: 10.1186/1471-2164-10-449 pmid:19772667
96 Zhang L F, Chia J M, Kumari S, Stein J C, Liu Z J, Narechania A, Maher C A, Guill K, McMullen M D, Ware D (2009b). A genome-wide characterization of microRNA genes in maize. PLoS Genet , 5(11): e1000716
doi: 10.1371/journal.pgen.1000716 pmid:19936050
97 Zhao M, Ding H, Zhu J K, Zhang F, Li W X (2011). Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol , 190(4): 906–915
doi: 10.1111/j.1469-8137.2011.03647.x pmid:21348874
98 Zhu J K (2002). Salt and drought stress signal transduction in plants. Annu Rev Plant Biol , 53(1): 247–273
doi: 10.1146/annurev.arplant.53.091401.143329 pmid:12221975
99 Zhu Q H, Spriggs A, Matthew L, Fan L, Kennedy G, Gubler F, Helliwell C (2008). A diverse set of microRNAs and microRNA-like small RNAs in developing rice grains. Genome Res , 18(9): 1456–1465
doi: 10.1101/gr.075572.107 pmid:18687877
[1] Ji-Song Guan, Hong Xie, San-Xiong Liu. Epigenetic regulators sculpt the plastic brain[J]. Front. Biol., 2017, 12(5): 317-332.
[2] Karim Mowla, Mohammad Amin Saki, Mohammad Taha Jalali, Zeinab Deris Zayeri. How to manage rheumatoid arthritis according to classic biomarkers and polymorphisms?[J]. Front. Biol., 2017, 12(3): 183-191.
[3] Pang-Kuo Lo,Benjamin Wolfson,Qun Zhou. Cellular, physiological and pathological aspects of the long non-coding RNA NEAT1[J]. Front. Biol., 2016, 11(6): 413-426.
[4] Liang Hu,Edward Trope,Qi-Long Ying. Metabolism of pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 355-365.
[5] Meng WANG,Kasturi BANERJEE,Harriet BAKER,John W. CAVE. Nucleotide sequence conservation of novel and established cis-regulatory sites within the tyrosine hydroxylase gene promoter[J]. Front. Biol., 2015, 10(1): 74-90.
[6] Joshua D. TOMPKINS,Arthur D. RIGGS. An epigenetic perspective on the failing heart and pluripotent-derived-cardiomyocytes for cell replacement therapy[J]. Front. Biol., 2015, 10(1): 11-27.
[7] Jamie K. WONG,Hongyan ZOU. Reshaping the chromatin landscape after spinal cord injury[J]. Front. Biol., 2014, 9(5): 356-366.
[8] Nidhi VISHNOI,Jie YAO. Gene positioning and genome function[J]. Front. Biol., 2014, 9(4): 255-268.
[9] Yaojuan LU,Longwei QIAO,Guanghua LEI,Ranim R. MIRA,Junxia GU,Qiping ZHENG. Col10a1 gene expression and chondrocyte hypertrophy during skeletal development and disease[J]. Front. Biol., 2014, 9(3): 195-204.
[10] P. Shannon PENDERGRAST, Tom VOLPE. MicroRNA rules: Made to be broken[J]. Front Biol, 2013, 8(5): 468-474.
[11] Jeremy GROSS, Ian J. PASSMORE, Jade C. S. CHUNG, Olena RZHEPISHEVSKA, Madeleine RAMSTEDT, Martin WELCH. Universal soldier: Pseudomonas aeruginosa – an opportunistic generalist[J]. Front Biol, 2013, 8(4): 387-394.
[12] Yiping WEN, Chen WANG, Sui HUANG. The perinucleolar compartment associates with malignancy[J]. Front Biol, 2013, 8(4): 369-376.
[13] Yiwei LIN, Binhua P. ZHOU. Histone mimics: digging down under[J]. Front Biol, 2013, 8(2): 228-233.
[14] Kundan KUMAR, Dhammaprakash Pandhari WANKHEDE, Alok Krishna SINHA. Signal convergence through the lenses of MAP kinases: paradigms of stress and hormone signaling in plants[J]. Front Biol, 2013, 8(1): 109-118.
[15] Feng C. ZHOU. DNA methylation program during development[J]. Front Biol, 2012, 7(6): 485-494.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed