Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (4) : 369-376    https://doi.org/10.1007/s11515-013-1265-z
REVIEW
The perinucleolar compartment associates with malignancy
Yiping WEN1,2, Chen WANG1, Sui HUANG1()
1. Department of Cell and Molecular Biology, Northwestern University, Feinberg School of Medicine, IL 60611, USA; 2. College of Veterinary Medicine, Sichuan Agricultural University, Yaan 625014, China
 Download: PDF(230 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The perinucleolar compartment (PNC) is a unique nuclear substructure, forming predominantly in cancer cells both in vitro and in vivo. PNC prevalence (percentage of cells containing at least one PNC) has been found to positively correlate with disease progression in several cancers (breast, ovarian, and colon). While there is a clear association between PNCs and cancer, the molecular function of the PNC remains unclear. Here we summarize the current understanding of the association of PNCs with cancer and its possible functions in cancer cells.

Keywords PNC      cancer      nuclear substructure      gene expression regulation      structure and function     
Corresponding Author(s): HUANG Sui,Email:s-huang2@northwestern.edu   
Issue Date: 01 August 2013
 Cite this article:   
Yiping WEN,Chen WANG,Sui HUANG. The perinucleolar compartment associates with malignancy[J]. Front Biol, 2013, 8(4): 369-376.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-013-1265-z
https://academic.hep.com.cn/fib/EN/Y2013/V8/I4/369
Fig.1  RNase MRP RNA and PTB colocalize in the PNC at the nucleolar periphery. In situ hybridizations using specific oligo probe show perinucleolar enrichment of the RNA (left panel, arrows) which is colocalized (right panel, arrows) with a bright PTB immunolabeling signal (middle panel, arrows). The bar= 10 μm.
Fig.2  Schematic diagram summarizes that PNCs form as the consequence of transformation. Its formation signifies that cancer cells become capable of metastasis. PNC prevalence, thus, can be used as a cancer marker for anti-cancer drug development.
1 Altman S (1990). Ribonuclease P. Postscript. J Biol Chem , 265(33): 20053-20056
2 Anderson J T, Wilson S M, (1993). NAB2: a yeast nuclear polyadenylated RNA-binding protein essential for cell viability. Mol Cell Biol , 13(5): 2730-2741
3 Apponi L H, Corbett A H, Pavlath G K (2011). RNA-binding proteins and gene regulation in myogenesis. Trends Pharmacol Sci , 32(11): 652-658
doi: 10.1016/j.tips.2011.06.004
4 Bond C S, Fox A H (2009). Paraspeckles: nuclear bodies built on long noncoding RNA. J Cell Biol , 186(5): 637-644
doi: 10.1083/jcb.200906113
5 Castelo-Branco P, Furger A, Wollerton M, Smith C, Moreira A, Proudfoot N (2004). Polypyrimidine tract binding protein modulates efficiency of polyadenylation. Mol Cell Biol , 24(10): 4174-4183
doi: 10.1128/MCB.24.10.4174-4183.2004
6 Charlet B N, Savkur R S, Singh G, Philips A V, Grice E A, Cooper T A (2002). Loss of the muscle-specific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell , 10(1): 45-53
doi: 10.1016/S1097-2765(02)00572-5
7 Chen M, Zhang J, Manley J L (2010). Turning on a fuel switch of cancer: hnRNP proteins regulate alternative splicing of pyruvate kinase mRNA. Cancer Res , 70(22): 8977-8980
doi: 10.1158/0008-5472.CAN-10-2513
8 Clayton D A (1994). A nuclear function for RNase MRP. Proc Natl Acad Sci USA , 91(11): 4615-4617
doi: 10.1073/pnas.91.11.4615
9 Esakova O, Krasilnikov A S (2010). Of proteins and RNA: the RNase P/MRP family. RNA , 16(9): 1725-1747
doi: 10.1261/rna.2214510
10 Esakova O, Perederina A, Quan C, Berezin I, Krasilnikov A S (2011). Substrate recognition by ribonucleoprotein ribonuclease MRP. RNA , 17(2): 356-364
doi: 10.1261/rna.2393711
11 Fox A H, Lamond A I (2010). Paraspeckles. Cold Spring Harb Perspect Biol , 2(7): a000687
doi: 10.1101/cshperspect.a000687
12 Frank R, Hargreaves R (2003). Clinical biomarkers in drug discovery and development. Nat Rev Drug Discov , 2(7): 566-580
doi: 10.1038/nrd1130
13 Ghetti A, Pinol-Roma S, Michael W M, Morandi C, Dreyfuss G (1992). hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res , 20(14): 3671-3678
doi: 10.1093/nar/20.14.3671
14 Gromak N, Rideau A, Southby J, Scadden A D J, Gooding C, Hüttelmaier S, Singer R H, Smith C W J (2003). The PTB interacting protein raver1 regulates alpha-tropomyosin alternative splicing. EMBO J , 22(23): 6356-6364
doi: 10.1093/emboj/cdg609
15 Hall M P, Huang S, (2004). Differentiation-induced colocalization of the KH-type splicing regulatory protein with polypyrimidine tract binding protein and the c-src pre-mRNA. Mol Biol Cell , 15(2): 774-786
doi: 10.1091/mbc.E03-09-0692
16 Hellen C U, Pestova T V, (1994). The cellular polypeptide p57 (pyrimidine tract-binding protein) binds to multiple sites in the poliovirus 5′ nontranslated region. J Virol , 68(2): 941-950
17 Ho T H, Bundman D, Armstrong, D L, Cooper, T A (2005). Transgenic mice expressing CUG-BP1 reproduce splicing mis-regulation observed in myotonic dystrophy. Hum Mol Genet , 14(11): 1539-1547
doi: 10.1093/hmg/ddi162
18 Huang S, Deerinck T J, Ellisman M H, Spector D L (1997). The dynamic organization of the perinucleolar compartment in the cell nucleus. J Cell Biol , 137(5): 965-974
doi: 10.1083/jcb.137.5.965
19 Huang S, Deerinck T J, Ellisman M H, Spector D L (1998). The perinucleolar compartment and transcription. J Cell Biol , 143(1): 35-47
doi: 10.1083/jcb.143.1.35
20 Huttelmaier S, Illenberger S, Grosheva I, Rudiger M, Singer R H, and Jockusch B M (2001). Raver1, a dual compartment protein, is a ligand for PTB/hnRNPI and microfilament attachment proteins. J Cell Biol , 155(5): 775-786
doi: 10.1083/jcb.200105044
21 Jackson D A, Hassan A B, Errington P R (1993). Visualization of focal sites of transcription within human nuclei. EMBO J , 12: 1059-1065
22 Jacobson M R, Cao L G, Wang Y L, Pederson T (1995). Dynamic localization of RNase MRP RNA in the nucleolus observed by fluorescent RNA cytochemistry in living cells. J Cell Biol , 131(6 Pt 2): 1649-1658
doi: 10.1083/jcb.131.6.1649
23 Jarrous N (2002). Human ribonuclease P: subunits, function, and intranuclear localization. RNA , 8(1): 1-7
doi: 10.1017/S1355838202011184
24 Jones K, Timchenko L, Timchenko N A (2012). The role of CUGBP1 in age-dependent changes of liver functions. Ageing Res Rev , 11(4): 442-449
doi: 10.1016/j.arr.2012.02.007
25 Kafasla P, Mickleburgh I, Llorian M, Coelho M, Gooding C, Cherny D, Joshi A, Kotik-Kogan O, Curry S, Eperon I C, Jackson R J, Smith C W J (2012). Defining the roles and interactions of PTB. Biochem Soc Trans , 40(4): 815-820
doi: 10.1042/BST20120044
26 Kamath R V, Leary D J, Huang S (2001). Nucleocytoplasmic shuttling of polypyrimidine tract-binding protein is uncoupled from RNA export. Mol Biol Cell , 12(12): 3808-3820
27 Kamath R V, Thor A D, Wang C, Edgerton SM, Slusarczyk A, Leary D J, Wang J, Wiley E L, Jovanovic B, Wu Q, Nayar R, Kovarik P, Shi F, Huang S (2005). Perinucleolar compartment prevalence has an independent prognostic value for breast cancer. Cancer Res , 65(1): 246-253
28 Kaminski A, Hunt S L, Patton J G, Jackson- Rna R J (1995). Direct evidence that polypyrimidine tract binding protein (PTB) is essential for internal initiation of translation of encephalomyocarditis virus RNA. RNA , 1(9): 924-938
29 Lee B, Matera A G, Ward D C, Craft J (1996). Association of RNase mitochondrial RNA processing enzyme with ribonuclease P in higher ordered structures in the nucleolus: a possible coordinate role in ribosome biogenesis. Proc Natl Acad Sci USA , 93(21): 11471-11476
doi: 10.1073/pnas.93.21.11471
30 Liu Y, Norton J T, Witschi M A, Xu Q, Lou G, Wang C, H Appella D, Chen Z, Huang S (2011). Methoxyethylamino-numonafide is an efficacious and minimally toxic amonafide derivative in murine models of human cancer. Neoplasia , 13(5): 453-460
31 Lou H, Gagel R F, Berget S M (1996). An intron enhancer recognized by splicing factors activates polyadenylation. Genes Dev , 10(2): 208-219
doi: 10.1101/gad.10.2.208
32 Lou H, Helfman D M, Gagel R F, Berget S M (1999). Polypyrimidine tract-binding protein positively regulates inclusion of an alternative 3′-terminal exon. Mol Cell Biol , 19(1): 78-85
33 Mahadevan M S (2012). Myotonic dystrophy: is a narrow focus obscuring the rest of the field? Curr Opin Neurol , 25(5): 609-613
doi: 10.1097/WCO.0b013e328357b0d9
34 Matera A G, Frey M R, Margelot K, Wolin S L (1995). A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I. J Cell Biol , 129(5): 1181-1193
doi: 10.1083/jcb.129.5.1181
35 Norton J T, Pollock C B, Wang C, Schink J C, Kim J J, Huang S (2008). Perinucleolar compartment prevalence is a phenotypic pancancer marker of malignancy. Cancer , 113(4): 861-869
doi: 10.1002/cncr.23632
36 Norton J T, Titus S A, Dexter D, Austin C P, Zheng W, Huang S (2009). Automated high-content screening for compounds that disassemble the perinucleolar compartment. J Biomol Screen , 14(9): 1045-1053
doi: 10.1177/1087057109343120
37 Norton J T, Wang C, Gjidoda A, Henry R W, Huang S (2009). The perinucleolar compartment is directly associated with DNA. J Biol Chem , 284(7): 4090-4101
doi: 10.1074/jbc.M807255200
38 Norton J T, Witschi M A, Luong L, Kawamura A, Ghosh S, Sharon Stack M, Sim E, Avram M J, Appella D H, Huang S (2008). Synthesis and anticancer activities of 6-amino amonafide derivatives. Anticancer Drugs , 19(1): 23-36
doi: 10.1097/CAD.0b013e3282f00e17
39 O'Keefe R T, Mayeda A, Sadowski C L, Krainer A R, and Spec-tor D L (1994). Disruption of pre-mRNA splicing in vivo results in reorganization of splicing factors. J Cell Biol , 124(3): 249-260
doi: 10.1083/jcb.124.3.249
40 Paillard L, Legagneux V, Osborne H B (2003). A functional deadenylation assay identifies human CUG-BP as a deadenylation factor. Biol Cell , 95(2): 107-113
doi: 10.1016/S0248-4900(03)00010-8
41 Perederina A, Esakova O, Quan C, Khanova E, Krasilnikov A S (2010). Eukaryotic ribonucleases P/MRP: the crystal structure of the P3 domain. EMBO J , 29(4): 761-769
doi: 10.1038/emboj.2009.396
42 Perez I, Lin C H, Mcafee J, Patton J (1997). Mutation of PTB binding sites causes misregulation of alternative 3′ splice site selection in vivo. RNA , 3(7): 764-778
43 Pettaway C A, Pathak S, Greene G, Ramirez E, Wilson M R, Killion J J, Fidler I J (1996). Selection of highly metastatic variants of different human prostatic carcinomas using orthotopic implantation in nude mice. Clin Cancer Res , 2(9): 1627-1636
44 Pianese G (1896). Beitrag zur histologie und aetiologie der carcinoma. Histologische und experimentelle untersuchungen. Beitr Pathol Anat Allgem Pathol , 142(1): 193
45 Pickering B M, Mitchell S A, Evans J R, Willis A E (2003). Polypyrimidine tract binding protein and poly r(C) binding protein 1 interact with the BAG-1 IRES and stimulate its activity in vitro and in vivo. Nucleic Acids Res , 31(2): 639-646
doi: 10.1093/nar/gkg146
46 Pollock C, Daily K, Nguyen V T, Wang C, Lewandowska M A, Bensaude O, Huang S (2011). Characterization of MRP RNA-protein interactions within the perinucleolar compartment. Mol Biol Cell , 22(6): 858-866
doi: 10.1091/mbc.E10-09-0768
47 Savkur R S, Philips A V, Cooper T A (2001). Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet , 29(1): 40-47
doi: 10.1038/ng704
48 Sawicka K, Bushell M, Spriggs K A, Willis A E (2008). Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans , 36(Pt 4): 641-647
doi: 10.1042/BST0360641
49 Schneider R, Agol V I, Andino R, Bayard F, Cavener D R, Chappell S A, Chen J J, Darlix J L, Dasgupta A, Donze O (2001). New ways of initiating translation in eukaryotes. Mol Cell Biol , 21(23): 8238-8246
doi: 10.1128/MCB.21.23.8238-8246.2001
50 Slusarczyk A, Kamath R, Wang C, Anchel D, Pollock C, Lewandowska M A, Fitzpatrick T, Bazett-Jones D P, Huang S (2010). Structure and function of the perinucleolar compartment in cancer cells. Cold Spring Harb Symp Quant Biol , 75(0): 599-605
doi: 10.1101/sqb.2010.75.026
51 Steinberg T H, Burgess R R (1992). Tagetitoxin inhibition of RNA polymerase III transcription results from enhanced pausing at discrete sites and is template-dependent. J Biol Chem , 267(28): 20204-20211
52 Steinberg T H, Mathews D E, Durbin R D, Burgess R R (1990). Tagetitoxin: a new inhibitor of eukaryotic transcription by RNA polymerase III. J Biol Chem , 265(1): 499-505
53 Timchenko L T, Miller J W, Timchenko N A, DeVore D R, Datar K V, Lin L, Roberts R, Caskey C T, Swanson M S (1996). Identification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy. Nucleic Acids Res , 24(22): 4407-4414
doi: 10.1093/nar/24.22.4407
54 Valcarcel J, Gebauer F (1997). Post-transcriptional regulation: the dawn of PTB. Curr Biol , 7(11): R705-R708
doi: 10.1016/S0960-9822(06)00361-7
55 Van Eenennaam H, Vogelzangs J H, Lugtenberg D, Van Den Hoogen F H J, Van Venrooij W J, Pruijn G J M (2002). Identity of the RNase MRP- and RNase P-associated Th/To autoantigen. Arthritis Rheum , 46(12): 3266-3272
doi: 10.1002/art.10673
56 Wagner E J, Carstens R P, Garcia-Blanco M A (1999). A novel isoform ratio switch of the polypyrimidine tract binding protein. Electrophoresis , 20(4-5): 1082-1086
doi: 10.1002/(SICI)1522-2683(19990101)20:4/5<1082::AID-ELPS1082>3.0.CO;2-#
57 Wagner E J, Garcia-Blanco M A (2002). RNAi-mediated PTB depletion leads to enhanced exon definition. Mol Cell , 10(4): 943-949
doi: 10.1016/S1097-2765(02)00645-7
58 Wang C, Politz J C, Pederson T, Huang S (2003). RNA polymerase III transcripts and the PTB protein are essential for the integrity of the perinucleolar compartment. Mol Biol Cell , 14(6): 2425-2435
doi: 10.1091/mbc.E02-12-0818
59 Wansink D G, Schul W, van der Kraan I, van Steensel B, van Driel R, de Jong L (1993). Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus. J Cell Biol , 122(2): 283-293
doi: 10.1083/jcb.122.2.283
60 Witherell G W, Schultz-Witherell C S, Wimmer E C K A R D (1995). Cis-acting elements of the encephalomyocarditis virus internal ribosomal entry site. Virology , 214(2): 660-663
doi: 10.1006/viro.1995.0081
61 Xiao S, Scott F, Fierke C A, Engelke D R (2002). EUKARYOTIC RIBONUCLEASE P: A Plurality of Ribonucleoprotein Enzymes. Annu Rev Biochem , 71(1): 165-189
doi: 10.1146/annurev.biochem.71.110601.135352
62 Xie J, Lee J A, Kress T L, Mowry K L, Black D L (2003). Protein kinase A phosphorylation modulates transport of the polypyrimidine tract-binding protein. Proc Natl Acad Sci USA , 100(15): 8776-8781
doi: 10.1073/pnas.1432696100
63 Zhang W, Liu H, Han K, Grabowski P J (2002). Region-specific alternative splicing in the nervous system: implications for regulation by the RNA-binding protein NAPOR. RNA , 8(5): 671-685
doi: 10.1017/S1355838202027036
64 Zwerger M, Ho C Y, Lammerding J (2011). Nuclear mechanics in disease. Annu Rev Biomed Eng , 13(1): 397-428
doi: 10.1146/annurev-bioeng-071910-124736
[1] Vivek Vishnu Anasa, Palaniyandi Ravanan, Priti Talwar. Multifaceted roles of ASB proteins and its pathological significance[J]. Front. Biol., 2018, 13(5): 376-388.
[2] Dingcheng Gao, Vivek Mittal, Yi Ban, Ana Rita Lourenco, Shira Yomtoubian, Sharrell Lee. Metastatic tumor cells – genotypes and phenotypes[J]. Front. Biol., 2018, 13(4): 277-286.
[3] Soumya Nair, Sandra Suresh, Arya Kaniyassery, Panchami Jaya, Jayanthi Abraham. A review on melatonin action as therapeutic agent in cancer[J]. Front. Biol., 2018, 13(3): 180-189.
[4] Muhammad Naveed, Mohammad Raees, Irfan Liaqat, Mohammad Kashif. Clastogenic ROS and biophotonics in precancerous diagnosis[J]. Front. Biol., 2018, 13(2): 103-122.
[5] D. Brooke Widner, D. Clark Files, Kathryn E. Weaver, Yusuke Shiozawa. Preclinical and clinical studies on cancer-associated cachexia[J]. Front. Biol., 2018, 13(1): 11-18.
[6] Razia Rahman, Lokesh Kumar Gahlot, Yasha Hasija. miRACA: A database for miRNAs associated with cancers and age related disorders (ARD)[J]. Front. Biol., 2018, 13(1): 36-50.
[7] Amir Abdoli. High salt and fat intake, inflammation, and risk of cancer[J]. Front. Biol., 2017, 12(6): 387-391.
[8] Pang-Kuo Lo,Benjamin Wolfson,Qun Zhou. Cellular, physiological and pathological aspects of the long non-coding RNA NEAT1[J]. Front. Biol., 2016, 11(6): 413-426.
[9] Sahar Al Seesi,Alok Das Mohapatra,Arpita Pawashe,Ion I. Mandoiu,Fei Duan. Finding neoepitopes in mouse models of personalized cancer immunotherapy[J]. Front. Biol., 2016, 11(5): 366-375.
[10] Gahana Advani,Anderly C. Chueh,Ya Chee Lim,Amardeep Dhillon,Heung-Chin Cheng. Csk-homologous kinase (Chk/Matk): a molecular policeman suppressing cancer formation and progression[J]. Front. Biol., 2015, 10(3): 195-202.
[11] Caiguo ZHANG. The correlation between iron homeostasis and telomere maintenance[J]. Front. Biol., 2014, 9(5): 347-355.
[12] Qingguo ZHAO,Fei LIU. Mesenchymal stem cells in progression and treatment of cancers[J]. Front. Biol., 2014, 9(3): 186-194.
[13] Baoxiang GUAN,Ashraful HOQUE,Xiaochun XU. Amiloride and guggulsterone suppression of esophageal cancer cell growth in vitro and in nude mouse xenografts[J]. Front. Biol., 2014, 9(1): 75-81.
[14] Noor GAMMOH,Simon WILKINSON. Autophagy in cancer biology and therapy[J]. Front. Biol., 2014, 9(1): 35-50.
[15] Merlin LOPUS, Rao SETHUMADHAVAN, P. CHANDRASEKARAN, K. SREEVISHNUPRIYA, A.W. VARSHA, V. SHANTHI, K. RAMANATHAN, R. RAJASEKARAN. A computational approach to explore the functional missense mutations in the spindle check point protein Mad1[J]. Front Biol, 2013, 8(6): 618-625.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed