Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (3) : 195-204    https://doi.org/10.1007/s11515-014-1310-6
REVIEW
Col10a1 gene expression and chondrocyte hypertrophy during skeletal development and disease
Yaojuan LU1,2,Longwei QIAO2,Guanghua LEI3,Ranim R. MIRA1,Junxia GU2,Qiping ZHENG1,2,*()
1. Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA
2. Department of Hematology and Hematological Laboratory Science, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, China
3. Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
 Download: PDF(407 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The type X collagen gene, COL10A1, is specifically expressed by hypertrophic chondrocytes during endochondral ossification. Endochondral ossification is a well-coordinated process that involves a cartilage intermediate and leads to formation of most of the skeleton in vertebrates during skeletogenesis. Chondrocyte hypertrophy is a critical stage of endochondral ossification linking both bone and cartilage development. Given its specific association with chondrocyte hypertrophy, type X collagen plays essential roles in endochondral ossification. It was previously shown that transgenic mice with mutant type X collagen develop variable skeleton-hematopoietic abnormalities indicating defective endochondral ossification, while mutations and abnormal expression of human COL10A1 cause abnormal chondrocyte hypertrophy that has been seen in many skeletal disorders, including skeletal chondrodysplasia and osteoarthritis. In this review, we summarized the skeletal chondrodysplasia with COL10A1 gene mutation that shows growth plate defect. We also reviewed recent studies that correlate the type X collagen gene expression and chondrocyte hypertrophy with osteoarthritis. Due to its significant clinical relevance, the type X collagen gene regulation has been extensively studied over the past two decades. Here, we focus on recent progress characterizing the cis-enhancer elements and their binding factors that together confer hypertrophic chondrocyte-specific murine type X collagen gene (Col10a1) expression. Based on literature review and our own studies, we surmise that there are multiple factors that contribute to hypertrophic chondrocyte-specific Col10a1 expression. These factors include both transactivators (such as Runx2, MEF2C etc.) and repressors (such as AP1, NFATc1, Sox9 etc.), while other co-factors or epigenetic control of Col10a1 expression may not be excluded.

Keywords Col10a1 gene expression      cis-enhancer      transcription factors      AP1 and Runx2      chondrocyte hypertrophy      skeletal development and diseases     
Corresponding Author(s): Qiping ZHENG   
Issue Date: 24 June 2014
 Cite this article:   
Yaojuan LU,Longwei QIAO,Guanghua LEI, et al. Col10a1 gene expression and chondrocyte hypertrophy during skeletal development and disease[J]. Front. Biol., 2014, 9(3): 195-204.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1310-6
https://academic.hep.com.cn/fib/EN/Y2014/V9/I3/195
Fig.1  Runx2 sites in murine and human COL10A1 gene promoter. Illustrated are murine (top) and human (bottom) COL10A1 gene structure and their promoter/enhancer region. The type X collagen gene contains three exons: E1, E2, and E3. The black bars (XBP) represent type X collagen gene basal promoter, while the red bars (Enh) show the position of murine and human COL10A1 enhancers (Riemer et al., 2002; Gebhard et al., 2004; Zheng et al., 2009). There are multiple Runx2 sites that locate within the enhancer or promoter region. These Runx2 sites are conserved between murine and human COL10A1 promoter (A and B sites) or enhancer (C site) (Zheng et al., 2003; Li et al., 2011). Additional Runx2 site is found within the human COL10A1 basal promoter (D site) (Higashikawa et al., 2009). The functional Gli1 and Sox9 sites within the enhancer are as illustrated (Leung et al., 2011).
Fig.2  Putative Col10a1 regulatory mechanism. The key TF, Runx2, work with other TFs together to control hypertrophic chondrocyte-specific Col10a1 gene expression. Listed are partial TFs which include both transactivators (MEF-2C, GADD45β, Hif-2α, SP3, BMP-2, Fra-2, and HDAC inhibitor etc.) and repressors (AP1, Sox9, NFATc1, pTHrP, Hsa-miR-148a etc.). Molecular regulators controlling the level of type X collagen expression will impact the process of chondrocyte hypertrophy, a process critical for endochondral bone formation, skeletal dysplasia, and osteoarthritis. Red arrow: promote; blue line: inhibit.
1 AdamsS L, PallanteK M, NiuZ, CohenA J, LuJ, LeBoyP S (2003). Stimulation of type-X collagen gene transcription by retinoids occurs in part through the BMP signaling pathway. J Bone Joint Surg Am, 85-A(Suppl 3): 29–33
pmid: 12925606
2 ArnoldM A, KimY, CzubrytM P, PhanD, McAnallyJ, QiX, SheltonJ M, RichardsonJ A, Bassel-DubyR, OlsonE N (2007). MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell, 12(3): 377–389
doi: 10.1016/j.devcel.2007.02.004 pmid: 17336904
3 BatemanJ F, FreddiS, McNeilR, ThompsonE, HermannsP, SavarirayanR, LamandéS R (2004). Identification of four novel COL10A1 missense mutations in schmid metaphyseal chondrodysplasia: further evidence that collagen X NC1 mutations impair trimer assembly. Hum Mutat, 23(4): 396
doi: 10.1002/humu.9222 pmid: 15024737
4 BatemanJ F, FreddiS, NattrassG, SavarirayanR (2003). Tissue-specific RNA surveillance? Nonsense-mediated mRNA decay causes collagen X haploinsufficiency in Schmid metaphyseal chondrodysplasia cartilage. Hum Mol Genet, 12(3): 217–225
doi: 10.1093/hmg/ddg054 pmid: 12554676
5 BatemanJ F, WilsonR, FreddiS, LamandéS R, SavarirayanR (2005). Mutations of COL10A1 in Schmid metaphyseal chondrodysplasia. Hum Mutat, 25(6): 525–534
doi: 10.1002/humu.20183 pmid: 15880705
6 BeierF, VornehmS, PöschlE, von der MarkK, LammiM J (1997). Localization of silencer and enhancer elements in the human type X collagen gene. J Cell Biochem, 66(2): 210–218
doi: 10.1002/(SICI)1097-4644(19970801)66:2<210::AID-JCB8>3.0.CO;2-T pmid: 9213222
7 ChambersD, YoungD A, HowardC, ThomasJ T, BoamD S, GrantM E, WallisG A, Boot-HandfordR P (2002). An enhancer complex confers both high-level and cell-specific expression of the human type X collagen gene. FEBS Lett, 531(3): 505–508
doi: 10.1016/S0014-5793(02)03606-2 pmid: 12435601
8 ChanD, ColeW G, RogersJ G, BatemanJ F (1995). Type X collagen multimer assembly in vitro is prevented by a Gly618 to Val mutation in the alpha 1(X) NC1 domain resulting in Schmid metaphyseal chondrodysplasia. J Biol Chem, 270(9): 4558–4562
doi: 10.1074/jbc.270.9.4558 pmid: 7876225
9 ChangH J, YangM J, YangY H, HouM F, HsuehE J, LinS R (2009). MMP13 is potentially a new tumor marker for breast cancer diagnosis. Oncol Rep, 22(5): 1119–1127
pmid: 19787229
10 ChapmanK B, PrendesM J, SternbergH, KiddJ L, FunkW D, WagnerJ, WestM D (2012). COL10A1 expression is elevated in diverse solid tumor types and is associated with tumor vasculature. Future Oncol, 8(8): 1031–1040
doi: 10.2217/fon.12.79 pmid: 22894674
11 D’AlonzoR C, SelvamuruganN, KarsentyG, PartridgeN C (2002). Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation. J Biol Chem, 277(1): 816–822
doi: 10.1074/jbc.M107082200 pmid: 11641401
12 DesmedtC, MajjajS, KheddoumiN, SinghalS K, Haibe-KainsB, El OuriaghliF, ChaboteauxC, MichielsS, LallemandF, JourneF, DuvillierH, LoiS, QuackenbushJ, DekoninckS, BlanpainC, LagneauxL, HouhouN, DelorenziM, LarsimontD, PiccartM, SotiriouC (2012). Characterization and clinical evaluation of CD10+ stroma cells in the breast cancer microenvironment. Clin Cancer Res, 18(4): 1004–1014
doi: 10.1158/1078-0432.CCR-11-0383 pmid: 22235100
13 DongY, DrissiH, ChenM, ChenD, ZuscikM J, SchwarzE M, O’KeefeR J (2005). Wnt-mediated regulation of chondrocyte maturation: modulation by TGF-beta. J Cell Biochem, 95(5): 1057–1068
doi: 10.1002/jcb.20466 pmid: 15962307
14 DongY F, SoungY, SchwarzE M, O’KeefeR J, DrissiH (2006). Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. J Cell Physiol, 208(1): 77–86
doi: 10.1002/jcp.20656 pmid: 16575901
15 DouradoG, LuValleP (1998). Proximal DNA elements mediate repressor activity conferred by the distal portion of the chicken collagen X promoter. J Cell Biochem, 70(4): 507–516
doi: 10.1002/(SICI)1097-4644(19980915)70:4<507::AID-JCB7>3.0.CO;2-N pmid: 9712148
15 DrissiM H, LiX, SheuT J, ZuscikM J, SchwarzE M, PuzasJ E, RosierR N, O’KeefeR J (2003). Runx2/Cbfa1 stimulation by retinoic acid is potentiated by BMP2 signaling through interaction with Smad1 on the collagen X promoter in chondrocytes. J Cell Biochem, 90(6): 1287–1298
doi: 10.1002/jcb.10677 pmid: 14635200
17 DyP, WangW, BhattaramP, WangQ, WangL, BallockR T, LefebvreV (2012). Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes. Dev Cell, 22(3): 597–609
doi: 10.1016/j.devcel.2011.12.024 pmid: 22421045
18 EerolaI, SalminenH, LammiP, LammiM, von der MarkK, VuorioE, SäämänenA M (1998). Type X collagen, a natural component of mouse articular cartilage: association with growth, aging, and osteoarthritis. Arthritis Rheum, 41(7): 1287–1295
doi: 10.1002/1529-0131(199807)41:7<1287::AID-ART20>3.0.CO;2-D pmid: 9663487
19 EferlR, HoebertzA, SchillingA F, RathM, KarrethF, KennerL, AmlingM, WagnerE F (2004). The Fos-related antigen Fra-1 is an activator of bone matrix formation. EMBO J, 23(14): 2789–2799
doi: 10.1038/sj.emboj.7600282 pmid: 15229648
20 EferlR, WagnerE F (2003). AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer, 3(11): 859–868
doi: 10.1038/nrc1209 pmid: 14668816
21 FangJ, HallB K (1997). Chondrogenic cell differentiation from membrane bone periostea. Anat Embryol (Berl), 196(5): 349–362 (Review)
doi: 10.1007/s004290050104 pmid: 9406838
22 GebhardS, PöschlE, RiemerS, BauerE, HattoriT, EberspaecherH, ZhangZ, LefebvreV, de CrombruggheB, von der MarkK (2004). A highly conserved enhancer in mammalian type X collagen genes drives high levels of tissue-specific expression in hypertrophic cartilage in vitro and in vivo. Matrix Biol, 23(5): 309–322
doi: 10.1016/j.matbio.2004.05.010 pmid: 15464363
23 GoldringM B, TsuchimochiK, IjiriK (2006). The control of chondrogenesis. J Cell Biochem, 97(1): 33–44
doi: 10.1002/jcb.20652 pmid: 16215986
24 GomezS, Lopez-CeperoJ M, SilvestriniG, BonucciE (1996). Matrix vesicles and focal proteoglycan aggregates are the nucleation sites revealed by the lanthanum incubation method: a correlated study on the hypertrophic zone of the rat epiphyseal cartilage. Calcif Tissue Int, 58(4): 273–282
doi: 10.1007/BF02508648 pmid: 8661960
25 GregoryC A, ZabelB, GrantM E, Boot-HandfordR P, WallisG A (2000). Equal expression of typ X collagen mRNA fom mutant and wild type COL10A1 alleles in growth plate cartilage from a patient with metaphyseal chondrodysplasia type Schmid. J Med Genet, 37(8): 627–629
doi: 10.1136/jmg.37.8.627 pmid: 10991694
26 GrskovicI, KutschA, FrieC, GromaG, StermannJ, Schlötzer-SchrehardtU, NiehoffA, MossS E, RosenbaumS, PöschlE, ChmielewskiM, RapplG, AbkenH, BatemanJ F, CheahK S, PaulssonM, BrachvogelB (2012). Depletion of annexin A5, annexin A6, and collagen X causes no gross changes in matrix vesicle-mediated mineralization, but lack of collagen X affects hematopoiesis and the Th1/Th2 response. J Bone Miner Res, 27(11): 2399–2412
doi: 10.1002/jbmr.1682 pmid: 22692895
27 HattoriT, MüllerC, GebhardS, BauerE, PauschF, SchlundB, BöslM R, HessA, Surmann-SchmittC, von der MarkH, de CrombruggheB, von der MarkK (2010). SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development, 137(6): 901–911
doi: 10.1242/dev.045203 pmid: 20179096
28 HessJ, AngelP, Schorpp-KistnerM (2004). AP-1 subunits: quarrel and harmony among siblings. J Cell Sci, 117(Pt 25): 5965–5973
doi: 10.1242/jcs.01589 pmid: 15564374
29 HessJ, HartensteinB, TeurichS, SchmidtD, Schorpp-KistnerM, AngelP (2003). Defective endochondral ossification in mice with strongly compromised expression of JunB. J Cell Sci, 116(Pt 22): 4587–4596
doi: 10.1242/jcs.00772 pmid: 14576352
30 HessJ, PorteD, MunzC, AngelP (2001). AP-1 and Cbfa/runt physically interact and regulate parathyroid hormone-dependent MMP13 expression in osteoblasts through a new osteoblast-specific element 2/AP-1 composite element. J Biol Chem, 276(23): 20029–20038
doi: 10.1074/jbc.M010601200 pmid: 11274169
31 HigashikawaA, SaitoT, IkedaT, KamekuraS, KawamuraN, KanA, OshimaY, OhbaS, OgataN, TakeshitaK, NakamuraK, ChungU I, KawaguchiH (2009). Identification of the core element responsive to runt-related transcription factor 2 in the promoter of human type X collagen gene. Arthritis Rheum, 60(1): 166–178
doi: 10.1002/art.24243 pmid: 19116917
32 HinoiE, BialekP, ChenY T, RachedM T, GronerY, BehringerR R, OrnitzD M, KarsentyG (2006). Runx2 inhibits chondrocyte proliferation and hypertrophy through its expression in the perichondrium. Genes Dev, 20(21): 2937–2942
doi: 10.1101/gad.1482906 pmid: 17050674
33 HoM S, TsangK Y, LoR L, SusicM, MäkitieO, ChanT W, NgV C, SillenceD O, Boot-HandfordR P, GibsonG, CheungK M, ColeW G, CheahK S, ChanD (2007). COL10A1 nonsense and frame-shift mutations have a gain-of-function effect on the growth plate in human and mouse metaphyseal chondrodysplasia type Schmid. Hum Mol Genet, 16(10): 1201–1215
doi: 10.1093/hmg/ddm067 pmid: 17403716
34 HovhannisyanH, ZhangY, HassanM Q, WuH, GlackinC, LianJ B, SteinJ L, MontecinoM, SteinG S, van WijnenA J (2013). Genomic occupancy of HLH, AP1 and Runx2 motifs within a nuclease sensitive site of the Runx2 gene. J Cell Physiol, 228(2): 313–321
doi: 10.1002/jcp.22109 pmid: 22886425
35 IjiriK, ZerbiniL F, PengH, CorreaR G, LuB, WalshN, ZhaoY, TaniguchiN, HuangX L, OtuH, WangH, WangJ F, KomiyaS, DucyP, RahmanM U, FlavellR A, GravalleseE M, OettgenP, LibermannT A, GoldringM B (2005). A novel role for GADD45beta as a mediator of MMP-13 gene expression during chondrocyte terminal differentiation. J Biol Chem, 280(46): 38544–38555
doi: 10.1074/jbc.M504202200 pmid: 16144844
36 IkegawaS, NakamuraK, NaganoA, HagaN, NakamuraY (1997). Mutations in the N-terminal globular domain of the type X collagen gene (COL10A1) in patients with Schmid metaphyseal chondrodysplasia. Hum Mutat, 9(2): 131–135
doi: 10.1002/(SICI)1098-1004(1997)9:2<131::AID-HUMU5>3.0.CO;2-C pmid: 9067753
37 IkegawaS, NishimuraG, NagaiT, HasegawaT, OhashiH, NakamuraY (1998). Mutation of the type X collagen gene (COL10A1) causes spondylometaphyseal dysplasia. Am J Hum Genet, 63(6): 1659–1662
doi: 10.1086/302158 pmid: 9837818
38 ImabuchiR, OhmiyaY, KwonH J, OnoderaS, KitamuraN, KurokawaT, GongJ P, YasudaK (2011). Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: comparisons with the normal articular cartilage. BMC Musculoskelet Disord, 12(1): 213
doi: 10.1186/1471-2474-12-213 pmid: 21955995
39 InadaM, YasuiT, NomuraS, MiyakeS, DeguchiK, HimenoM, SatoM, YamagiwaH, KimuraT, YasuiN, OchiT, EndoN, KitamuraY, KishimotoT, KomoriT (1999). Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn, 214(4): 279–290
doi: 10.1002/(SICI)1097-0177(199904)214:4<279::AID-AJA1>3.0.CO;2-W pmid: 10213384
40 JacenkoO, LuValleP A, OlsenB R (1993). Spondylometaphyseal dysplasia in mice carrying a dominant negative mutation in a matrix protein specific for cartilage-to-bone transition. Nature, 365(6441): 56–61
doi: 10.1038/365056a0 pmid: 8361538
41 JochumW, DavidJ P, ElliottC, WutzA, PlenkH Jr, MatsuoK, WagnerE F (2000). Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med, 6(9): 980–984
doi: 10.1038/79676 pmid: 10973316
42 JochumW, PasseguéE, WagnerE F (2001). AP-1 in mouse development and tumorigenesis. Oncogene, 20(19): 2401–2412
doi: 10.1038/sj.onc.1204389 pmid: 11402336
43 KamekuraS, KawasakiY, HoshiK, ShimoakaT, ChikudaH, MaruyamaZ, KomoriT, SatoS, TakedaS, KarsentyG, NakamuraK, ChungU I, KawaguchiH (2006). Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. Arthritis Rheum, 54(8): 2462–2470
doi: 10.1002/art.22041 pmid: 16868966
44 KarrethF, HoebertzA, ScheuchH, EferlR, WagnerE F (2004). The AP1 transcription factor Fra2 is required for efficient cartilage development. Development, 131(22): 5717–5725
doi: 10.1242/dev.01414 pmid: 15509771
45 KawaguchiH (2008). Endochondral ossification signals in cartilage degradation during osteoarthritis progression in experimental mouse models. Mol Cells, 25(1): 1–6
pmid: 18319608
46 KennerL, HoebertzA, BeilF T, KeonN, KarrethF, EferlR, ScheuchH, SzremskaA, AmlingM, Schorpp-KistnerM, AngelP, WagnerE F (2004). Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects. J Cell Biol, 164(4): 613–623
doi: 10.1083/jcb.200308155 pmid: 14769860
47 KimI S, OttoF, ZabelB, MundlosS (1999). Regulation of chondrocyte differentiation by Cbfa1. Mech Dev, 80(2): 159–170
doi: 10.1016/S0925-4773(98)00210-X pmid: 10072783
48 KomoriT, YagiH, NomuraS, YamaguchiA, SasakiK, DeguchiK, ShimizuY, BronsonR T, GaoY H, InadaM, SatoM, OkamotoR, KitamuraY, YoshikiS, KishimotoT (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 89(5): 755–764
doi: 10.1016/S0092-8674(00)80258-5 pmid: 9182763
49 KronenbergH M (2003). Developmental regulation of the growth plate. Nature, 423(6937): 332–336
doi: 10.1038/nature01657 pmid: 12748651
50 KungL H, RajparM H, BriggsM D, Boot-HandfordR P (2012). Hypertrophic chondrocytes have a limited capacity to cope with increases in endoplasmic reticulum stresswithout triggering the unfolded protein response. J Histochem Cytochem, 60(10): 734–48
51 KwanK M, PangM K, ZhouS, CowanS K, KongR Y, PfordteT, OlsenB R, SillenceD O, TamP P, CheahK S (1997). Abnormal compartmentalization of cartilage matrix components in mice lacking collagen X: implications for function. J Cell Biol, 136(2): 459–471
doi: 10.1083/jcb.136.2.459 pmid: 9015315
52 LeeB, ThirunavukkarasuK, ZhouL, PastoreL, BaldiniA, HechtJ, GeoffroyV, DucyP, KarsentyG (1997). Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet, 16(3): 307–310
doi: 10.1038/ng0797-307 pmid: 9207800
53 LeungV Y, GaoB, LeungK K, MelhadoI G, WynnS L, AuT Y, DungN W, LauJ Y, MakA C, ChanD, CheahK S (2011). SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression. PLoS Genet, 7(11): e1002356
doi: 10.1371/journal.pgen.1002356 pmid: 22072985
54 LiF, LuY, DingM, NapieralaD, AbbassiS, ChenY, DuanX, WangS, LeeB, ZhengQ (2011). Runx2 contributes to murine Col10a1 gene regulation through direct interaction with its cis-enhancer. J Bone Miner Res, 26(12): 2899–2910
doi: 10.1002/jbmr.504 pmid: 21887706
55 LinsenmayerT F, ChenQ A, GibneyE, GordonM K, MarchantJ K, MayneR, SchmidT M (1991). Collagen types IX and X in the developing chick tibiotarsus: analyses of mRNAs and proteins. Development, 111(1): 191–196
pmid: 2015794
56 LinsenmayerT F, FitchJ M, GrossJ, MayneR (1985). Are collagen fibrils in the developing avian cornea composed of two different collagen types? Evidence from monoclonal antibody studies. Ann N Y Acad Sci, 460(1 Biology, Chem): 232–245
doi: 10.1111/j.1749-6632.1985.tb51171.x pmid: 3868949
57 LongF, LinsenmayerT F (1995). Tissue-specific regulation of the type X collagen gene. Analyses by in vivo footprinting and transfection with a proximal promoter region. J Biol Chem, 270(52): 31310–31314
doi: 10.1074/jbc.270.52.31310 pmid: 8537401
58 MackieE J, AhmedY A, TatarczuchL, ChenK S, MiramsM (2008). Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol, 40(1): 46–62
doi: 10.1016/j.biocel.2007.06.009 pmid: 17659995
59 MacLeanH E, KimJ I, GlimcherM J, WangJ, KronenbergH M, GlimcherL H (2003). Absence of transcription factor c-maf causes abnormal terminal differentiation of hypertrophic chondrocytes during endochondral bone development. Dev Biol, 262(1): 51–63
doi: 10.1016/S0012-1606(03)00324-5 pmid: 14512017
60 MageeC, NurminskayaM, FavermanL, GaleraP, LinsenmayerT F (2005). SP3/SP1 transcription activity regulates specific expression of collagen type X in hypertrophic chondrocytes. J Biol Chem, 280(27): 25331–25338
doi: 10.1074/jbc.M412549200 pmid: 15849196
61 MäkitieO, SusicM, ColeW G (2010). Early-onset metaphyseal chondrodysplasia type Schmid associated with a COL10A1 frame-shift mutation and impaired trimerization of wild-type α1(X) protein chains. J Orthop Res, 28(11): 1497–1501
doi: 10.1002/jor.21161 pmid: 20872587
62 MäkitieO, SusicM, WardL, BarclayC, GlorieuxF H, ColeW G (2005). Schmid type of metaphyseal chondrodysplasia and COL10A1 mutations—findings in 10 patients. Am J Med Genet A, 137A(3): 241–248
doi: 10.1002/ajmg.a.30855 pmid: 16088909
63 MarksD S, GregoryC A, WallisG A, BrassA, KadlerK E, Boot-HandfordR P (1999). Metaphyseal chondrodysplasia type Schmid mutations are predicted to occur in two distinct three-dimensional clusters within type X collagen NC1 domains that retain the ability to trimerize. J Biol Chem, 274(6): 3632–3641
doi: 10.1074/jbc.274.6.3632 pmid: 9920912
64 MaruyamaT, MiyamotoY, YamamotoG, YamadaA, YoshimuraK, SuzawaT, TakamiM, AkiyamaT, HoshinoM, IwasaF, IkumiN, TachikawaT, MishimaK, BabaK, KamijoR (2013). Downregulation of carbonic anhydrase IX promotes Col10a1 expression in chondrocytes. PLoS ONE, 8(2): e56984
doi: 10.1371/journal.pone.0056984 pmid: 23441228
65 MatsuiY, YasuiN, KawabataH, OzonoK, NakataK, MizushimaT, TsumakiN, KataokaE, FujitaY, OchiT (2000). A novel type X collagen gene mutation (G595R) associated with Schmid-type metaphyseal chondrodysplasia. J Hum Genet, 45(2): 105–108
doi: 10.1007/s100380050024 pmid: 10721676
66 McIntoshI, AbbottM H, FrancomanoC A (1995). Concentration of mutations causing Schmid metaphyseal chondrodysplasia in the C-terminal noncollagenous domain of type X collagen. Hum Mutat, 5(2): 121–125
doi: 10.1002/humu.1380050204 pmid: 7749409
67 MyšičkováA, VingronM (2012). Detection of interacting transcription factors in human tissues using predicted DNA binding affinity. BMC Genomics, 13(13 Suppl 1): S2
doi: 10.1186/1471-2164-13-S1-S2 pmid: 22369666
68 NaefF, HuelskenJ (2005). Cell-type-specific transcriptomics in chimeric models using transcriptome-based masks. Nucleic Acids Res, 33(13): e111
doi: 10.1093/nar/gni104 pmid: 16030348
69 OttoF, ThornellA P, CromptonT, DenzelA, GilmourK C, RosewellI R, StampG W, BeddingtonR S, MundlosS, OlsenB R, SelbyP B, OwenM J (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 89(5): 765–771
doi: 10.1016/S0092-8674(00)80259-7 pmid: 9182764
70 PapachristouD, PirttiniemiP, KantomaaT, AgnantisN, BasdraE K (2006). Fos- and Jun-related transcription factors are involved in the signal transduction pathway of mechanical loading in condylar chondrocytes. Eur J Orthod, 28(1): 20–26
doi: 10.1093/ejo/cji101 pmid: 16373449
71 PenolazziL, LisignoliG, LambertiniE, TorreggianiE, ManferdiniC, LolliA, VecchiatiniR, CiardoF, GabusiE, FacchiniA, GambariR, PivaR (2011). Transcription factor decoy against NFATc1 in human primary osteoblasts. Int J Mol Med, 28(2): 199–206
doi: 10.3892/ijmm.2011.701 pmid: 21584488
72 PulligO, WeselohG, RonnebergerD, KäkönenS, SwobodaB (2000). Chondrocyte differentiation in human osteoarthritis: expression of osteocalcin in normal and osteoarthritic cartilage and bone. Calcif Tissue Int, 67(3): 230–240
doi: 10.1007/s002230001108 pmid: 10954778
73 RajparM H, McDermottB, KungL, EardleyR, KnowlesL, HeeranM, ThorntonD J, WilsonR, BatemanJ F, PoulsomR, ArvanP, KadlerK E, BriggsM D, Boot-HandfordR P (2009). Targeted induction of endoplasmic reticulum stress induces cartilage pathology. PLoS Genet, 5(10): e1000691
doi: 10.1371/journal.pgen.1000691 pmid: 19834559
74 RiemerS, GebhardS, BeierF, PöschlE, von der MarkK (2002). Role of c-fos in the regulation of type X collagen gene expression by PTH and PTHrP: Localization of a PTH/PTHrPresponsive region in the human COL10A1 enhancer. J Cell Biochem, 86: 688–699
75 SaharD E, LongakerM T, QuartoN (2005). Sox9 neural crest determinant gene controls patterning and closure of the posterior frontal cranial suture. Dev Biol, 280(2): 344–361
doi: 10.1016/j.ydbio.2005.01.022 pmid: 15882577
76 SaitoT, FukaiA, MabuchiA, IkedaT, YanoF, OhbaS, NishidaN, AkuneT, YoshimuraN, NakagawaT, NakamuraK, TokunagaK, ChungU I, KawaguchiH (2010). Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development. Nat Med, 16(6): 678–686
doi: 10.1038/nm.2146 pmid: 20495570
77 SakimuraR, TanakaK, YamamotoS, MatsunobuT, LiX, HanadaM, OkadaT, NakamuraT, LiY, IwamotoY (2007). The effects of histone deacetylase inhibitors on the induction of differentiation in chondrosarcoma cells. Clin Cancer Res, 13(1): 275–282
doi: 10.1158/1078-0432.CCR-06-1696 pmid: 17200366
78 SawaiH, IdaA, NakataY, KoyamaK (1998). Novel missense mutation resulting in the substitution of tyrosine by cysteine at codon 597 of the type X collagen gene associated with Schmid metaphyseal chondrodysplasia. J Hum Genet, 43(4): 259–261
doi: 10.1007/s100380050085 pmid: 9852679
79 SchipaniE, ProvotS (2003). PTHrP, PTH, and the PTH/PTHrP receptor in endochondral bone development. Birth Defects Res C Embryo Today, 69(4): 352–362
doi: 10.1002/bdrc.10028 pmid: 14745975
80 ShenG (2005). The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod Craniofac Res, 8(1): 11–17
doi: 10.1111/j.1601-6343.2004.00308.x pmid: 15667640
81 SimõesB, ConceiçãoN, ViegasC S, PintoJ P, GavaiaP J, HurstL D, KelshR N, CancelaM L (2006). Identification of a promoter element within the zebrafish colXalpha1 gene responsive to runx2 isoforms Osf2/Cbfa1 and til-1 but not to pebp2alphaA2. Calcif Tissue Int, 79(4): 230–244
doi: 10.1007/s00223-006-0111-6 pmid: 17033725
82 StratakisC A, OrbanZ, BurnsA L, VotteroA, MitsiadesC S, MarxS J, AbbassiV, ChrousosG P (1996). Dideoxyfingerprinting (ddF) analysis of the type X collagen gene (COL10A1) and identification of a novel mutation (S671P) in a kindred with Schmid metaphyseal chondrodysplasia. Biochem Mol Med, 59(2): 112–117
doi: 10.1006/bmme.1996.0075 pmid: 8986632
83 TakedaS, BonnamyJ P, OwenM J, DucyP, KarsentyG (2001). Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev, 15(4): 467–481
doi: 10.1101/gad.845101 pmid: 11230154
84 TanJ T, KremerF, FreddiS, BellK M, BakerN L, LamandéS R, BatemanJ F (2008). Competency for nonsense-mediated reduction in collagen X mRNA is specified by the 3′ UTR and corresponds to the position of mutations in Schmid metaphyseal chondrodysplasia. Am J Hum Genet, 82(3): 786–793
doi: 10.1016/j.ajhg.2008.01.006 pmid: 18304492
85 ThomasD P, SuntersA, GentryA, GrigoriadisA E (2000). Inhibition of chondrocyte differentiation in vitro by constitutive and inducible overexpression of the c-fos proto-oncogene. J Cell Sci, 113(Pt 3): 439–450
pmid: 10639331
86 Thomas-ChollierM, HuftonA, HeinigM, O’KeeffeS, MasriN E, RoiderH G, MankeT, VingronM (2011). Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs. Nat Protoc, 6(12): 1860–1869
doi: 10.1038/nprot.2011.409 pmid: 22051799
87 TsuchimochiK, OteroM, DragomirC L, PlumbD A, ZerbiniL F, LibermannT A, MarcuK B, KomiyaS, IjiriK, GoldringM B (2010). GADD45beta enhances Col10a1 transcription via the MTK1/MKK3/6/p38 axis and activation of C/EBPbeta-TAD4 in terminally differentiating chondrocytes. J Biol Chem, 285(11): 8395–8407
doi: 10.1074/jbc.M109.038638 pmid: 20048163
88 van der KraanP M, van den BergW B (2012). Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthritis Cartilage, 20(3): 223–232
doi: 10.1016/j.joca.2011.12.003 pmid: 22178514
89 von der MarkK, FrischholzS, AignerT, BeierF, BelkeJ, ErdmannS, BurkhardtH (1995). Upregulation of type X collagen expression in osteoarthritic cartilage. Acta Orthop Scand Suppl, 266: 125–129
pmid: 8553841
90 von der MarkK, KirschT, NerlichA, KussA, WeselohG, GlückertK, StössH (1992). Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis Rheum, 35(7): 806–811
doi: 10.1002/art.1780350715 pmid: 1622419
91 VonkL A, KragtenA H, DhertW J, SarisD B, CreemersL B (2014). Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes. Osteoarthritis Cartilage, 22(1): 145–153
doi: 10.1016/j.joca.2013.11.006 pmid: 24269634
92 WagnerE F (2002). Functions of AP1 (Fos/Jun) in bone development. Ann Rheum Dis, 61(61 Suppl 2): ii40–ii42
pmid: 12379619
93 WallisG A, RashB, SykesB, BonaventureJ, MaroteauxP, ZabelB, Wynne-DaviesR, GrantM E, Boot-HandfordR P (1996). Mutations within the gene encoding the alpha 1 (X) chain of type X collagen (COL10A1) cause metaphyseal chondrodysplasia type Schmid but not several other forms of metaphyseal chondrodysplasia. J Med Genet, 33(6): 450–457
doi: 10.1136/jmg.33.6.450 pmid: 8782043
94 WarmanM L, AbbottM, ApteS S, HefferonT, McIntoshI, CohnD H, HechtJ T, OlsenB R, FrancomanoC A (1993). A type X collagen mutation causes Schmid metaphyseal chondrodysplasia. Nat Genet, 5(1): 79–82
doi: 10.1038/ng0993-79 pmid: 8220429
95 WilsonR, FreddiS, ChanD, CheahK S, BatemanJ F (2005). Misfolding of collagen X chains harboring Schmid metaphyseal chondrodysplasia mutations results in aberrant disulfide bond formation, intracellular retention, and activation of the unfolded protein response. J Biol Chem, 280(16): 15544–15552
doi: 10.1074/jbc.M410758200 pmid: 15695517
96 WoelfleJ V, BrennerR E, ZabelB, ReichelH, NelitzM (2011). Schmid-type metaphyseal chondrodysplasia as the result of a collagen type X defect due to a novel COL10A1 nonsense mutation: A case report of a novel COL10A1 mutation. J Orthop Sci, 16(2): 245–249
doi: 10.1007/s00776-011-0021-y pmid: 21360259
97 ZanottiS, CanalisE (2013). Notch suppresses nuclear factor of activated T cells (NFAT) transactivation and Nfatc1 expression in chondrocytes. Endocrinology, 154(2): 762–772
doi: 10.1210/en.2012-1925 pmid: 23264614
98 ZhengQ, KellerB, ZhouG, NapieralaD, ChenY, ZabelB, ParkerA E, LeeB (2009). Localization of the cis-enhancer element for mouse type X collagen expression in hypertrophic chondrocytes in vivo. J Bone Miner Res, 24(6): 1022–1032
doi: 10.1359/jbmr.081249 pmid: 19113928
99 ZhengQ, SebaldE, ZhouG, ChenY, WilcoxW, LeeB, KrakowD (2005). Dysregulation of chondrogenesis in human cleidocranial dysplasia. Am J Hum Genet, 77(2): 305–312
doi: 10.1086/432261 pmid: 15952089
100 ZhengQ, ZhouG, MorelloR, ChenY, Garcia-RojasX, LeeB (2003). Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo. J Cell Biol, 162(5): 833–842
doi: 10.1083/jcb.200211089 pmid: 12952936
101 ZhouG, ZhengQ, EnginF, MunivezE, ChenY, SebaldE, KrakowD, LeeB (2006). Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc Natl Acad Sci USA, 103(50): 19004–19009
doi: 10.1073/pnas.0605170103 pmid: 17142326
102 ZhuY, LiL, ZhouL, MeiH, JinK, LiuK, XuW, TangJ, YangY, ZhaoR, HeX (2011). A novel mutation leading to elongation of the deduced α1(X) chain results in Metaphyseal Chondrodysplasia type Schmid. Clin Chim Acta, 412(13–14): 1266–1269
doi: 10.1016/j.cca.2011.03.026 pmid: 21447328
103 ZimmermannP, BoeufS, DickhutA, BoehmerS, OlekS, RichterW (2008). Correlation of COL10A1 induction during chondrogenesis of mesenchymal stem cells with demethylation of two CpG sites in the COL10A1 promoter. Arthritis Rheum, 58(9): 2743–2753
doi: 10.1002/art.23736 pmid: 18759285
104 DrissiH, ZuscikM, RosierR, O’KeefeR (2005). Transcriptional regulation of chondrocyte maturation: potential involvement of transcription factors in OA pathogenesis. Mol Aspects Med, 26(3): 169–179
doi: 10.1016/j.mam.2005.01.003 pmid: 15811433
[1] Rebecca M. FOX,Deborah J. ANDREW. Transcriptional regulation of secretory capacity by bZip transcription factors[J]. Front. Biol., 2015, 10(1): 28-51.
[2] Roshni S. RAINBOW,Heenam KWON,Li ZENG. The role of Nkx3.2 in chondrogenesis[J]. Front. Biol., 2014, 9(5): 376-381.
[3] Afsar U. AHMED. An overview of inflammation: mechanism and consequences[J]. Front Biol, 2011, 6(4): 274-281.
[4] Peng ZHAO, Dong-Qiao SHI, Wei-Cai YANG. Patterning the embryo in higher plants: Emerging pathways and challenges[J]. Front Biol, 2011, 06(01): 3-11.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed