Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (3) : 186-194    https://doi.org/10.1007/s11515-014-1306-2
REVIEW
Mesenchymal stem cells in progression and treatment of cancers
Qingguo ZHAO,Fei LIU()
Institute for Regenerative Medicine at Scott & White, MCMD, Texas A&M Health Science Center, Temple, TX 76502, USA
 Download: PDF(353 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Mesenchymal stem or stromal cells (MSCs) from bone marrow or local tissues are recruited to stroma of almost all types of cancers during initiation and/or progression of cancer. The recruited MSCs and their derivative cancer-associated fibroblasts interact with cancer cells to promote stemness, invasion and metastasis of cancer cells. Targeting these cancer-recruited MSCs and/or the interaction between MSCs and cancer cells are promising strategies to improve cancer therapy. On the other hand, the unique tumor-homing capacity of MSCs makes them a promising vehicle to deliver various anti-cancer agents. This review summarized the recent advancement of our understanding on the interaction between MSCs and cancer cells, as well as the potential of MSCs for cancer therapy.

Keywords mesenchymal stem or stromal cells      cancer      cancer-associated fibroblasts      gene therapy      cell therapy     
Corresponding Author(s): Fei LIU   
Issue Date: 24 June 2014
 Cite this article:   
Qingguo ZHAO,Fei LIU. Mesenchymal stem cells in progression and treatment of cancers[J]. Front. Biol., 2014, 9(3): 186-194.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1306-2
https://academic.hep.com.cn/fib/EN/Y2014/V9/I3/186
Fig.1  Recuritment of MSCs to primary or metastatic cancer. Primary cancer produces various factors to moblize MSCs in bone marrow (1A) or local tissues and to creat premetastatic niche in remote organs such as lungs (1B). Moblized MSCs migrate to primary cancer (2A) or the premetastatic niche (2B), then interact with cancer cells and promote metastasis of cancer (3).
Fig.2  Interactions between cancer cells, recruited MSCs and CAFs. Cancer cells produce various factors to stimulate the production of pro-tumor factors and CAF differentiation of recurited MSCs. The pro-tumor factors produced by MSCs and CAFs promote growth and EMT of cancer cells and consequent invasion, metastasis and CSC expansion. These MSCs and CAFs also promote angiogenesis and protect cancer cells from immune destruction.
AgentMechanismCancer typeReferences
5-FC/ cytosine deaminaseProdrug conversion (5-FC to 5-FU)Subcutaneous melanomaColon cancerProstate cancerKucerova et al., 2007, 2008Cavarretta et al., 2010
CX3CL1Activates CTLs and NK cellsMetastatic melanoma and colon cancerXin et al., 2007
GCV/HSV-TKProdrug conversionSubcutaneous or orthotopicgliomaUchibori et al., 2009; Matuskova et al., 2010
IFNαImmunostimulatory, apoptosis-inducing and anti-angiogenicMetastatic melanomaRen et al., 2008a
IFNβInduces differentiation, S-phase accumulation and apoptosisOrthotopic glioma; Metastatic melanoma, breast cancer, prostate cancerRen et al., 2008b;Seo et al., 2011a
IL12Induces tumor-specific T cell responses, IFNγ-dependentMelanoma and cervical cancerSeo et al., 2011b
Oncolytic virusesDestroy tumors by viral replicationOvarian cancer,melanomas,acute lymphoblastic leukemiaMader et al., 200;Bolontrade et al., 2012;Castleton et al., 2014
TRAILInduces apoptosisMetastatic breast cancer;Orthotopic gliomaMalignant mesotheliomaLoebinger et al., 2009;Sasportas et al., 2009;Sage et al., 2014
TRAIL+ HSV-TKInduce apoptosis, Prodrug conversionMetastatic renal cell carcinoma, glioblastoma multiformeKim et al., 2013;Martinez-Quintanilla et al., 2013
NanoparticlesPhotoactivation of cell deathOsteosarcoma in vitroDuchi et al., 2013
Tab.1  Agents delivered by MSCs to treat cancer.
1 BolontradeM F, SgangaL, PiaggioE, VialeD L, SorrentinoM A, RobinsonA, SevleverG, GarcíaM G, MazzoliniG, PodhajcerO L (2012). A specific subpopulation of mesenchymal stromal cell carriers overrides melanoma resistance to an oncolytic adenovirus. Stem Cells Dev, 21(14): 2689–2702
doi: 10.1089/scd.2011.0643 pmid: 22462538
2 BrunoS, CollinoF, DeregibusM C, GrangeC, TettaC, CamussiG (2013). Microvesicles derived from human bone marrow mesenchymal stem cells inhibit tumor growth. Stem Cells Dev, 22(5): 758–771
doi: 10.1089/scd.2012.0304 pmid: 23034046
3 CarreroR, CerradaI, LledóE, DopazoJ, García-GarcíaF, RubioM P, TriguerosC, DorronsoroA, Ruiz-SauriA, MonteroJ A, SepúlvedaP (2012). IL1β induces mesenchymal stem cells migration and leucocyte chemotaxis through NF-κB. Stem Cell Rev, 8(3): 905–916
doi: 10.1007/s12015-012-9364-9 pmid: 22467443
4 CastletonA, DeyA, BeatonB, PatelB, AucherA, DavisD M, FieldingA K (2014). Human mesenchymal stromal cells deliver systemic oncolytic measles virus to treat acute lymphoblastic leukemia in the presence of humoral immunity. Blood, 123(9): 1327–1335
doi: 10.1182/blood-2013-09-528851 pmid: 24345754
5 CavarrettaI T, AltanerovaV, MatuskovaM, KucerovaL, CuligZ, AltanerC (2010). Adipose tissue-derived mesenchymal stem cells expressing prodrug-converting enzyme inhibit human prostate tumor growth. Mol Ther, 18(1): 223–231
doi: 10.1038/mt.2009.237 pmid: 19844197
6 ChaturvediP, GilkesD M, WongC C, LuoW, ZhangH, WeiH, TakanoN, SchitoL, LevchenkoA, SemenzaG L, and the Kshitiz (2013). Hypoxia-inducible factor-dependent breast cancer-mesenchymal stem cell bidirectional signaling promotes metastasis. J Clin Invest, 123(1): 189–205
pmid: 23318994
7 ChenM Y, LieP C, LiZ L, WeiX (2009). Endothelial differentiation of Wharton’s jelly-derived mesenchymal stem cells in comparison with bone marrow-derived mesenchymal stem cells. Exp Hematol, 37(5): 629–640
doi: 10.1016/j.exphem.2009.02.003 pmid: 19375653
8 De BoeckA, PauwelsP, HensenK, RummensJ L, WestbroekW, HendrixA, MaynardD, DenysH, LambeinK, BraemsG, GespachC, BrackeM, De WeverO (2013). Bone marrow-derived mesenchymal stem cells promote colorectal cancer progression through paracrine neuregulin 1/HER3 signalling. Gut, 62(4): 550–560
doi: 10.1136/gutjnl-2011-301393 pmid: 22535374
9 de PeppoG M, Marcos-CamposI, KahlerD J, AlsalmanD, ShangL, Vunjak-NovakovicG, MaroltD (2013). Engineering bone tissue substitutes from human induced pluripotent stem cells. Proc Natl Acad Sci USA, 110(21): 8680–8685
doi: 10.1073/pnas.1301190110 pmid: 23653480
10 Di StasiA, TeyS K, DottiG, FujitaY, Kennedy-NasserA, MartinezC, StraathofK, LiuE, DurettA G, GrilleyB, LiuH, CruzC R, SavoldoB, GeeA P, SchindlerJ, KranceR A, HeslopH E, SpencerD M, RooneyC M, BrennerM K (2011). Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med, 365(18): 1673–1683
doi: 10.1056/NEJMoa1106152 pmid: 22047558
11 DuchiS, SotgiuG, LucarelliE, BallestriM, DozzaB, SantiS, GuerriniA, DambruosoP, GianniniS, DonatiD, FerroniC, VarchiG (2013). Mesenchymal stem cells as delivery vehicle of porphyrin loaded nanoparticles: effective photoinduced in vitro killing of osteosarcoma. J Control Release, 168(2): 225–237
doi: 10.1016/j.jconrel.2013.03.012 pmid: 23524189
12 DvorakH F (1986). Tumors: wounds that do not heal.Similarities between tumor stroma generation and wound healing. N Engl J Med, 315(26): 1650–1659
doi: 10.1056/NEJM198612253152606 pmid: 3537791
13 El-HaibiC P, BellG W, ZhangJ, CollmannA Y, WoodD, ScherberC M, CsizmadiaE, MarianiO, ZhuC, CampagneA, TonerM, BhatiaS N, IrimiaD, Vincent-SalomonA, KarnoubA E (2012). Critical role for lysyl oxidase in mesenchymal stem cell-driven breast cancer malignancy. Proc Natl Acad Sci USA, 109(43): 17460–17465
doi: 10.1073/pnas.1206653109 pmid: 23033492
14 ErlerJ T, BennewithK L, CoxT R, LangG, BirdD, KoongA, LeQ T, GiacciaA J (2009). Hypoxia-induced lysyl oxidase is a critical mediator of bone marrow cell recruitment to form the premetastatic niche. Cancer Cell, 15(1): 35–44
doi: 10.1016/j.ccr.2008.11.012 pmid: 19111879
15 García-CastroJ, AlemanyR, CascallóM, Martínez-QuintanillaJ, ArrieroM M, LassalettaA, MaderoL, RamírezM (2010). Treatment of metastatic neuroblastoma with systemic oncolytic virotherapy delivered by autologous mesenchymal stem cells: an exploratory study. Cancer Gene Ther, 17(7): 476–483
doi: 10.1038/cgt.2010.4 pmid: 20168350
16 GoldenbergD M, GoldD V, LooM, LiuD, ChangC H, JaffeE S (2013). Horizontal transmission of malignancy: in-vivo fusion of human lymphomas with hamster stroma produces tumors retaining human genes and lymphoid pathology. PLoS ONE, 8(2): e55324
doi: 10.1371/journal.pone.0055324 pmid: 23405135
17 GrisendiG, BussolariR, CafarelliL, PetakI, RasiniV, VeronesiE, De SantisG, SpanoC, TagliazzucchiM, Barti-JuhaszH, ScarabelliL, BambiF, FrassoldatiA, RossiG, CasaliC, MorandiU, HorwitzE M, PaolucciP, ConteP, DominiciM (2010). Adipose-derived mesenchymal stem cells as stable source of tumor necrosis factor-related apoptosis-inducing ligand delivery for cancer therapy. Cancer Res, 70(9): 3718–3729
doi: 10.1158/0008-5472.CAN-09-1865 pmid: 20388793
18 HoI A, TohH C, NgW H, TeoY L, GuoC M, HuiK M, LamP Y (2013). Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells, 31(1): 146–155
doi: 10.1002/stem.1247 pmid: 23034897
19 HongH S, LeeJ, LeeE, KwonY S, LeeE, AhnW, JiangM H, KimJ C, SonY (2009). A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells. Nat Med, 15(4): 425–435
doi: 10.1038/nm.1909 pmid: 19270709
20 HoughtonJ, StoicovC, NomuraS, RogersA B, CarlsonJ, LiH, CaiX, FoxJ G, GoldenringJ R, WangT C (2004). Gastric cancer originating from bone marrow-derived cells. Science, 306(5701): 1568–1571
doi: 10.1126/science.1099513 pmid: 15567866
21 IpJ E, WuY, HuangJ, ZhangL, PrattR E, DzauV J (2007). Mesenchymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and engraftment. Mol Biol Cell, 18(8): 2873–2882
doi: 10.1091/mbc.E07-02-0166 pmid: 17507648
22 JacobsenB M, HarrellJ C, JedlickaP, BorgesV F, Varella-GarciaM, HorwitzK B (2006). Spontaneous fusion with, and transformation of mouse stroma by, malignant human breast cancer epithelium. Cancer Res, 66(16): 8274–8279
doi: 10.1158/0008-5472.CAN-06-1456 pmid: 16912208
23 JohannP D, VaeglerM, GiesekeF, MangP, Armeanu-EbingerS, KlubaT, HandgretingerR, MüllerI (2010). Tumour stromal cells derived from paediatric malignancies display MSC-like properties and impair NK cell cytotoxicity. BMC Cancer, 10(1): 501
doi: 10.1186/1471-2407-10-501 pmid: 20858262
24 JungY, KimJ K, ShiozawaY, WangJ, MishraA, JosephJ, BerryJ E, McGeeS, LeeE, SunH, WangJ, JinT, ZhangH, DaiJ, KrebsbachP H, KellerE T, PientaK J, TaichmanR S (2013). Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nat Commun, 4: 1795
doi: 10.1038/ncomms2766 pmid: 23653207
25 KarnoubA E, DashA B, VoA P, SullivanA, BrooksM W, BellG W, RichardsonA L, PolyakK, TuboR, WeinbergR A (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162): 557–563
doi: 10.1038/nature06188 pmid: 17914389
26 KhakooA Y, PatiS, AndersonS A, ReidW, ElshalM F, RoviraI I, NguyenA T, MalideD, CombsC A, HallG, ZhangJ, RaffeldM, RogersT B, Stetler-StevensonW, FrankJ A, ReitzM, FinkelT (2006). Human mesenchymal stem cells exert potent antitumorigenic effects in a model of Kaposi’s sarcoma. J Exp Med, 203(5): 1235–1247
doi: 10.1084/jem.20051921 pmid: 16636132
27 KiddS, CaldwellL, DietrichM, SamudioI, SpaethE L, WatsonK, ShiY, AbbruzzeseJ, KonoplevaM, AndreeffM, MariniF C (2010). Mesenchymal stromal cells alone or expressing interferon-beta suppress pancreatic tumors in vivo, an effect countered by anti-inflammatory treatment. Cytotherapy, 12(5): 615–625
doi: 10.3109/14653241003631815 pmid: 20230221
28 KimS W, KimS J, ParkS H, YangH G, KangM C, ChoiY W, KimS M, JeunS S, SungY C (2013). Complete regression of metastatic renal cell carcinoma by multiple injections of engineered mesenchymal stem cells expressing dodecameric TRAIL and HSV-TK. Clin Cancer Res, 19(2): 415–427
doi: 10.1158/1078-0432.CCR-12-1568 pmid: 23204131
29 KinnairdT, StabileE, BurnettM S, LeeC W, BarrS, FuchsS, EpsteinS E (2004). Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ Res, 94(5): 678–685
doi: 10.1161/01.RES.0000118601.37875.AC pmid: 14739163
30 KitadaiY, SasakiT, KuwaiT, NakamuraT, BucanaC D, HamiltonS R, FidlerI J (2006). Expression of activated platelet-derived growth factor receptor in stromal cells of human colon carcinomas is associated with metastatic potential. Int J Cancer, 119(11): 2567–2574
doi: 10.1002/ijc.22229 pmid: 16988946
31 Kolluri,K.K., Laurent,G.J., and Janes,S.M. (2013). Mesenchymal stem cells as vectors for lung cancer therapy. Respiration; international review of thoracic diseases85, 443–451.
32 KomlevV S, MastrogiacomoM, PeyrinF, CanceddaR, RustichelliF (2009). X-ray synchrotron radiation pseudo-holotomography as a new imaging technique to investigate angio- and microvasculogenesis with no usage of contrast agents. Tissue Eng Part C Methods, 15(3): 425–430
doi: 10.1089/ten.tec.2008.0428 pmid: 19231984
33 KramanM, BambroughP J, ArnoldJ N, RobertsE W, MagieraL, JonesJ O, GopinathanA, TuvesonD A, FearonD T (2010). Suppression of antitumor immunity by stromal cells expressing fibroblast activation protein-alpha. Science, 330(6005): 827–830
doi: 10.1126/science.1195300 pmid: 21051638
34 KrausgrillB, VantlerM, BurstV, RathsM, HalbachM, FrankK, SchynkowskiS, SchenkK, HeschelerJ, RosenkranzS, Müller-EhmsenJ (2009). Influence of cell treatment with PDGF-BB and reperfusion on cardiac persistence of mononuclear and mesenchymal bone marrow cells after transplantation into acute myocardial infarction in rats. Cell Transplant, 18(8): 847–853
doi: 10.3727/096368909X471134 pmid: 19520046
35 KucerovaL, AltanerovaV, MatuskovaM, TyciakovaS, AltanerC (2007). Adipose tissue-derived human mesenchymal stem cells mediated prodrug cancer gene therapy. Cancer Res, 67(13): 6304–6313
doi: 10.1158/0008-5472.CAN-06-4024 pmid: 17616689
36 KucerovaL, MatuskovaM, PastorakovaA, TyciakovaS, JakubikovaJ, BohovicR, AltanerovaV, AltanerC (2008). Cytosine deaminase expressing human mesenchymal stem cells mediated tumour regression in melanoma bearing mice. J Gene Med, 10(10): 1071–1082
doi: 10.1002/jgm.1239 pmid: 18671316
37 LarsonB L, YlostaloJ, LeeR H, GregoryC, ProckopD J (2010). Sox11 is expressed in early progenitor human multipotent stromal cells and decreases with extensive expansion of the cells. Tissue Eng Part A, 16(11): 3385–3394
doi: 10.1089/ten.tea.2010.0085 pmid: 20626275
38 LazovaR, LabergeG S, DuvallE, SpoelstraN, KlumpV, SznolM, CooperD, SpritzR A, ChangJ T, PawelekJ M (2013). A melanoma brain metastasis with a donor-patient hybrid genome following bone marrow transplantation: first evidence for fusion in human cancer. PLoS ONE, 8(6): e66731
doi: 10.1371/journal.pone.0066731 pmid: 23840523
39 LeeR H, PulinA A, SeoM J, KotaD J, YlostaloJ, LarsonB L, Semprun-PrietoL, DelafontaineP, ProckopD J (2009a). Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell, 5(1): 54–63
doi: 10.1016/j.stem.2009.05.003 pmid: 19570514
40 LeeR H, SeoM J, PulinA A, GregoryC A, YlostaloJ, ProckopD J (2009b). The CD34-like protein PODXL and alpha6-integrin (CD49f) identify early progenitor MSCs with increased clonogenicity and migration to infarcted heart in mice. Blood, 113(4): 816–826
doi: 10.1182/blood-2007-12-128702 pmid: 18818395
41 LeeR H, YoonN, ReneauJ C, ProckopD J (2012). Preactivation of human MSCs with TNF-α enhances tumor-suppressive activity. Cell Stem Cell, 11(6): 825–835
doi: 10.1016/j.stem.2012.10.001 pmid: 23142520
42 LesleyJ, GálI, MahoneyD J, CordellM R, RuggM S, HymanR, DayA J, MikeczK (2004). TSG-6 modulates the interaction between hyaluronan and cell surface CD44. J Biol Chem, 279(24): 25745–25754
doi: 10.1074/jbc.M313319200 pmid: 15060082
43 LiH J, ReinhardtF, HerschmanH R, WeinbergR A (2012). Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov, 2(9): 840–855
doi: 10.1158/2159-8290.CD-12-0101 pmid: 22763855
44 LinR, MaH, DingZ, ShiW, QianW, SongJ, HouX (2013). Bone marrow-derived mesenchymal stem cells favor the immunosuppressive T cells skewing in a Helicobacter pylori model of gastric cancer. Stem Cells Dev, 22(21): 2836–2848
doi: 10.1089/scd.2013.0166 pmid: 23777268
45 LiuS, GinestierC, OuS J, ClouthierS G, PatelS H, MonvilleF, KorkayaH, HeathA, DutcherJ, KleerC G, JungY, DontuG, TaichmanR, WichaM S (2011a). Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res, 71(2): 614–624
doi: 10.1158/0008-5472.CAN-10-0538 pmid: 21224357
46 LiuY, HanZ P, ZhangS S, JingY Y, BuX X, WangC Y, SunK, JiangG C, ZhaoX, LiR, GaoL, ZhaoQ D, WuM C, WeiL X (2011b). Effects of inflammatory factors on mesenchymal stem cells and their role in the promotion of tumor angiogenesis in colon cancer. J Biol Chem, 286(28): 25007–25015
doi: 10.1074/jbc.M110.213108 pmid: 21592963
47 LoebingerM R, EddaoudiA, DaviesD, JanesS M (2009). Mesenchymal stem cell delivery of TRAIL can eliminate metastatic cancer. Cancer Res, 69(10): 4134–4142
doi: 10.1158/0008-5472.CAN-08-4698 pmid: 19435900
48 LoebingerM R, JanesS M (2010). Stem cells as vectors for antitumour therapy. Thorax, 65(4): 362–369
doi: 10.1136/thx.2009.128025 pmid: 20388765
49 LuY R, YuanY, WangX J, WeiL L, ChenY N, CongC, LiS F, LongD, TanW D, MaoY Q, ZhangJ, LiY P, ChengJ Q (2008). The growth inhibitory effect of mesenchymal stem cells on tumor cells in vitro and in vivo. Cancer Biol Ther, 7(2): 245–251
doi: 10.4161/cbt.7.2.5296 pmid: 18059192
50 MaderE K, MaeyamaY, LinY, ButlerG W, RussellH M, GalanisE, RussellS J, DietzA B, PengK W (2009). Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin Cancer Res, 15(23): 7246–7255
doi: 10.1158/1078-0432.CCR-09-1292 pmid: 19934299
51 Martinez-QuintanillaJ, BhereD, HeidariP, HeD, MahmoodU, ShahK (2013). Therapeutic efficacy and fate of bimodal engineered stem cells in malignant brain tumors. Stem Cells, 31(8): 1706–1714
doi: 10.1002/stem.1355 pmid: 23389839
52 MarxJ (2008). Cancer biology.All in the stroma: cancer’s Cosa Nostra. Science, 320(5872): 38–41
doi: 10.1126/science.320.5872.38 pmid: 18388269
53 MatuskovaM, HlubinovaK, PastorakovaA, HunakovaL, AltanerovaV, AltanerC, KucerovaL (2010). HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells. Cancer Lett, 290(1): 58–67
doi: 10.1016/j.canlet.2009.08.028 pmid: 19765892
54 MiZ, BhattacharyaS D, KimV M, GuoH, TalbotL J, KuoP C (2011). Osteopontin promotes CCL5-mesenchymal stromal cell-mediated breast cancer metastasis. Carcinogenesis, 32(4): 477–487
doi: 10.1093/carcin/bgr009 pmid: 21252118
55 MiZ, GuoH, RussellM B, LiuY, SullengerB A, KuoP C (2009). RNA aptamer blockade of osteopontin inhibits growth and metastasis of MDA-MB231 breast cancer cells. Mol Ther, 17(1): 153–161
doi: 10.1038/mt.2008.235 pmid: 18985031
56 MishraP J, MishraP J, HumeniukR, MedinaD J, AlexeG, MesirovJ P, GanesanS, GlodJ W, BanerjeeD (2008). Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res, 68(11): 4331–4339
doi: 10.1158/0008-5472.CAN-08-0943 pmid: 18519693
57 NasefA, MathieuN, ChapelA, FrickJ, FrançoisS, MazurierC, BoutarfaA, BouchetS, GorinN C, ThierryD, FouillardL (2007). Immunosuppressive effects of mesenchymal stem cells: involvement of HLA-G. Transplantation, 84(2): 231–237
doi: 10.1097/01.tp.0000267918.07906.08 pmid: 17667815
58 PatelS A, MeyerJ R, GrecoS J, CorcoranK E, BryanM, RameshwarP (2010). Mesenchymal stem cells protect breast cancer cells through regulatory T cells: role of mesenchymal stem cell-derived TGF-beta. J Immunol, 184(10): 5885–5894
doi: 10.4049/jimmunol.0903143 pmid: 20382885
59 PeinadoH, AlečkovićM, LavotshkinS, MateiI, Costa-SilvaB, Moreno-BuenoG, Hergueta-RedondoM, WilliamsC, García-SantosG, GhajarC, Nitadori-HoshinoA, HoffmanC, BadalK, GarciaB A, CallahanM K, YuanJ, MartinsV R, SkogJ, KaplanR N, BradyM S, WolchokJ D, ChapmanP B, KangY, BrombergJ, LydenD (2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med, 18(6): 883–891
doi: 10.1038/nm.2753 pmid: 22635005
60 PeterM E (2009). Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle, 8(6): 843–852
doi: 10.4161/cc.8.6.7907 pmid: 19221491
61 QiaoL, XuZ L, ZhaoT J, YeL H, ZhangX D (2008). Dkk-1 secreted by mesenchymal stem cells inhibits growth of breast cancer cells via depression of Wnt signalling. Cancer Lett, 269(1): 67–77
doi: 10.1016/j.canlet.2008.04.032 pmid: 18571836
62 QuanteM, TuS P, TomitaH, GondaT, WangS S, TakashiS, BaikG H, ShibataW, DipreteB, BetzK S, FriedmanR, VarroA, TyckoB, WangT C (2011). Bone marrow-derived myofibroblasts contribute to the mesenchymal stem cell niche and promote tumor growth. Cancer Cell, 19(2): 257–272
doi: 10.1016/j.ccr.2011.01.020 pmid: 21316604
63 RappaG, MercapideJ, LoricoA (2012). Spontaneous formation of tumorigenic hybrids between breast cancer and multipotent stromal cells is a source of tumor heterogeneity. Am J Pathol, 180(6): 2504–2515
doi: 10.1016/j.ajpath.2012.02.020 pmid: 22542847
64 RenC, KumarS, ChandaD, ChenJ, MountzJ D, PonnazhaganS (2008a). Therapeutic potential of mesenchymal stem cells producing interferon-alpha in a mouse melanoma lung metastasis model. Stem Cells, 26(9): 2332–2338
doi: 10.1634/stemcells.2008-0084 pmid: 18617688
65 RenC, KumarS, ChandaD, KallmanL, ChenJ, MountzJ D, PonnazhaganS (2008b). Cancer gene therapy using mesenchymal stem cells expressing interferon-beta in a mouse prostate cancer lung metastasis model. Gene Ther, 15(21): 1446–1453
doi: 10.1038/gt.2008.101 pmid: 18596829
66 SageE K, KolluriK K, McNultyK, LourencoS D, KalberT L, OrdidgeK L, DaviesD, Gary LeeY C, GiangrecoA, JanesS M (2014). Systemic but not topical TRAIL-expressing mesenchymal stem cells reduce tumour growth in malignant mesothelioma. Thorax,
doi: 10.1136/thoraxjnl-2013-204110 pmid: 24567297
67 SánchezL, Gutierrez-ArandaI, LigeroG, RubioR, Muñoz-LópezM, García-PérezJ L, RamosV, RealP J, BuenoC, RodríguezR, DelgadoM, MenendezP (2011). Enrichment of human ESC-derived multipotent mesenchymal stem cells with immunosuppressive and anti-inflammatory properties capable to protect against experimental inflammatory bowel disease. Stem Cells, 29(2): 251–262
doi: 10.1002/stem.569 pmid: 21732483
68 SasportasL S, KasmiehR, WakimotoH, HingtgenS, van de WaterJ A, MohapatraG, FigueiredoJ L, MartuzaR L, WeisslederR, ShahK (2009). Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci USA, 106(12): 4822–4827
doi: 10.1073/pnas.0806647106 pmid: 19264968
69 SeoK W, LeeH W, OhY I, AhnJ O, KohY R, OhS H, KangS K, YounH Y (2011a). Anti-tumor effects of canine adipose tissue-derived mesenchymal stromal cell-based interferon-β gene therapy and cisplatin in a mouse melanoma model. Cytotherapy, 13(8): 944–955
doi: 10.3109/14653249.2011.584864 pmid: 21846298
70 SeoS H, KimK S, ParkS H, SuhY S, KimS J, JeunS S, SungY C (2011b). The effects of mesenchymal stem cells injected via different routes on modified IL-12-mediated antitumor activity. Gene Ther, 18(5): 488–495
doi: 10.1038/gt.2010.170 pmid: 21228885
71 ShangguanL, TiX, KrauseU, HaiB, ZhaoY, YangZ, LiuF (2012). Inhibition of TGF-β/Smad signaling by BAMBI blocks differentiation of human mesenchymal stem cells to carcinoma-associated fibroblasts and abolishes their protumor effects. Stem Cells, 30(12): 2810–2819
doi: 10.1002/stem.1251 pmid: 23034983
72 ShimodaM, MellodyK T, OrimoA (2010). Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol, 21(1): 19–25
doi: 10.1016/j.semcdb.2009.10.002 pmid: 19857592
73 ShinagawaK, KitadaiY, TanakaM, SumidaT, OnoyamaM, OhnishiM, OharaE, HigashiY, TanakaS, YasuiW, ChayamaK (2013). Stroma-directed imatinib therapy impairs the tumor-promoting effect of bone marrow-derived mesenchymal stem cells in an orthotopic transplantation model of colon cancer. Int J Cancer, 132(4): 813–823
doi: 10.1002/ijc.27735 pmid: 22821812
74 SongC, LiG (2011). CXCR4 and matrix metalloproteinase-2 are involved in mesenchymal stromal cell homing and engraftment to tumors. Cytotherapy, 13(5): 549–561
doi: 10.3109/14653249.2010.542457 pmid: 21171825
75 SpaethE L, LabaffA M, TooleB P, KloppA, AndreeffM, MariniF C (2013). Mesenchymal CD44 expression contributes to the acquisition of an activated fibroblast phenotype via TWIST activation in the tumor microenvironment. Cancer Res, 73(17): 5347–5359
doi: 10.1158/0008-5472.CAN-13-0087 pmid: 23838935
76 StroncekD, BerlyneD, FoxB, GeeA, HeimfeldS, LindbladR, LoperK, McKennaD Jr, RooneyC, SabatinoM, WagnerE, WhitesideT, WoodD, Heath-MondoroT (2010). Developments in clinical cell therapy. Cytotherapy, 12(3): 425–428
doi: 10.3109/14653240903511952 pmid: 20078383
77 SuzukiK, SunR, OriguchiM, KanehiraM, TakahataT, ItohJ, UmezawaA, KijimaH, FukudaS, SaijoY (2011). Mesenchymal stromal cells promote tumor growth through the enhancement of neovascularization. Mol Med, 17(7-8): 579–587
doi: 10.2119/molmed.2010.00157 pmid: 21424106
78 TokarE J, DiwanB A, WaalkesM P (2010). Arsenic exposure transforms human epithelial stem/progenitor cells into a cancer stem-like phenotype. Environ Health Perspect, 118(1): 108–115
pmid: 20056578
79 Toledano FurmanN E, Lupu-HaberY, BronshteinT, KanetiL, LetkoN, WeinsteinE, BaruchL, MachlufM (2013). Reconstructed stem cell nanoghosts: a natural tumor targeting platform. Nano Lett, 13(7): 3248–3255
doi: 10.1021/nl401376w pmid: 23786263
80 UchiboriR, OkadaT, ItoT, UrabeM, MizukamiH, KumeA, OzawaK (2009). Retroviral vector-producing mesenchymal stem cells for targeted suicide cancer gene therapy. J Gene Med, 11(5): 373–381
doi: 10.1002/jgm.1313 pmid: 19274675
81 VarnatF, DuquetA, MalerbaM, ZbindenM, MasC, GervazP, Ruiz i AltabaA (2009). Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med, 1(6-7): 338–351
doi: 10.1002/emmm.200900039 pmid: 20049737
82 ViswanathanS, KeatingA, DeansR, HemattiP, ProckopD, StroncekD F, StaceyG, WeissD J, MasonC, RaoM S (2014). Soliciting Strategies for Developing Cell-Based Reference Materials to Advance MSC Research and Clinical Translation. Stem Cells Dev: 140310064908006
doi: 10.1089/scd.2013.0591 pmid: 24422625
83 WangM L, PanC M, ChiouS H, ChenW H, ChangH Y, LeeO K, HsuH S, WuC W (2012). Oncostatin m modulates the mesenchymal-epithelial transition of lung adenocarcinoma cells by a mesenchymal stem cell-mediated paracrine effect. Cancer Res, 72(22): 6051–6064
doi: 10.1158/0008-5472.CAN-12-1568 pmid: 23139208
84 WuS, JuG Q, DuT, ZhuY J, LiuG H (2013). Microvesicles derived from human umbilical cord Wharton’s jelly mesenchymal stem cells attenuate bladder tumor cell growth in vitro and in vivo. PLoS ONE, 8(4): e61366
doi: 10.1371/journal.pone.0061366 pmid: 23593475
85 WuY, ZhouB P (2010). Snail: More than EMT. Cell Adhes Migr, 4(2): 199–203
doi: 10.4161/cam.4.2.10943 pmid: 20168078
86 XinH, KanehiraM, MizuguchiH, HayakawaT, KikuchiT, NukiwaT, SaijoY (2007). Targeted delivery of CX3CL1 to multiple lung tumors by mesenchymal stem cells. Stem Cells, 25(7): 1618–1626
doi: 10.1634/stemcells.2006-0461 pmid: 17412895
87 XuM H, GaoX, LuoD, ZhouX D, XiongW, LiuG X (2014). EMT and acquisition of stem cell-like properties are involved in spontaneous formation of tumorigenic hybrids between lung cancer and bone marrow-derived mesenchymal stem cells. PLoS ONE, 9(2): e87893
doi: 10.1371/journal.pone.0087893 pmid: 24516569
88 XuS, MenuE, De BeckerA, Van CampB, VanderkerkenK, Van RietI (2012). Bone marrow-derived mesenchymal stromal cells are attracted by multiple myeloma cell-produced chemokine CCL25 and favor myeloma cell growth in vitro and in vivo. Stem Cells, 30(2): 266–279
doi: 10.1002/stem.787 pmid: 22102554
[1] Vivek Vishnu Anasa, Palaniyandi Ravanan, Priti Talwar. Multifaceted roles of ASB proteins and its pathological significance[J]. Front. Biol., 2018, 13(5): 376-388.
[2] Dingcheng Gao, Vivek Mittal, Yi Ban, Ana Rita Lourenco, Shira Yomtoubian, Sharrell Lee. Metastatic tumor cells – genotypes and phenotypes[J]. Front. Biol., 2018, 13(4): 277-286.
[3] Soumya Nair, Sandra Suresh, Arya Kaniyassery, Panchami Jaya, Jayanthi Abraham. A review on melatonin action as therapeutic agent in cancer[J]. Front. Biol., 2018, 13(3): 180-189.
[4] Muhammad Naveed, Mohammad Raees, Irfan Liaqat, Mohammad Kashif. Clastogenic ROS and biophotonics in precancerous diagnosis[J]. Front. Biol., 2018, 13(2): 103-122.
[5] D. Brooke Widner, D. Clark Files, Kathryn E. Weaver, Yusuke Shiozawa. Preclinical and clinical studies on cancer-associated cachexia[J]. Front. Biol., 2018, 13(1): 11-18.
[6] Razia Rahman, Lokesh Kumar Gahlot, Yasha Hasija. miRACA: A database for miRNAs associated with cancers and age related disorders (ARD)[J]. Front. Biol., 2018, 13(1): 36-50.
[7] Amir Abdoli. High salt and fat intake, inflammation, and risk of cancer[J]. Front. Biol., 2017, 12(6): 387-391.
[8] Pang-Kuo Lo,Benjamin Wolfson,Qun Zhou. Cellular, physiological and pathological aspects of the long non-coding RNA NEAT1[J]. Front. Biol., 2016, 11(6): 413-426.
[9] Sahar Al Seesi,Alok Das Mohapatra,Arpita Pawashe,Ion I. Mandoiu,Fei Duan. Finding neoepitopes in mouse models of personalized cancer immunotherapy[J]. Front. Biol., 2016, 11(5): 366-375.
[10] Gahana Advani,Anderly C. Chueh,Ya Chee Lim,Amardeep Dhillon,Heung-Chin Cheng. Csk-homologous kinase (Chk/Matk): a molecular policeman suppressing cancer formation and progression[J]. Front. Biol., 2015, 10(3): 195-202.
[11] Caiguo ZHANG. The correlation between iron homeostasis and telomere maintenance[J]. Front. Biol., 2014, 9(5): 347-355.
[12] Baoxiang GUAN,Ashraful HOQUE,Xiaochun XU. Amiloride and guggulsterone suppression of esophageal cancer cell growth in vitro and in nude mouse xenografts[J]. Front. Biol., 2014, 9(1): 75-81.
[13] Noor GAMMOH,Simon WILKINSON. Autophagy in cancer biology and therapy[J]. Front. Biol., 2014, 9(1): 35-50.
[14] Merlin LOPUS, Rao SETHUMADHAVAN, P. CHANDRASEKARAN, K. SREEVISHNUPRIYA, A.W. VARSHA, V. SHANTHI, K. RAMANATHAN, R. RAJASEKARAN. A computational approach to explore the functional missense mutations in the spindle check point protein Mad1[J]. Front Biol, 2013, 8(6): 618-625.
[15] Olga KSIONDA, Andre LIMNANDER, Jeroen P. ROOSE. RasGRP Ras guanine nucleotide exchange factors in cancer[J]. Front Biol, 2013, 8(5): 508-532.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed