Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2018, Vol. 13 Issue (5) : 376-388    https://doi.org/10.1007/s11515-018-1506-2
RESEARCH ARTICLE
Multifaceted roles of ASB proteins and its pathological significance
Vivek Vishnu Anasa, Palaniyandi Ravanan, Priti Talwar()
Apoptosis and Cell Survival Research Lab, Department of Biosciences, School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, 632014 India
 Download: PDF(1269 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Post-translational (PT) modification in cells regulates many intracellular events like signal transduction, transcription, cell cycle, protein quality control, apoptosis and cellular development. Ubiquitination is one of the PT modifications which functions as a marker for degradation of target proteins by the proteasome and as a regulatory mechanism for several signalling pathways. The ubiquitination mechanism requires multiple enzymes, including E1, E2, and E3 ligases. Among them, E3 ligases play a major role in recognizing target proteins and an essential feature of protein homeostatic mechanisms within the cell. Most of the ASB (ankyrin repeat SOCS box) proteins function as RING family of E3 ubiquitin ligases characterized by the presence of two conserved domains N-terminal ankyrin repeat and C-terminal SOCS box domain

METHODS and RESULTS: Current studies have shown that some ASBs function as important regulators of several signalling pathways. This review gives an overview of ASB proteins on numerous cellular processes such as insulin signalling, spermatogenesis, myogenesis and in cellular development. Including various pathological situations, such as cancer, primary open-angle glaucoma, and inflammation, indicating that ASBs has important functions in both normal and pathological development

CONCLUSIONS: This article provides a precise comprehensive focus on ASBs protein structure, its biological functions, and their pathological significance.

Keywords ankyrin repeat      SOCS box      E3 ligase      cancer      spermatogenesis      cellular development     
Corresponding Author(s): Priti Talwar   
Online First Date: 07 September 2018    Issue Date: 25 October 2018
 Cite this article:   
Vivek Vishnu Anasa,Palaniyandi Ravanan,Priti Talwar. Multifaceted roles of ASB proteins and its pathological significance[J]. Front. Biol., 2018, 13(5): 376-388.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-018-1506-2
https://academic.hep.com.cn/fib/EN/Y2018/V13/I5/376
Gene No of ankyrin repeats Amino acids
length
Cellular
function
Substrates
identified
E3 ligase activity Human gene locus Splice variants Cancers involved
ASB1 6 335 Spermatogenesis - ND 2q37 1 Nasopharyngeal carcinoma
ASB2 12 587 Muscle differentiation FLNA-B,
JAK
YES 14q31-q32 2 Acute promyelocytic cancer
ASB3 11 518 Degradation of TNFR2 TNFR2 YES 2p16-p14 2
ASB4 6 426 Vascular differentiation,
Insulin signaling
GPS1,IRS4,
ID2, HIF1α
YES 7q21-q22 2 Hepatocellular
carcinoma
ASB5 6 329 Arteriogenesis - ND 4q34.2 1
ASB6 6 421 Insulin signaling APS YES 9q34.13 3 Oral carcinoma
ASB7 7 318 Chromosomal stability DDA3 YES 15q26.31 2
ASB8 4 288 Spermatogenesis - YES 12q13.11 1 Lung carcinoma
ASB9 6 294 Inhibition of cell growth CKB YES Xp21.3 3 Breast and colorectal carcinoma
ASB10 7 467 Open-angle glaucoma - YES 7q36.1 3
ASB11 6 323 Neurogenesis & notch signaling Ribophorin1,
Delta A
YES Xp.22.31 3
ASB12 5 309 Not studied - ND Xq.11.2 1
ASB13 6 278 Not studied - ND 10p15.1 1 Non-Hodgkin’s lymphomas
ASB14 11 587 Not studied - ND 3p21.1 2
ASB15 9 588 Myogenesis - YES 7q31.31 1
ASB16 7 453 Not studied - ND 17q21.31 1
ASB17 1 295 Spermatogenesis - ND 1p31.1 1
ASB18 6 466 Not studied - ND 2q37.2 1
Tab.1  Tabular column of chromosomal location and properties of human ASB genes with their respective substrates identified, cancers involved from NCBI (https://www.ncbi.nlm.nih.gov/pubmed/) and Entrez (www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene) databases.
Fig.1  Ubiquitination process and types of E3s. Ubiquitination is an ATP dependent cellular process. Ubiquitin is activated by E1, transferred via transthiolation from E1 to E2. Further, E2∼Ub interacts with an E3.E3s then facilitate ubiquitination of the substrate protein by proteasome formation or activation of other signaling Pathways. Multiple ubiquitination of substrate is required for recognition by the 26S proteasome. This may require the involvement of additional E2s and E3. There are 3 types of E3s HECT, RING and U-box. HECT E3s interacts with E2∼Ub and transfers ubiquitin directly to the Substrate. In case of RING E3s do not directly catalyse the ubiquitination of the target protein and require the presence of the E2 and often additional components (e.g. in the case of SCF Complexes) for ubiquitination to proceed. U-box E3s have a similar mode of action to RING E3s.
Fig.2  Modular protein structure of ASB and it family members.
Gene Tissue expression Sub-Cellular location
(Transmembrane domain)
ASB proteins as binding partners
ASB1 Expressed in all tissues Nucleoplasm ASB5, ASB4, ASB6,ASB12
ASB2 Expressed in all, skeletal tissues ND ASB2
ASB3 Expressed in all tissues ND ASB6
ASB4 Adrenal glands and skeletal tissues ND ASB7
ASB5 Skeletal tissues Plasma membrane (1) ASB1
ASB6 Expressed in all tissues ND ASB15,ASB11,
ASB7 Expressed in all tissues Golgi, Vesicles, Nucleus ASB4,ASB6,ASB12
ASB8 Expressed in all tissues Cytoplasm -
ASB9 Testis, Pancreas and kidney Nucleus, Cytosol -
ASB10 Skeletal and heart muscles Nucleus, cytoplasm -
ASB11 Skeletal and heart muscles Endoplasmic reticulum (1) ASB6,ASB17
ASB12 Skeletal Tissues ND -
ASB13 Expressed in all tissues Nucleus, Golgi -
ASB14 Heart and skeletal muscles ND -
ASB15 Heart and skeletal muscles ND ASB6
ASB16 Skeletal muscles and Cerebellum Focal adhesion sites -
ASB17 Testis ND ASB1,ASB9,ASB11
ASB18 Heart muscles ND -
Tab.2  ?Expression?pattern?and?subcellular?localization?of?ASB?genes?from?human?protein?atlas?database?(https://www.proteinatlas.org/)?and?NCBI?(https://www.ncbi.nlm.nih.gov/)
Fig.3  Physiological and pathological significance of ASB proteins.
PT- Post-translational
ANK- Ankyrin repeats
ASB-Ankyrin repeat SOCS box
SOCS- Suppressor of cytokine signalling
POAG- Primary open-angle glaucoma
ATP- Adenosine triphosphate
HECT- Homologous to the E6-AP carboxyl terminus
RING- Really interesting new gene
EST-Expressed sequence tags
ECS- Elongin-cullin-SOCS
HIF-1- Hypoxia-inducible factor 1
SCF- Skp, Cullin, F-box containing complex
THMMM-Transmembrane hidden Markov model
CRL-Cullin-ring ligases
PPI- protein-protein interaction
TNF-a, RII-tumor necrosis factor-alpha receptor-2
NF-kB- Nuclear factor-kB
SKP2- S-Phase kinase-associated protein 2
CKB-Creatine kinase B
ATRA-All-trans retinoic acid
  
1 Albertson D G, Collins C, McCormick F, Gray J W (2003). Chromosome aberrations in solid tumors. Nat Genet, 34(4): 369–376
https://doi.org/10.1038/ng1215 pmid: 12923544
2 Andresen C A, Smedegaard S, Sylvestersen K B, Svensson C, Iglesias-Gato D, Cazzamali G, Nielsen T K, Nielsen M L, Flores-Morales A (2014). Protein interaction screening for the ankyrin repeats and suppressor of cytokine signaling (SOCS) box (ASB) family identify Asb11 as a novel endoplasmic reticulum resident ubiquitin ligase. J Biol Chem, 289(4): 2043–2054
https://doi.org/10.1074/jbc.M113.534602 pmid: 24337577
3 Au V, Tsang F H, Man K, Fan S T, Poon R T, Lee N P (2014). Expression of ankyrin repeat and SOCS box containing 4 (ASB4) confers migration and invasion properties of hepatocellular carcinoma cells. Biosci Trends, 8(2): 101–110
https://doi.org/10.5582/bst.8.101 pmid: 24815387
4 Baer C, Claus R, Plass C (2013). Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res, 73(2): 473–477
https://doi.org/10.1158/0008-5472.CAN-12-3731 pmid: 23316035
5 Bello N F, Lamsoul I, Heuzé M L, Métais A, Moreaux G, Calderwood D A, Duprez D, Moog-Lutz C, Lutz P G (2009). The E3 ubiquitin ligase specificity subunit ASB2b is a novel regulator of muscle differentiation that targets filamin B to proteasomal degradation. Cell Death Differ, 16(6): 921–932
https://doi.org/10.1038/cdd.2009.27 pmid: 19300455
6 Ben-Baruch A (2006). Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Seminars in cancer biology, Elsevier.
7 Blenk S, Engelmann J, Weniger M, Schultz J, Dittrich M, Rosenwald A, Müller-Hermelink H K, Müller T, Dandekar T (2007). Germinal center B cell-like (GCB) and activated B cell-like (ABC) type of diffuse large B cell lymphoma (DLBCL): analysis of molecular predictors, signatures, cell cycle state and patient survival. Cancer Inform, 3: 399–420
https://doi.org/10.1177/117693510700300004 pmid: 19455257
8 Bode M, Wu Y, Pi X, Lockyer P, Dechyapirom W, Portbury A L, Patterson C (2011). Regulation of ASB4 expression in the immortalized murine endothelial cell lines MS1 and SVR: a role for TNF-a and oxygen. Cell Biochem Funct, 29(4): 334
https://doi.org/10.1002/cbf.1755 pmid: 21506136
9 Boengler K, Pipp F, Fernandez B, Richter A, Schaper W, Deindl E (2003). The ankyrin repeat containing SOCS box protein 5: a novel protein associated with arteriogenesis. Biochem Biophys Res Commun, 302(1): 17–22
https://doi.org/10.1016/S0006-291X(03)00095-0 pmid: 12593841
10 Bork P (1993). Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins, 17(4): 363–374
https://doi.org/10.1002/prot.340170405 pmid: 8108379
11 Chung A S, Guan Y J, Yuan Z L, Albina J E, Chin Y E (2005). Ankyrin repeat and SOCS box 3 (ASB3) mediates ubiquitination and degradation of tumor necrosis factor receptor II. Mol Cell Biol, 25(11): 4716–4726
https://doi.org/10.1128/MCB.25.11.4716-4726.2005 pmid: 15899873
12 Clermont Y (1972). Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev, 52(1): 198–236
https://doi.org/10.1152/physrev.1972.52.1.198 pmid: 4621362
13 Costa M L, Escaleira R, Cataldo A, Oliveira F, Mermelstein C S (2004). Desmin: molecular interactions and putative functions of the muscle intermediate filament protein. Braz J Med Biol Res, 37(12): 1819–1830
https://doi.org/10.1590/S0100-879X2004001200007 pmid: 15558188
14 Coussens L M, Werb Z (2002). Inflammation and cancer. Nature, 420(6917): 860–867
https://doi.org/10.1038/nature01322 pmid: 12490959
15 Croker B A, Kiu H, Nicholson S E (2008). SOCS regulation of the JAK/STAT signalling pathway. Seminars in cell & developmental biology, Elsevier.
16 Crosetto N, Bienko M, Dikic I (2006). Ubiquitin hubs in oncogenic networks. Mol Cancer Res, 4(12): 899–904
https://doi.org/10.1158/1541-7786.MCR-06-0328 pmid: 17189380
17 da Silva M A S,Peppelenbosch M P(2003). Size matters: the emerging role of ASB proteins in controlling cell fate decisions and cancer development. Werking en functie van ASB eiwitten in de regulatie van compartimentgrootte: 15.
https://doi.org/10.1038/ncb1779
18 Debrincat M A, Zhang J G, Willson T A, Silke J, Connolly L M, Simpson R J, Alexander W S, Nicola N A, Kile B T, Hilton D J (2007). Ankyrin repeat and suppressors of cytokine signaling box protein asb-9 targets creatine kinase B for degradation. J Biol Chem, 282(7): 4728–4737
https://doi.org/10.1074/jbc.M609164200 pmid: 17148442
19 Diks S H, Bink R J, van de Water S, Joore J, van Rooijen C, Verbeek F J, den Hertog J, Peppelenbosch M P, Zivkovic D (2006). The novel gene asb11: a regulator of the size of the neural progenitor compartment. J Cell Biol, 174(4): 581–592
https://doi.org/10.1083/jcb.200601081 pmid: 16893969
20 Du W Y, Lu Z H, Ye W, Fu X, Zhou Y, Kuang C M, Wu J X, Pan Z Z, Chen S, Liu R Y, Huang W L (2017). The loss-of-function mutations and down-regulated expression of ASB3 gene promote the growth and metastasis of colorectal cancer cells. Chin J Cancer, 36(1): 11
https://doi.org/10.1186/s40880-017-0180-0 pmid: 28088228
21 Fei X, Gu X, Fan S, Yang Z, Li F, Zhang C, Gong W, Mao Y, Ji C (2012). Crystal structure of Human ASB9-2 and substrate-recognition of CKB. Protein J, 31(4): 275–284
https://doi.org/10.1007/s10930-012-9401-1 pmid: 22418839
22 Ferguson J 3rd,Wu Y(2007). Ankyrin repeat and SOCS Box Protein 4 (ASB4) is a hydroxylation substrate of factor inhibiting HIF1 {alpha}(FIH) and promotes vascular differentiation via an oxygen-dependent mechanism. Cell Signal, 19(6):1185–92
23 Ferguson J E 3rd, Wu Y, Smith K, Charles P, Powers K, Wang H, Patterson C (2007). ASB4 is a hydroxylation substrate of FIH and promotes vascular differentiation via an oxygen-dependent mechanism. Mol Cell Biol, 27(18): 6407–6419
https://doi.org/10.1128/MCB.00511-07 pmid: 17636018
24 Foord R, Taylor I A, Sedgwick S G, Smerdon S J (1999). X-ray structural analysis of the yeast cell cycle regulator Swi6 reveals variations of the ankyrin fold and has implications for Swi6 function. Nat Struct Biol, 6(2): 157–165
https://doi.org/10.1038/5845 pmid: 10048928
25 Groothuis T A, Dantuma N P, Neefjes J, Salomons F A (2006). Ubiquitin crosstalk connecting cellular processes. Cell Div, 1(1): 21
https://doi.org/10.1186/1747-1028-1-21 pmid: 17007633
26 Guibal F C, Moog-Lutz C, Smolewski P, Di Gioia Y, Darzynkiewicz Z, Lutz P G, Cayre Y E (2002). ASB-2 inhibits growth and promotes commitment in myeloid leukemia cells. J Biol Chem, 277(1): 218–224
https://doi.org/10.1074/jbc.M108476200 pmid: 11682484
27 Guo J H, Saiyin H, Wei Y H, Chen S, Chen L, Bi G, Ma L J, Zhou G J, Huang C Q, Yu L, Dai L (2004). Expression of testis specific ankyrin repeat and SOCS box-containing 17 gene. Arch Androl, 50(3): 155–161
https://doi.org/10.1080/01485010490425485 pmid: 15204681
28 Hilton D J (1999). Negative regulators of cytokine signal transduction. Cell Mol Life Sci, 55(12): 1568–1577
https://doi.org/10.1007/s000180050396 pmid: 10526574
29 Hilton D J, Richardson R T, Alexander W S, Viney E M, Willson T A, Sprigg N S, Starr R, Nicholson S E, Metcalf D, Nicola N A (1998). Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci USA, 95(1): 114–119
https://doi.org/10.1073/pnas.95.1.114 pmid: 9419338
30 Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009). Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol, 10(10): 682–696
https://doi.org/10.1038/nrm2774 pmid: 19773780
31 Hotamisligil G S (2006). Inflammation and metabolic disorders. Nature, 444(7121): 860–867
https://doi.org/10.1038/nature05485 pmid: 17167474
32 Jang C Y, Wong J, Coppinger J A, Seki A, Yates J R 3rd, Fang G (2008). DDA3 recruits microtubule depolymerase Kif2a to spindle poles and controls spindle dynamics and mitotic chromosome movement. J Cell Biol, 181(2): 255–267
https://doi.org/10.1083/jcb.200711032 pmid: 18411309
33 Johnson D G, Walker C L (1999). Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol, 39(1): 295–312
https://doi.org/10.1146/annurev.pharmtox.39.1.295 pmid: 10331086
34 Kamura T, Sato S, Haque D, Liu L, Kaelin W G Jr, Conaway R C, Conaway J W (1998). The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev, 12(24): 3872–3881
https://doi.org/10.1101/gad.12.24.3872 pmid: 9869640
35 Keller K E, Wirtz M K (2016). Working your SOCS off: The role of ASB10 and protein degradation pathways in glaucoma. Exp Eye Res
pmid: 27296073
36 Kile B T, Schulman B A, Alexander W S, Nicola N A, Martin H M, Hilton D J (2002). The SOCS box: a tale of destruction and degradation. Trends Biochem Sci, 27(5): 235–241
https://doi.org/10.1016/S0968-0004(02)02085-6 pmid: 12076535
37 Kim K S, Kim M S, Kim S K, Baek K H (2004). Murine Asb-17 expression during mouse testis development and spermatogenesis. Zygote, 12(2): 151–156
https://doi.org/10.1017/S0967199404002722 pmid: 15460110
38 Kim S K, Rhim S Y, Lee M R,Kim J S, Kim H J, Lee D R, Kim K S (2008). Stage-specific expression of ankyrin and SOCS box protein-4 (Asb-4) during spermatogenesis. Mol Cell, 25(2):317–21
39 Kohroki J, Nishiyama T, Nakamura T, Masuho Y (2005). ASB proteins interact with Cullin5 and Rbx2 to form E3 ubiquitin ligase complexes. FEBS Lett, 579(30): 6796–6802
https://doi.org/10.1016/j.febslet.2005.11.016 pmid: 16325183
40 Lai K C, Chang K W, Liu C J, Lee T C (2006). Enhanced expression of ASB6 and IFIT2 in oral squamous cell carcinoma, AACR.
41 Lamsoul I, Burande C F, Razinia Z, Houles T C, Menoret D, Baldassarre M, Erard M, Moog-Lutz C, Calderwood D A, Lutz P G (2011). Functional and structural insights into ASB2a, a novel regulator of integrin-dependent adhesion of hematopoietic cells. J Biol Chem, 286(35): 30571–30581
https://doi.org/10.1074/jbc.M111.220921 pmid: 21737450
42 Lee M R,Kim S K, Kim J S, Rhim S Y,Kim K S (2008). Expression of murine Asb-9 during mouse spermatogenesis. Mol Cell, 26(6):621–4
43 Lee N P, Leung K W, Cheung N, Lam B Y, Xu M Z, Sham P C, Lau G K, Poon R T, Fan S T, Luk J M (2008). Comparative proteomic analysis of mouse livers from embryo to adult reveals an association with progression of hepatocellular carcinoma. Proteomics, 8(10): 2136–2149
https://doi.org/10.1002/pmic.200700590 pmid: 18425728
44 Li J, Mahajan A, Tsai M D (2006). Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry, 45(51): 15168–15178
https://doi.org/10.1021/bi062188q pmid: 17176038
45 Li J Y, Chai B, Zhang W, Wu X, Zhang C, Fritze D, Xia Z, Patterson C, Mulholland M W (2011). Ankyrin repeat and SOCS box containing protein 4 (Asb-4) colocalizes with insulin receptor substrate 4 (IRS4) in the hypothalamic neurons and mediates IRS4 degradation. BMC Neurosci, 12(1): 95
https://doi.org/10.1186/1471-2202-12-95 pmid: 21955513
46 Linossi E M, Nicholson S E (2012). The SOCS box-adapting proteins for ubiquitination and proteasomal degradation. IUBMB Life, 64(4): 316–323
https://doi.org/10.1002/iub.1011 pmid: 22362562
47 Liu Y, Li J, Zhang F, Qin W, Yao G, He X, Xue P, Ge C, Wan D, Gu J (2003). Molecular cloning and characterization of the human ASB-8 gene encoding a novel member of ankyrin repeat and SOCS box containing protein family. Biochem Biophys Res Commun, 300(4): 972–979
https://doi.org/10.1016/S0006-291X(02)02971-6 pmid: 12559969
48 Lux S E, John K M, Bennett V (1990). Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins.   Nature 344(6261):36–42
49 Marcotte E M, Pellegrini M, Yeates T O, Eisenberg D (1999). A census of protein repeats. J Mol Biol, 293(1): 151–160
https://doi.org/10.1006/jmbi.1999.3136 pmid: 10512723
50 Maxwell P H, Wiesener M S, Chang G W, Clifford S C, Vaux E C, Cockman M E, Wykoff C C, Pugh C W, Maher E R, Ratcliffe P J (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 399(6733): 271–275
https://doi.org/10.1038/20459 pmid: 10353251
51 McDaneld T G, Hannon K, Moody D E (2006). Ankyrin repeat and SOCS box protein 15 regulates protein synthesis in skeletal muscle. Am J Physiol Regul Integr Comp Physiol, 290(6): R1672–R1682
https://doi.org/10.1152/ajpregu.00239.2005 pmid: 16424087
52 McDaneld T G, Spurlock D M (2008). Ankyrin repeat and suppressor of cytokine signaling (SOCS) box-containing protein (ASB) 15 alters differentiation of mouse C2C12 myoblasts and phosphorylation of mitogen-activated protein kinase and Akt. J Anim Sci, 86(11): 2897–2902
https://doi.org/10.2527/jas.2008-1076 pmid: 18641171
53 Mocellin S, Rossi C R, Pilati P, Nitti D (2005). Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev, 16(1): 35–53
https://doi.org/10.1016/j.cytogfr.2004.11.001 pmid: 15733831
54 Morris L G, Veeriah S, Chan T A (2010). Genetic determinants at the interface of cancer and neurodegenerative disease. Oncogene, 29(24): 3453–3464
https://doi.org/10.1038/onc.2010.127 pmid: 20418918
55 Mosavi L K, Cammett T J, Desrosiers D C, Peng Z Y (2004). The ankyrin repeat as molecular architecture for protein recognition. Protein Sci, 13(6): 1435–1448
https://doi.org/10.1110/ps.03554604 pmid: 15152081
56 Mosavi L K, Minor D L Jr, Peng Z Y (2002). Consensus-derived structural determinants of the ankyrin repeat motif. Proc Natl Acad Sci USA, 99(25): 16029–16034
https://doi.org/10.1073/pnas.252537899 pmid: 12461176
57 Nie L, Zhao Y, Wu W, Yang Y Z, Wang H C, Sun X H (2011). Notch-induced Asb2 expression promotes protein ubiquitination by forming non-canonical E3 ligase complexes. Cell Res, 21(5): 754–769
https://doi.org/10.1038/cr.2010.165 pmid: 21119685
58 Okumura F, Matsuzaki M, Nakatsukasa K, Kamura T (2012).The role of elongin BC-containing ubiquitin ligases. Front Oncol, 2: 10
59 Pahl H L (1999). Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 18(49): 6853–6866
https://doi.org/10.1038/sj.onc.1203239 pmid: 10602461
60 Plum L, Belgardt B F, Brüning J C (2006). Central insulin action in energy and glucose homeostasis. J Clin Invest, 116(7): 1761–1766
https://doi.org/10.1172/JCI29063 pmid: 16823473
61 Seki A, Coppinger J A, Jang C Y, Yates J R, Fang G (2008). Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science, 320(5883): 1655–1658
https://doi.org/10.1126/science.1157425 pmid: 18566290
62 Sonnhammer E L, Von Heijne G, Krogh A (1998). A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol, 6:175–82
63 Tee J M, Peppelenbosch M P (2010). Anchoring skeletal muscle development and disease: the role of ankyrin repeat domain containing proteins in muscle physiology. Crit Rev Biochem Mol Biol, 45(4): 318–330
https://doi.org/10.3109/10409238.2010.488217 pmid: 20515317
64 Tee J M, Sartori da Silva M A, Rygiel A M, Muncan V, Bink R, van den Brink G R, van Tijn P, Zivkovic D, Kodach L L, Guardavaccaro D, Diks S H, Peppelenbosch M P (2012). asb11 is a regulator of embryonic and adult regenerative myogenesis. Stem Cells Dev, 21(17): 3091–3103
https://doi.org/10.1089/scd.2012.0123 pmid: 22512762
65 Thomas J C, Matak-Vinkovic D, Van Molle I, Ciulli A (2013). Multimeric complexes among ankyrin-repeat and SOCS-box protein 9 (ASB9), ElonginBC, and Cullin 5: insights into the structure and assembly of ECS-type Cullin-RING E3 ubiquitin ligases. Biochemistry, 52(31): 5236–5246
https://doi.org/10.1021/bi400758h pmid: 23837592
66 Thottakara T, Friedrich F W, Reischmann S, Braumann S, Schlossarek S, Krämer E, Juhr D, Schlüter H, van der Velden J, Münch J, Patten M, Eschenhagen T, Moog-Lutz C, Carrier L (2015). The E3 ubiquitin ligase Asb2b is downregulated in a mouse model of hypertrophic cardiomyopathy and targets desmin for proteasomal degradation. J Mol Cell Cardiol, 87: 214–224
https://doi.org/10.1016/j.yjmcc.2015.08.020 pmid: 26343497
67 Tokuoka M, Miyoshi N, Hitora T, Mimori K, Tanaka F, Shibata K, Ishii H, Sekimoto M, Doki Y, Mori M (2010). Clinical significance of ASB9 in human colorectal cancer. Int J Oncol, 37(5): 1105–1111
pmid: 20878058
68 Townley-Tilson W H, Wu Y, Ferguson J E 3rd, Patterson C (2014). The ubiquitin ligase ASB4 promotes trophoblast differentiation through the degradation of ID2. PLoS One, 9(2): e89451
https://doi.org/10.1371/journal.pone.0089451 pmid: 24586788
69 Uematsu K, Okumura F, Tonogai S, Joo-Okumura A, Alemayehu D H, Nishikimi A, Fukui Y, Nakatsukasa K, Kamura T (2016). ASB7 regulates spindle dynamics and genome integrity by targeting DDA3 for proteasomal degradation. J Cell Biol, 215(1): 95–106
https://doi.org/10.1083/jcb.201603062 pmid: 27697924
70 van Kouwenhove M, Kedde M, Agami R (2011). MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer, 11(9): 644–656
https://doi.org/10.1038/nrc3107 pmid: 21822212
71 Wajant H, Pfizenmaier K, Scheurich P (2003). Tumor necrosis factor signaling. Cell Death Differ, 10(1): 45–65
https://doi.org/10.1038/sj.cdd.4401189 pmid: 12655295
72 Wang J, Muntean A G, Hess J L (2012). ECSASB2 mediates MLL degradation during hematopoietic differentiation. Blood, 119(5): 1151–1161
https://doi.org/10.1182/blood-2011-06-362079 pmid: 22174154
73 Wauman J, De Smet A S, Catteeuw D, Belsham D, Tavernier J (2008). Insulin receptor substrate 4 couples the leptin receptor to multiple signaling pathways. Mol Endocrinol, 22(4): 965–977
https://doi.org/10.1210/me.2007-0414 pmid: 18165436
74 Wilcox A, Katsanakis K D, Bheda F, Pillay T S (2004). Asb6, an adipocyte-specific ankyrin and SOCS box protein, interacts with APS to enable recruitment of elongins B and C to the insulin receptor signaling complex. J Biol Chem, 279(37): 38881–38888
https://doi.org/10.1074/jbc.M406101200 pmid: 15231829
75 Wilcox G (2005). Insulin and insulin resistance. Clin Biochem Rev, 26(2): 19–39
pmid: 16278749
76 Yang X Y, Ren C P, Wang L, Li H, Jiang C J, Zhang H B, Zhao M, Yao K T (2005). Identification of differentially expressed genes in metastatic and non-metastatic nasopharyngeal carcinoma cells by suppression subtractive hybridization. Cell Oncol, 27(4): 215–223
pmid: 16308470
77 Yuan J H, Yang F, Chen B F, Lu Z, Huo X S, Zhou W P, Wang F, Sun S H (2011). The histone deacetylase 4/SP1/microrna-200a regulatory network contributes to aberrant histone acetylation in hepatocellular carcinoma. Hepatology, 54(6): 2025–2035
https://doi.org/10.1002/hep.24606 pmid: 21837748
78 Ziemin-van der Poel S, McCabe N R, Gill H J, Espinosa R 3rd, Patel Y, Harden A, Rubinelli P, Smith S D, LeBeau M M, Rowley J D (1991). Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci USA, 88(23): 10735–10739
https://doi.org/10.1073/pnas.88.23.10735 pmid: 1720549
[1] Dingcheng Gao, Vivek Mittal, Yi Ban, Ana Rita Lourenco, Shira Yomtoubian, Sharrell Lee. Metastatic tumor cells – genotypes and phenotypes[J]. Front. Biol., 2018, 13(4): 277-286.
[2] Soumya Nair, Sandra Suresh, Arya Kaniyassery, Panchami Jaya, Jayanthi Abraham. A review on melatonin action as therapeutic agent in cancer[J]. Front. Biol., 2018, 13(3): 180-189.
[3] Muhammad Naveed, Mohammad Raees, Irfan Liaqat, Mohammad Kashif. Clastogenic ROS and biophotonics in precancerous diagnosis[J]. Front. Biol., 2018, 13(2): 103-122.
[4] D. Brooke Widner, D. Clark Files, Kathryn E. Weaver, Yusuke Shiozawa. Preclinical and clinical studies on cancer-associated cachexia[J]. Front. Biol., 2018, 13(1): 11-18.
[5] Razia Rahman, Lokesh Kumar Gahlot, Yasha Hasija. miRACA: A database for miRNAs associated with cancers and age related disorders (ARD)[J]. Front. Biol., 2018, 13(1): 36-50.
[6] Amir Abdoli. High salt and fat intake, inflammation, and risk of cancer[J]. Front. Biol., 2017, 12(6): 387-391.
[7] Pang-Kuo Lo,Benjamin Wolfson,Qun Zhou. Cellular, physiological and pathological aspects of the long non-coding RNA NEAT1[J]. Front. Biol., 2016, 11(6): 413-426.
[8] Sahar Al Seesi,Alok Das Mohapatra,Arpita Pawashe,Ion I. Mandoiu,Fei Duan. Finding neoepitopes in mouse models of personalized cancer immunotherapy[J]. Front. Biol., 2016, 11(5): 366-375.
[9] Gahana Advani,Anderly C. Chueh,Ya Chee Lim,Amardeep Dhillon,Heung-Chin Cheng. Csk-homologous kinase (Chk/Matk): a molecular policeman suppressing cancer formation and progression[J]. Front. Biol., 2015, 10(3): 195-202.
[10] Caiguo ZHANG. The correlation between iron homeostasis and telomere maintenance[J]. Front. Biol., 2014, 9(5): 347-355.
[11] Qingguo ZHAO,Fei LIU. Mesenchymal stem cells in progression and treatment of cancers[J]. Front. Biol., 2014, 9(3): 186-194.
[12] Baoxiang GUAN,Ashraful HOQUE,Xiaochun XU. Amiloride and guggulsterone suppression of esophageal cancer cell growth in vitro and in nude mouse xenografts[J]. Front. Biol., 2014, 9(1): 75-81.
[13] Noor GAMMOH,Simon WILKINSON. Autophagy in cancer biology and therapy[J]. Front. Biol., 2014, 9(1): 35-50.
[14] Merlin LOPUS, Rao SETHUMADHAVAN, P. CHANDRASEKARAN, K. SREEVISHNUPRIYA, A.W. VARSHA, V. SHANTHI, K. RAMANATHAN, R. RAJASEKARAN. A computational approach to explore the functional missense mutations in the spindle check point protein Mad1[J]. Front Biol, 2013, 8(6): 618-625.
[15] Olga KSIONDA, Andre LIMNANDER, Jeroen P. ROOSE. RasGRP Ras guanine nucleotide exchange factors in cancer[J]. Front Biol, 2013, 8(5): 508-532.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed