Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (6) : 618-625    https://doi.org/10.1007/s11515-013-1280-0
RESEARCH ARTICLE
A computational approach to explore the functional missense mutations in the spindle check point protein Mad1
Merlin LOPUS1, Rao SETHUMADHAVAN1, P. CHANDRASEKARAN1, K. SREEVISHNUPRIYA1, A.W. VARSHA2, V. SHANTHI2, K. RAMANATHAN1, R. RAJASEKARAN1()
1. Bioinformatics Division, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India; 2. Industrial Biotechnology Division, School of Biosciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
 Download: PDF(195 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this work, the most detrimental missense mutations of Mad1 protein that cause various types of cancer were identified computationally and the substrate binding efficiencies of those missense mutations were analyzed. Out of 13 missense mutations, I Mutant 2.0, SIFT and PolyPhen programs identified 3 variants that were less stable, deleterious and damaging respectively. Subsequently, modeling of these 3 variants was performed to understand the change in their conformations with respect to the native Mad1 by computing their root mean squared deviation (RMSD). Furthermore, the native protein and the 3 mutants were docked with the binding partner Mad2 to explain the substrate binding efficiencies of those detrimental missense mutations. The docking studies identified that all the 3 mutants caused lower binding affinity for Mad2 than the native protein. Finally, normal mode analysis determined that the loss of binding affinity of these 3 mutants was caused by altered flexibility in the amino acids that bind to Mad2 compared with the native protein. Thus, the present study showed that majority of the substrate binding amino acids in those 3 mutants displayed loss of flexibility, which could be the theoretical explanation of decreased binding affinity between the mutant Mad1 and Mad2.

Keywords missense mutation      Mad1      Mad2      spindle check point      cancer     
Corresponding Author(s): RAJASEKARAN R.,Email:rrajasekaran@vit.ac.in   
Issue Date: 01 December 2013
 Cite this article:   
Merlin LOPUS,Rao SETHUMADHAVAN,P. CHANDRASEKARAN, et al. A computational approach to explore the functional missense mutations in the spindle check point protein Mad1[J]. Front Biol, 2013, 8(6): 618-625.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-013-1280-0
https://academic.hep.com.cn/fib/EN/Y2013/V8/I6/618
Variants??GTolerant indexPSIC SD
S29L-0.520.000.021
R59C0.110.010.999
N160S0.251.000.001
T299A-0.340.810.000
R360Q-0.260.141.000
T500M0.480.020.974
E511K-0.550.000.997
E516K-0.250.330.844
R556C-0.440.020.996
R556H-1.290.030.004
R558H-1.200.190.003
E569K-0.210.160.280
R572H-0.260.110.999
Tab.1  List of variants that were predicted to be functionally significant by I Mutant 2.0, SIFT and PolyPhen
Fig.1  Pymol view of (A) superimposed structure of the mutant R556C (cyan) with native (green), (B) superimposed structure of the mutant E511K (blue) with native (green), (C) superimposed structure of the mutant R556H (magenta) with native (green).
VariantsTotal energy(KJ/mol)RMSD(?)ACE(Kcal/mol)Intermolecular interactions
Native-8352.6520.00-398.1934
E511K-7958.6550.52103.9226
R556H-7630.4601.9983.6319
R556C-7609.3841.83-82.1628
Tab.2  Total energy, RMSD, Atomic contact energy and intermolecular interactions for native and mutants of Mad1
Binding residuesNativeE511KR556CR556H
Normalized mean square displacement<R2>
E5270.03890.0401*0.0312*0.0306
A5300.04610.0474*0.0374*0.0380
L5310.04460.0454*0.0349*0.0341
Q5320.04180.0424*0.0324*0.0302
Y5350.03080.0311*0.0289*0.0302
R5390.0219*0.02180.03300.0377
K5410.0248*0.02410.03370.0349
V5420.0275*0.02670.03260.0309
L5430.0296*0.02850.03430.0322
H5440.0326*0.03120.0330*0.0301
M5450.0347*0.0328*0.0309*0.0279
S5460.0311*0.0290*0.0252*0.0224
N5480.0348*0.0324*0.0291*0.0253
P5490.0340*0.0316*0.0285*0.0241
T5500.0300*0.0283*0.0284*0.0244
A5530.0247*0.0229*0.0217*0.0174
R5560.00980.01010.01740.0098
L5570.0156*0.01470.0171*0.0143
H5610.00980.01010.01740.0163
Tab.3  Comparison of normalized mean square displacement of substrate binding amino acids of native and mutant Mad1 protein
Fig.2  Pymol view of (A) docked structure of the native Mad1 (green) with Mad 2 (grey), (B) docked structure of the mutant E511K (blue) with Mad 2 (grey) , (C) docked structure of the mutant R556C (cyan) with Mad 2 (grey), (D) docked structure of the mutant R556H (magenta) with Mad 2 (grey).
MutantsABC
<R2>
E511K0712
R556C0811
R556H1513
Tab.4  Binding amino acids of mutants with different ranges of flexibility based on<>
1 Bava K A, Gromiha M M, Uedaira H, Kitajima K, Sarai A (2004). ProTherm, version 4.0: thermodynamic database for proteins and mutants. Nucleic Acids Res , 32(90001 Database issue): D120–D121
doi: 10.1093/nar/gkh082 pmid:14681373
2 Berman H M, Battistuz T, Bhat T N, Bluhm W F, Bourne P E, Burkhardt K, Feng Z, Gilliland G L, Iype L, Jain S, Fagan P, Marvin J, Padilla D, Ravichandran V, Schneider B, Thanki N, Weissig H, Westbrook J D, Zardecki C (2002). The Protein Data Bank. Acta Crystallogr D Biol Crystallogr , 58(Pt 6 No 1): 899–907
doi: 10.1107/S0907444902003451 pmid:12037327
3 Bharadwaj R, Yu H (2004). The spindle checkpoint, aneuploidy, and cancer. Oncogene , 23(11): 2016–2027
doi: 10.1038/sj.onc.1207374 pmid:15021889
4 Boeckmann B, Bairoch A, Apweiler R, Blatter M C, Estreicher A, Gasteiger E, Martin M J, Michoud K, O’Donovan C, Phan I, Pilbout S, Schneider M (2003). The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res , 31(1): 365–370
doi: 10.1093/nar/gkg095 pmid:12520024
5 Brady D M, Hardwick K G (2000). Complex formation between Mad1p, Bub1p and Bub3p is crucial for spindle checkpoint function. Curr Biol , 10(11): 675–678
doi: 10.1016/S0960-9822(00)00515-7 pmid:10837255
6 Cahill D P, Lengauer C, Yu J, Riggins G J, Willson J K, Markowitz S D, Kinzler K W, Vogelstein B (1998). Mutations of mitotic checkpoint genes in human cancers. Nature , 392(6673): 300–303
doi: 10.1038/32688 pmid:9521327
7 Capriotti E, Fariselli P, Casadio R (2005). I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure. Nucleic Acids Res , 33(Web Server Web Server issue): W306-10
doi: 10.1093/nar/gki375 pmid:15980478
8 Carlson H A, McCammon J A (2000). Accommodating protein flexibility in computational drug design. Mol Pharmacol , 57(2): 213–218
pmid:10648630
9 Chao W C, Kulkarni K, Zhang Z, Kong E H, Barford D (2012). Structure of the mitotic checkpoint complex. Nature , 484(7393): 208–213
doi: 10.1038/nature10896 pmid:22437499
10 Chen R H, Shevchenko A, Mann M, Murray A W (1998). Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J Cell Biol , 143(2): 283–295
doi: 10.1083/jcb.143.2.283 pmid:9786942
11 Chen R H, Waters J C, Salmon E D, Murray A W (1996). Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science , 274(5285): 242–246
doi: 10.1126/science.274.5285.242 pmid:8824188
12 Chung E, Chen R H (2002). Spindle checkpoint requires Mad1-bound and Mad1-free Mad2. Mol Biol Cell , 13(5): 1501–1511
doi: 10.1091/mbc.02-01-0003 pmid:12006648
13 Connolly M L (1983). Solvent-accessible surfaces of proteins and nucleic acids. Science , 221(4612): 709–713
doi: 6879170" target="_blank">10.1126/science. pmid:6879170 pmid:6879170
14 Delarue M, Dumas P (2004). On the use of low-frequency normal modes to enforce collective movements in refining macromolecular structural models. Proc Natl Acad Sci USA , 101(18): 6957–6962
doi: 10.1073/pnas.0400301101 pmid:15096585
15 Duhovny D, Nussinov R, Wolfson H J (2002). Efficient unbound docking of rigid molecules. In: Proceedings of the 2nd Workshop on Algorithms in Bioinformatics (WABI) Lecture Notes in Computer Science, Rome, Italy , 2452: 185–200
16 Fava L L, Kaulich M, Nigg E A, Santamaria A (2011). Probing the in vivo function of Mad1:C-Mad2 in the spindle assembly checkpoint. EMBO J , 30(16): 3322–3336
doi: 10.1038/emboj.2011.239 pmid:21772247
17 Gemma A, Seike M, Seike Y, Uematsu K, Hibino S, Kurimoto F, Yoshimura A, Shibuya M, Harris C C, Kudoh S (2000). Somatic mutation of the hBUB1 mitotic checkpoint gene in primary lung cancer. Genes Chromosomes Cancer , 29(3): 213–218
doi: 10.1002/1098-2264(2000)9999:9999&lt;::AID-GCC1027&gt;3.0.CO;2-G pmid:10992296
18 Han J H, Kerrison N, Chothia C, Teichmann S A (2006). Divergence of interdomain geometry in two-domain proteins. Structure , 14(5): 935–945
doi: 10.1016/j.str.2006.01.016 pmid:16698554
19 Han S, Park K, Kim H Y, Lee M S, Kim H J, Kim Y D, Yuh Y J, Kim S R, Suh H S (2000). Clinical implication of altered expression of Mad1 protein in human breast carcinoma. Cancer , 88(7): 1623–1632
doi: 10.1002/(SICI)1097-0142(20000401)88:7&lt;1623::AID-CNCR17&gt;3.0.CO;2-W pmid:10738221
20 Hardwick K G, Weiss E, Luca F C, Winey M, Murray A W (1996). Activation of the budding yeast spindle assembly checkpoint without mitotic spindle disruption. Science , 273(5277): 953–956
doi: 10.1126/science.273.5277.953 pmid:8688079
21 Hinkle A, Tobacman L S (2003). Folding and function of the troponin tail domain. Effects of cardiomyopathic troponin T mutations. J Biol Chem , 278(1): 506–513
doi: 10.1074/jbc.M209194200 pmid:12409295
22 Hoyt M A, Totis L, Roberts B T S (1991). S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell , 66(3): 507–517
doi: 10.1016/0092-8674(81)90014-3 pmid:1651171
23 Hwang L H, Lau L F, Smith D L, Mistrot C A, Hardwick K G, Hwang E S, Amon A, Murray A W (1998). Budding yeast Cdc20: a target of the spindle checkpoint. Science , 279(5353): 1041–1044
doi: 10.1126/science.279.5353.1041 pmid:9461437
24 Jallepalli P V, Lengauer C (2001). Chromosome segregation and cancer: cutting through the mystery. Nat Rev Cancer , 1(2): 109–117
doi: 10.1038/35101065 pmid:11905802
25 Kim S H, Lin D P, Matsumoto S, Kitazono A, Matsumoto T (1998). Fission yeast Slp1: an effector of the Mad2-dependent spindle checkpoint. Science , 279(5353): 1045–1047
doi: 10.1126/science.279.5353.1045 pmid:9461438
26 Li R, Murray A W (1991). Feedback control of mitosis in budding yeast. Cell , 66(3): 519–531
doi: 10.1016/0092-8674(81)90015-5 pmid:1651172
27 Lindahl E, Azuara C, Koehl P, Delarue M (2006). NOMAD-Ref: visualization, deformation and refinement of macromolecular structures based on all-atom normal mode analysis. Nucleic Acids Res , 34(Web Server Web Server issue): W52-6
doi: 10.1093/nar/gkl082 pmid:16845062
28 Lopes C S, Sunkel C E (2003). The spindle checkpoint: from normal cell division to tumorigenesis. Arch Med Res , 34(3): 155–165
doi: 10.1016/S0188-4409(03)00024-9 pmid:14567393
29 Michael S C, Gary J G (1995).Microinjection of mitotic cells with the 3F3/2 Anti-phosphoepitope antibody delays the onset of anaphase. J Cell Biol , 129 (5): 1195–1204
30 Mimori K, Inoue H, Alder H, Ueo H, Tanaka Y, Mori M (2001). Mutation analysis of hBUB1, human mitotic checkpoint gene in multiple carcinomas. Oncol Rep , 8(1): 39–42
pmid:11115566
31 Ng P C, Henikoff S (2001). Predicting deleterious amino acid substitutions. Genome Res , 11(5): 863–874
doi: 10.1101/gr.176601 pmid:11337480
32 Ng P C, Henikoff S (2003). SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res , 31(13): 3812–3814
doi: 10.1093/nar/gkg509 pmid:12824425
33 Nomoto S, Haruki N, Takahashi T, Masuda A, Koshikawa T, Takahashi T, Fujii Y, Osada H, Takahashi T (1999). Search for in vivo somatic mutations in the mitotic checkpoint gene, hMAD1, in human lung cancers. Oncogene , 18(50): 7180–7183
doi: 10.1038/sj.onc.1203141 pmid:10597320
34 Ohshima K, Haraoka S, Yoshioka S, Hamasaki M, Fujiki T, Suzumiya J, Kawasaki C, Kanda M, Kikuchi M (2000). Mutation analysis of mitotic checkpoint genes (hBUB1 and hBUBR1) and microsatellite instability in adult T-cell leukemia/lymphoma. Cancer Lett , 158(2): 141–150
doi: 10.1016/S0304-3835(00)00512-7 pmid:10960763
35 Peters J M (2006). The anaphase promoting complex/cyclosome: a machine designed to destroy. Nat Rev Mol Cell Biol , 7(9): 644–656
doi: 10.1038/nrm1988 pmid:16896351
36 Peters J M (2008). Checkpoint control: the journey continues. Curr Biol , 18(4): R170–R172
doi: 10.1016/j.cub.2007.12.023 pmid:18302922
37 Rajasekaran R, Priya Doss C G, Sudandiradoss C, Ramanathan K, Sethumadhavan R (2008). In silico analysis of structural and functional consequences in p16INK4A by deleterious nsSNPs associated CDKN2A gene in malignant melanoma. Biochimie , 90(10): 1523–1529
doi: 10.1016/j.biochi.2008.05.017 pmid:18573309
38 Ramensky V, Bork P, Sunyaev S (2002). Human non-synonymous SNPs: server and survey. Nucleic Acids Res , 30(17): 3894–3900
doi: 10.1093/nar/gkf493 pmid:12202775
39 Reis R M, Nakamura M, Masuoka J, Watanabe T, Colella S, Yonekawa Y, Kleihues P, Ohgaki H (2001). Mutation analysis of hBUB1, hBUBR1 and hBUB3 genes in glioblastomas. Acta Neuropathol , 101(4): 297–304
pmid:11355300
40 Sato M, Sekido Y, Horio Y, Takahashi M, Saito H, Minna J D, Shimokata K, Hasegawa Y (2000). Infrequent mutation of the hBUB1 and hBUBR1 genes in human lung cancer. Jpn J Cancer Res , 91(5): 504–509
doi: 10.1111/j.1349-7006.2000.tb00974.x pmid:10835495
41 Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson H J (2005). PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res , 33(Web Server issue): W363-7
doi: 10.1093/nar/gki481 pmid:15980490
42 Suhre K, Sanejouand Y H (2004). ElNemo: a normal mode web server for protein movement analysis and the generation of templates for molecular replacement. Nucleic Acids Res , 32( Web Server issue): W610-4
doi: 10.1093/nar/gkh368 pmid:15215461
43 Tina K G, Bhadra R, Srinivasan N (2007). PIC: Protein Interactions Calculator. Nucleic Acids Res , 35(Web Server issue): W473-6
doi: 10.1093/nar/gkm423 pmid:17584791
44 Tsukasaki K, Miller C W, Greenspun E, Eshaghian S, Kawabata H, Fujimoto T, Tomonaga M, Sawyers C, Said J W, Koeffler H P (2001). Mutations in the mitotic check point gene, MAD1L1, in human cancers. Oncogene , 20(25): 3301–3305
doi: 10.1038/sj.onc.1204421 pmid:11423979
45 Varfolomeev S D, Uporov I V, Fedorov E V (2002). Bioinformatics and molecular modeling in chemical enzymology. Active sites of hydrolases. Biochemistry (Mosc) , 67(10): 1099–1108
doi: 10.1023/A:1020907122341 pmid:12460108
46 Wang X, Jin D Y, Ng R W, Feng H, Wong Y C, Cheung A L, Tsao S W (2002). Significance of MAD2 expression to mitotic checkpoint control in ovarian cancer cells. Cancer Res , 62(6): 1662–1668
pmid:11912137
47 Yip Y L, Famiglietti M, Gos A, Duek P D, David F P, Gateau A, Bairoch A (2008). Annotating single amino acid polymorphisms in the UniProt/Swiss-Prot knowledgebase. Hum Mutat , 29(3): 361–366
doi: 10.1002/humu.20671 pmid:18175334
48 Yip Y L, Scheib H, Diemand A V, Gattiker A, Famiglietti L M, Gasteiger E, Bairoch A (2004). The Swiss-Prot variant page and the ModSNP database: a resource for sequence and structure information on human protein variants. Hum Mutat , 23(5): 464–470
doi: 10.1002/humu.20021 pmid:15108278
49 Yu H (2002). Regulation of APC-Cdc20 by the spindle checkpoint. Curr Opin Cell Biol , 14(6): 706–714
doi: 10.1016/S0955-0674(02)00382-4 pmid:12473343
50 Zhang C, Vasmatzis G, Cornette J L, DeLisi C (1997). Determination of atomic desolvation energies from the structures of crystallized proteins. J Mol Biol , 267(3): 707–726
doi: 10.1006/jmbi.1996.0859 pmid:9126848
[1] Vivek Vishnu Anasa, Palaniyandi Ravanan, Priti Talwar. Multifaceted roles of ASB proteins and its pathological significance[J]. Front. Biol., 2018, 13(5): 376-388.
[2] Dingcheng Gao, Vivek Mittal, Yi Ban, Ana Rita Lourenco, Shira Yomtoubian, Sharrell Lee. Metastatic tumor cells – genotypes and phenotypes[J]. Front. Biol., 2018, 13(4): 277-286.
[3] Soumya Nair, Sandra Suresh, Arya Kaniyassery, Panchami Jaya, Jayanthi Abraham. A review on melatonin action as therapeutic agent in cancer[J]. Front. Biol., 2018, 13(3): 180-189.
[4] Muhammad Naveed, Mohammad Raees, Irfan Liaqat, Mohammad Kashif. Clastogenic ROS and biophotonics in precancerous diagnosis[J]. Front. Biol., 2018, 13(2): 103-122.
[5] D. Brooke Widner, D. Clark Files, Kathryn E. Weaver, Yusuke Shiozawa. Preclinical and clinical studies on cancer-associated cachexia[J]. Front. Biol., 2018, 13(1): 11-18.
[6] Razia Rahman, Lokesh Kumar Gahlot, Yasha Hasija. miRACA: A database for miRNAs associated with cancers and age related disorders (ARD)[J]. Front. Biol., 2018, 13(1): 36-50.
[7] Amir Abdoli. High salt and fat intake, inflammation, and risk of cancer[J]. Front. Biol., 2017, 12(6): 387-391.
[8] Pang-Kuo Lo,Benjamin Wolfson,Qun Zhou. Cellular, physiological and pathological aspects of the long non-coding RNA NEAT1[J]. Front. Biol., 2016, 11(6): 413-426.
[9] Sahar Al Seesi,Alok Das Mohapatra,Arpita Pawashe,Ion I. Mandoiu,Fei Duan. Finding neoepitopes in mouse models of personalized cancer immunotherapy[J]. Front. Biol., 2016, 11(5): 366-375.
[10] S. Udhaya Kumar,N. Priyanka,P. Sneha,C. George Priya Doss. Functional and structural characterization of missense mutations in PAX6 gene[J]. Front. Biol., 2015, 10(4): 377-385.
[11] Gahana Advani,Anderly C. Chueh,Ya Chee Lim,Amardeep Dhillon,Heung-Chin Cheng. Csk-homologous kinase (Chk/Matk): a molecular policeman suppressing cancer formation and progression[J]. Front. Biol., 2015, 10(3): 195-202.
[12] Caiguo ZHANG. The correlation between iron homeostasis and telomere maintenance[J]. Front. Biol., 2014, 9(5): 347-355.
[13] Qingguo ZHAO,Fei LIU. Mesenchymal stem cells in progression and treatment of cancers[J]. Front. Biol., 2014, 9(3): 186-194.
[14] Baoxiang GUAN,Ashraful HOQUE,Xiaochun XU. Amiloride and guggulsterone suppression of esophageal cancer cell growth in vitro and in nude mouse xenografts[J]. Front. Biol., 2014, 9(1): 75-81.
[15] Noor GAMMOH,Simon WILKINSON. Autophagy in cancer biology and therapy[J]. Front. Biol., 2014, 9(1): 35-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed