|
|
Multifaceted roles of ASB proteins and its pathological significance |
Vivek Vishnu Anasa, Palaniyandi Ravanan, Priti Talwar( ) |
Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014 India |
|
|
Abstract BACKGROUND: Post-translational (PT) modification in cells regulates many intracellular events like signal transduction, transcription, cell cycle, protein quality control, apoptosis and cellular development. Ubiquitination is one of the PT modifications which functions as a marker for degradation of target proteins by the proteasome and as a regulatory mechanism for several signalling pathways. The ubiquitination mechanism requires multiple enzymes, including E1, E2, and E3 ligases. Among them, E3 ligases play a major role in recognizing target proteins and an essential feature of protein homeostatic mechanisms within the cell. Most of the ASB (ankyrin repeat SOCS box) proteins function as RING family of E3 ubiquitin ligases characterized by the presence of two conserved domains N-terminal ankyrin repeat and C-terminal SOCS box domain METHODS and RESULTS: Current studies have shown that some ASBs function as important regulators of several signalling pathways. This review gives an overview of ASB proteins on numerous cellular processes such as insulin signalling, spermatogenesis, myogenesis and in cellular development. Including various pathological situations, such as cancer, primary open-angle glaucoma, and inflammation, indicating that ASBs has important functions in both normal and pathological development CONCLUSIONS: This article provides a precise comprehensive focus on ASBs protein structure, its biological functions, and their pathological significance.
|
Keywords
ankyrin repeat
SOCS box
E3 ligase
cancer
spermatogenesis
cellular development
|
Corresponding Author(s):
Priti Talwar
|
Online First Date: 07 September 2018
Issue Date: 25 October 2018
|
|
1 |
Albertson D G, Collins C, McCormick F, Gray J W (2003). Chromosome aberrations in solid tumors. Nat Genet, 34(4): 369–376
https://doi.org/10.1038/ng1215
pmid: 12923544
|
2 |
Andresen C A, Smedegaard S, Sylvestersen K B, Svensson C, Iglesias-Gato D, Cazzamali G, Nielsen T K, Nielsen M L, Flores-Morales A (2014). Protein interaction screening for the ankyrin repeats and suppressor of cytokine signaling (SOCS) box (ASB) family identify Asb11 as a novel endoplasmic reticulum resident ubiquitin ligase. J Biol Chem, 289(4): 2043–2054
https://doi.org/10.1074/jbc.M113.534602
pmid: 24337577
|
3 |
Au V, Tsang F H, Man K, Fan S T, Poon R T, Lee N P (2014). Expression of ankyrin repeat and SOCS box containing 4 (ASB4) confers migration and invasion properties of hepatocellular carcinoma cells. Biosci Trends, 8(2): 101–110
https://doi.org/10.5582/bst.8.101
pmid: 24815387
|
4 |
Baer C, Claus R, Plass C (2013). Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res, 73(2): 473–477
https://doi.org/10.1158/0008-5472.CAN-12-3731
pmid: 23316035
|
5 |
Bello N F, Lamsoul I, Heuzé M L, Métais A, Moreaux G, Calderwood D A, Duprez D, Moog-Lutz C, Lutz P G (2009). The E3 ubiquitin ligase specificity subunit ASB2b is a novel regulator of muscle differentiation that targets filamin B to proteasomal degradation. Cell Death Differ, 16(6): 921–932
https://doi.org/10.1038/cdd.2009.27
pmid: 19300455
|
6 |
Ben-Baruch A (2006). Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Seminars in cancer biology, Elsevier.
|
7 |
Blenk S, Engelmann J, Weniger M, Schultz J, Dittrich M, Rosenwald A, Müller-Hermelink H K, Müller T, Dandekar T (2007). Germinal center B cell-like (GCB) and activated B cell-like (ABC) type of diffuse large B cell lymphoma (DLBCL): analysis of molecular predictors, signatures, cell cycle state and patient survival. Cancer Inform, 3: 399–420
https://doi.org/10.1177/117693510700300004
pmid: 19455257
|
8 |
Bode M, Wu Y, Pi X, Lockyer P, Dechyapirom W, Portbury A L, Patterson C (2011). Regulation of ASB4 expression in the immortalized murine endothelial cell lines MS1 and SVR: a role for TNF-a and oxygen. Cell Biochem Funct, 29(4): 334
https://doi.org/10.1002/cbf.1755
pmid: 21506136
|
9 |
Boengler K, Pipp F, Fernandez B, Richter A, Schaper W, Deindl E (2003). The ankyrin repeat containing SOCS box protein 5: a novel protein associated with arteriogenesis. Biochem Biophys Res Commun, 302(1): 17–22
https://doi.org/10.1016/S0006-291X(03)00095-0
pmid: 12593841
|
10 |
Bork P (1993). Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins, 17(4): 363–374
https://doi.org/10.1002/prot.340170405
pmid: 8108379
|
11 |
Chung A S, Guan Y J, Yuan Z L, Albina J E, Chin Y E (2005). Ankyrin repeat and SOCS box 3 (ASB3) mediates ubiquitination and degradation of tumor necrosis factor receptor II. Mol Cell Biol, 25(11): 4716–4726
https://doi.org/10.1128/MCB.25.11.4716-4726.2005
pmid: 15899873
|
12 |
Clermont Y (1972). Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev, 52(1): 198–236
https://doi.org/10.1152/physrev.1972.52.1.198
pmid: 4621362
|
13 |
Costa M L, Escaleira R, Cataldo A, Oliveira F, Mermelstein C S (2004). Desmin: molecular interactions and putative functions of the muscle intermediate filament protein. Braz J Med Biol Res, 37(12): 1819–1830
https://doi.org/10.1590/S0100-879X2004001200007
pmid: 15558188
|
14 |
Coussens L M, Werb Z (2002). Inflammation and cancer. Nature, 420(6917): 860–867
https://doi.org/10.1038/nature01322
pmid: 12490959
|
15 |
Croker B A, Kiu H, Nicholson S E (2008). SOCS regulation of the JAK/STAT signalling pathway. Seminars in cell & developmental biology, Elsevier.
|
16 |
Crosetto N, Bienko M, Dikic I (2006). Ubiquitin hubs in oncogenic networks. Mol Cancer Res, 4(12): 899–904
https://doi.org/10.1158/1541-7786.MCR-06-0328
pmid: 17189380
|
17 |
da Silva M A S,Peppelenbosch M P(2003). Size matters: the emerging role of ASB proteins in controlling cell fate decisions and cancer development. Werking en functie van ASB eiwitten in de regulatie van compartimentgrootte: 15.
https://doi.org/10.1038/ncb1779
|
18 |
Debrincat M A, Zhang J G, Willson T A, Silke J, Connolly L M, Simpson R J, Alexander W S, Nicola N A, Kile B T, Hilton D J (2007). Ankyrin repeat and suppressors of cytokine signaling box protein asb-9 targets creatine kinase B for degradation. J Biol Chem, 282(7): 4728–4737
https://doi.org/10.1074/jbc.M609164200
pmid: 17148442
|
19 |
Diks S H, Bink R J, van de Water S, Joore J, van Rooijen C, Verbeek F J, den Hertog J, Peppelenbosch M P, Zivkovic D (2006). The novel gene asb11: a regulator of the size of the neural progenitor compartment. J Cell Biol, 174(4): 581–592
https://doi.org/10.1083/jcb.200601081
pmid: 16893969
|
20 |
Du W Y, Lu Z H, Ye W, Fu X, Zhou Y, Kuang C M, Wu J X, Pan Z Z, Chen S, Liu R Y, Huang W L (2017). The loss-of-function mutations and down-regulated expression of ASB3 gene promote the growth and metastasis of colorectal cancer cells. Chin J Cancer, 36(1): 11
https://doi.org/10.1186/s40880-017-0180-0
pmid: 28088228
|
21 |
Fei X, Gu X, Fan S, Yang Z, Li F, Zhang C, Gong W, Mao Y, Ji C (2012). Crystal structure of Human ASB9-2 and substrate-recognition of CKB. Protein J, 31(4): 275–284
https://doi.org/10.1007/s10930-012-9401-1
pmid: 22418839
|
22 |
Ferguson J 3rd,Wu Y(2007). Ankyrin repeat and SOCS Box Protein 4 (ASB4) is a hydroxylation substrate of factor inhibiting HIF1 {alpha}(FIH) and promotes vascular differentiation via an oxygen-dependent mechanism. Cell Signal, 19(6):1185–92
|
23 |
Ferguson J E 3rd, Wu Y, Smith K, Charles P, Powers K, Wang H, Patterson C (2007). ASB4 is a hydroxylation substrate of FIH and promotes vascular differentiation via an oxygen-dependent mechanism. Mol Cell Biol, 27(18): 6407–6419
https://doi.org/10.1128/MCB.00511-07
pmid: 17636018
|
24 |
Foord R, Taylor I A, Sedgwick S G, Smerdon S J (1999). X-ray structural analysis of the yeast cell cycle regulator Swi6 reveals variations of the ankyrin fold and has implications for Swi6 function. Nat Struct Biol, 6(2): 157–165
https://doi.org/10.1038/5845
pmid: 10048928
|
25 |
Groothuis T A, Dantuma N P, Neefjes J, Salomons F A (2006). Ubiquitin crosstalk connecting cellular processes. Cell Div, 1(1): 21
https://doi.org/10.1186/1747-1028-1-21
pmid: 17007633
|
26 |
Guibal F C, Moog-Lutz C, Smolewski P, Di Gioia Y, Darzynkiewicz Z, Lutz P G, Cayre Y E (2002). ASB-2 inhibits growth and promotes commitment in myeloid leukemia cells. J Biol Chem, 277(1): 218–224
https://doi.org/10.1074/jbc.M108476200
pmid: 11682484
|
27 |
Guo J H, Saiyin H, Wei Y H, Chen S, Chen L, Bi G, Ma L J, Zhou G J, Huang C Q, Yu L, Dai L (2004). Expression of testis specific ankyrin repeat and SOCS box-containing 17 gene. Arch Androl, 50(3): 155–161
https://doi.org/10.1080/01485010490425485
pmid: 15204681
|
28 |
Hilton D J (1999). Negative regulators of cytokine signal transduction. Cell Mol Life Sci, 55(12): 1568–1577
https://doi.org/10.1007/s000180050396
pmid: 10526574
|
29 |
Hilton D J, Richardson R T, Alexander W S, Viney E M, Willson T A, Sprigg N S, Starr R, Nicholson S E, Metcalf D, Nicola N A (1998). Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci USA, 95(1): 114–119
https://doi.org/10.1073/pnas.95.1.114
pmid: 9419338
|
30 |
Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009). Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol, 10(10): 682–696
https://doi.org/10.1038/nrm2774
pmid: 19773780
|
31 |
Hotamisligil G S (2006). Inflammation and metabolic disorders. Nature, 444(7121): 860–867
https://doi.org/10.1038/nature05485
pmid: 17167474
|
32 |
Jang C Y, Wong J, Coppinger J A, Seki A, Yates J R 3rd, Fang G (2008). DDA3 recruits microtubule depolymerase Kif2a to spindle poles and controls spindle dynamics and mitotic chromosome movement. J Cell Biol, 181(2): 255–267
https://doi.org/10.1083/jcb.200711032
pmid: 18411309
|
33 |
Johnson D G, Walker C L (1999). Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol, 39(1): 295–312
https://doi.org/10.1146/annurev.pharmtox.39.1.295
pmid: 10331086
|
34 |
Kamura T, Sato S, Haque D, Liu L, Kaelin W G Jr, Conaway R C, Conaway J W (1998). The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev, 12(24): 3872–3881
https://doi.org/10.1101/gad.12.24.3872
pmid: 9869640
|
35 |
Keller K E, Wirtz M K (2016). Working your SOCS off: The role of ASB10 and protein degradation pathways in glaucoma. Exp Eye Res
pmid: 27296073
|
36 |
Kile B T, Schulman B A, Alexander W S, Nicola N A, Martin H M, Hilton D J (2002). The SOCS box: a tale of destruction and degradation. Trends Biochem Sci, 27(5): 235–241
https://doi.org/10.1016/S0968-0004(02)02085-6
pmid: 12076535
|
37 |
Kim K S, Kim M S, Kim S K, Baek K H (2004). Murine Asb-17 expression during mouse testis development and spermatogenesis. Zygote, 12(2): 151–156
https://doi.org/10.1017/S0967199404002722
pmid: 15460110
|
38 |
Kim S K, Rhim S Y, Lee M R,Kim J S, Kim H J, Lee D R, Kim K S (2008). Stage-specific expression of ankyrin and SOCS box protein-4 (Asb-4) during spermatogenesis. Mol Cell, 25(2):317–21
|
39 |
Kohroki J, Nishiyama T, Nakamura T, Masuho Y (2005). ASB proteins interact with Cullin5 and Rbx2 to form E3 ubiquitin ligase complexes. FEBS Lett, 579(30): 6796–6802
https://doi.org/10.1016/j.febslet.2005.11.016
pmid: 16325183
|
40 |
Lai K C, Chang K W, Liu C J, Lee T C (2006). Enhanced expression of ASB6 and IFIT2 in oral squamous cell carcinoma, AACR.
|
41 |
Lamsoul I, Burande C F, Razinia Z, Houles T C, Menoret D, Baldassarre M, Erard M, Moog-Lutz C, Calderwood D A, Lutz P G (2011). Functional and structural insights into ASB2a, a novel regulator of integrin-dependent adhesion of hematopoietic cells. J Biol Chem, 286(35): 30571–30581
https://doi.org/10.1074/jbc.M111.220921
pmid: 21737450
|
42 |
Lee M R,Kim S K, Kim J S, Rhim S Y,Kim K S (2008). Expression of murine Asb-9 during mouse spermatogenesis. Mol Cell, 26(6):621–4
|
43 |
Lee N P, Leung K W, Cheung N, Lam B Y, Xu M Z, Sham P C, Lau G K, Poon R T, Fan S T, Luk J M (2008). Comparative proteomic analysis of mouse livers from embryo to adult reveals an association with progression of hepatocellular carcinoma. Proteomics, 8(10): 2136–2149
https://doi.org/10.1002/pmic.200700590
pmid: 18425728
|
44 |
Li J, Mahajan A, Tsai M D (2006). Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry, 45(51): 15168–15178
https://doi.org/10.1021/bi062188q
pmid: 17176038
|
45 |
Li J Y, Chai B, Zhang W, Wu X, Zhang C, Fritze D, Xia Z, Patterson C, Mulholland M W (2011). Ankyrin repeat and SOCS box containing protein 4 (Asb-4) colocalizes with insulin receptor substrate 4 (IRS4) in the hypothalamic neurons and mediates IRS4 degradation. BMC Neurosci, 12(1): 95
https://doi.org/10.1186/1471-2202-12-95
pmid: 21955513
|
46 |
Linossi E M, Nicholson S E (2012). The SOCS box-adapting proteins for ubiquitination and proteasomal degradation. IUBMB Life, 64(4): 316–323
https://doi.org/10.1002/iub.1011
pmid: 22362562
|
47 |
Liu Y, Li J, Zhang F, Qin W, Yao G, He X, Xue P, Ge C, Wan D, Gu J (2003). Molecular cloning and characterization of the human ASB-8 gene encoding a novel member of ankyrin repeat and SOCS box containing protein family. Biochem Biophys Res Commun, 300(4): 972–979
https://doi.org/10.1016/S0006-291X(02)02971-6
pmid: 12559969
|
48 |
Lux S E, John K M, Bennett V (1990). Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins. Nature 344(6261):36–42
|
49 |
Marcotte E M, Pellegrini M, Yeates T O, Eisenberg D (1999). A census of protein repeats. J Mol Biol, 293(1): 151–160
https://doi.org/10.1006/jmbi.1999.3136
pmid: 10512723
|
50 |
Maxwell P H, Wiesener M S, Chang G W, Clifford S C, Vaux E C, Cockman M E, Wykoff C C, Pugh C W, Maher E R, Ratcliffe P J (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 399(6733): 271–275
https://doi.org/10.1038/20459
pmid: 10353251
|
51 |
McDaneld T G, Hannon K, Moody D E (2006). Ankyrin repeat and SOCS box protein 15 regulates protein synthesis in skeletal muscle. Am J Physiol Regul Integr Comp Physiol, 290(6): R1672–R1682
https://doi.org/10.1152/ajpregu.00239.2005
pmid: 16424087
|
52 |
McDaneld T G, Spurlock D M (2008). Ankyrin repeat and suppressor of cytokine signaling (SOCS) box-containing protein (ASB) 15 alters differentiation of mouse C2C12 myoblasts and phosphorylation of mitogen-activated protein kinase and Akt. J Anim Sci, 86(11): 2897–2902
https://doi.org/10.2527/jas.2008-1076
pmid: 18641171
|
53 |
Mocellin S, Rossi C R, Pilati P, Nitti D (2005). Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev, 16(1): 35–53
https://doi.org/10.1016/j.cytogfr.2004.11.001
pmid: 15733831
|
54 |
Morris L G, Veeriah S, Chan T A (2010). Genetic determinants at the interface of cancer and neurodegenerative disease. Oncogene, 29(24): 3453–3464
https://doi.org/10.1038/onc.2010.127
pmid: 20418918
|
55 |
Mosavi L K, Cammett T J, Desrosiers D C, Peng Z Y (2004). The ankyrin repeat as molecular architecture for protein recognition. Protein Sci, 13(6): 1435–1448
https://doi.org/10.1110/ps.03554604
pmid: 15152081
|
56 |
Mosavi L K, Minor D L Jr, Peng Z Y (2002). Consensus-derived structural determinants of the ankyrin repeat motif. Proc Natl Acad Sci USA, 99(25): 16029–16034
https://doi.org/10.1073/pnas.252537899
pmid: 12461176
|
57 |
Nie L, Zhao Y, Wu W, Yang Y Z, Wang H C, Sun X H (2011). Notch-induced Asb2 expression promotes protein ubiquitination by forming non-canonical E3 ligase complexes. Cell Res, 21(5): 754–769
https://doi.org/10.1038/cr.2010.165
pmid: 21119685
|
58 |
Okumura F, Matsuzaki M, Nakatsukasa K, Kamura T (2012).The role of elongin BC-containing ubiquitin ligases. Front Oncol, 2: 10
|
59 |
Pahl H L (1999). Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 18(49): 6853–6866
https://doi.org/10.1038/sj.onc.1203239
pmid: 10602461
|
60 |
Plum L, Belgardt B F, Brüning J C (2006). Central insulin action in energy and glucose homeostasis. J Clin Invest, 116(7): 1761–1766
https://doi.org/10.1172/JCI29063
pmid: 16823473
|
61 |
Seki A, Coppinger J A, Jang C Y, Yates J R, Fang G (2008). Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science, 320(5883): 1655–1658
https://doi.org/10.1126/science.1157425
pmid: 18566290
|
62 |
Sonnhammer E L, Von Heijne G, Krogh A (1998). A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol, 6:175–82
|
63 |
Tee J M, Peppelenbosch M P (2010). Anchoring skeletal muscle development and disease: the role of ankyrin repeat domain containing proteins in muscle physiology. Crit Rev Biochem Mol Biol, 45(4): 318–330
https://doi.org/10.3109/10409238.2010.488217
pmid: 20515317
|
64 |
Tee J M, Sartori da Silva M A, Rygiel A M, Muncan V, Bink R, van den Brink G R, van Tijn P, Zivkovic D, Kodach L L, Guardavaccaro D, Diks S H, Peppelenbosch M P (2012). asb11 is a regulator of embryonic and adult regenerative myogenesis. Stem Cells Dev, 21(17): 3091–3103
https://doi.org/10.1089/scd.2012.0123
pmid: 22512762
|
65 |
Thomas J C, Matak-Vinkovic D, Van Molle I, Ciulli A (2013). Multimeric complexes among ankyrin-repeat and SOCS-box protein 9 (ASB9), ElonginBC, and Cullin 5: insights into the structure and assembly of ECS-type Cullin-RING E3 ubiquitin ligases. Biochemistry, 52(31): 5236–5246
https://doi.org/10.1021/bi400758h
pmid: 23837592
|
66 |
Thottakara T, Friedrich F W, Reischmann S, Braumann S, Schlossarek S, Krämer E, Juhr D, Schlüter H, van der Velden J, Münch J, Patten M, Eschenhagen T, Moog-Lutz C, Carrier L (2015). The E3 ubiquitin ligase Asb2b is downregulated in a mouse model of hypertrophic cardiomyopathy and targets desmin for proteasomal degradation. J Mol Cell Cardiol, 87: 214–224
https://doi.org/10.1016/j.yjmcc.2015.08.020
pmid: 26343497
|
67 |
Tokuoka M, Miyoshi N, Hitora T, Mimori K, Tanaka F, Shibata K, Ishii H, Sekimoto M, Doki Y, Mori M (2010). Clinical significance of ASB9 in human colorectal cancer. Int J Oncol, 37(5): 1105–1111
pmid: 20878058
|
68 |
Townley-Tilson W H, Wu Y, Ferguson J E 3rd, Patterson C (2014). The ubiquitin ligase ASB4 promotes trophoblast differentiation through the degradation of ID2. PLoS One, 9(2): e89451
https://doi.org/10.1371/journal.pone.0089451
pmid: 24586788
|
69 |
Uematsu K, Okumura F, Tonogai S, Joo-Okumura A, Alemayehu D H, Nishikimi A, Fukui Y, Nakatsukasa K, Kamura T (2016). ASB7 regulates spindle dynamics and genome integrity by targeting DDA3 for proteasomal degradation. J Cell Biol, 215(1): 95–106
https://doi.org/10.1083/jcb.201603062
pmid: 27697924
|
70 |
van Kouwenhove M, Kedde M, Agami R (2011). MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer, 11(9): 644–656
https://doi.org/10.1038/nrc3107
pmid: 21822212
|
71 |
Wajant H, Pfizenmaier K, Scheurich P (2003). Tumor necrosis factor signaling. Cell Death Differ, 10(1): 45–65
https://doi.org/10.1038/sj.cdd.4401189
pmid: 12655295
|
72 |
Wang J, Muntean A G, Hess J L (2012). ECSASB2 mediates MLL degradation during hematopoietic differentiation. Blood, 119(5): 1151–1161
https://doi.org/10.1182/blood-2011-06-362079
pmid: 22174154
|
73 |
Wauman J, De Smet A S, Catteeuw D, Belsham D, Tavernier J (2008). Insulin receptor substrate 4 couples the leptin receptor to multiple signaling pathways. Mol Endocrinol, 22(4): 965–977
https://doi.org/10.1210/me.2007-0414
pmid: 18165436
|
74 |
Wilcox A, Katsanakis K D, Bheda F, Pillay T S (2004). Asb6, an adipocyte-specific ankyrin and SOCS box protein, interacts with APS to enable recruitment of elongins B and C to the insulin receptor signaling complex. J Biol Chem, 279(37): 38881–38888
https://doi.org/10.1074/jbc.M406101200
pmid: 15231829
|
75 |
Wilcox G (2005). Insulin and insulin resistance. Clin Biochem Rev, 26(2): 19–39
pmid: 16278749
|
76 |
Yang X Y, Ren C P, Wang L, Li H, Jiang C J, Zhang H B, Zhao M, Yao K T (2005). Identification of differentially expressed genes in metastatic and non-metastatic nasopharyngeal carcinoma cells by suppression subtractive hybridization. Cell Oncol, 27(4): 215–223
pmid: 16308470
|
77 |
Yuan J H, Yang F, Chen B F, Lu Z, Huo X S, Zhou W P, Wang F, Sun S H (2011). The histone deacetylase 4/SP1/microrna-200a regulatory network contributes to aberrant histone acetylation in hepatocellular carcinoma. Hepatology, 54(6): 2025–2035
https://doi.org/10.1002/hep.24606
pmid: 21837748
|
78 |
Ziemin-van der Poel S, McCabe N R, Gill H J, Espinosa R 3rd, Patel Y, Harden A, Rubinelli P, Smith S D, LeBeau M M, Rowley J D (1991). Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci USA, 88(23): 10735–10739
https://doi.org/10.1073/pnas.88.23.10735
pmid: 1720549
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|