|
|
Col10a1 gene expression and chondrocyte hypertrophy during skeletal development and disease |
Yaojuan LU1,2,Longwei QIAO2,Guanghua LEI3,Ranim R. MIRA1,Junxia GU2,Qiping ZHENG1,2,*( ) |
1. Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, IL 60612, USA 2. Department of Hematology and Hematological Laboratory Science, School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang 212013, China 3. Department of Orthopaedic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China |
|
|
Abstract The type X collagen gene, COL10A1, is specifically expressed by hypertrophic chondrocytes during endochondral ossification. Endochondral ossification is a well-coordinated process that involves a cartilage intermediate and leads to formation of most of the skeleton in vertebrates during skeletogenesis. Chondrocyte hypertrophy is a critical stage of endochondral ossification linking both bone and cartilage development. Given its specific association with chondrocyte hypertrophy, type X collagen plays essential roles in endochondral ossification. It was previously shown that transgenic mice with mutant type X collagen develop variable skeleton-hematopoietic abnormalities indicating defective endochondral ossification, while mutations and abnormal expression of human COL10A1 cause abnormal chondrocyte hypertrophy that has been seen in many skeletal disorders, including skeletal chondrodysplasia and osteoarthritis. In this review, we summarized the skeletal chondrodysplasia with COL10A1 gene mutation that shows growth plate defect. We also reviewed recent studies that correlate the type X collagen gene expression and chondrocyte hypertrophy with osteoarthritis. Due to its significant clinical relevance, the type X collagen gene regulation has been extensively studied over the past two decades. Here, we focus on recent progress characterizing the cis-enhancer elements and their binding factors that together confer hypertrophic chondrocyte-specific murine type X collagen gene (Col10a1) expression. Based on literature review and our own studies, we surmise that there are multiple factors that contribute to hypertrophic chondrocyte-specific Col10a1 expression. These factors include both transactivators (such as Runx2, MEF2C etc.) and repressors (such as AP1, NFATc1, Sox9 etc.), while other co-factors or epigenetic control of Col10a1 expression may not be excluded.
|
Keywords
Col10a1 gene expression
cis-enhancer
transcription factors
AP1 and Runx2
chondrocyte hypertrophy
skeletal development and diseases
|
Corresponding Author(s):
Qiping ZHENG
|
Issue Date: 24 June 2014
|
|
1 |
AdamsS L, PallanteK M, NiuZ, CohenA J, LuJ, LeBoyP S (2003). Stimulation of type-X collagen gene transcription by retinoids occurs in part through the BMP signaling pathway. J Bone Joint Surg Am, 85-A(Suppl 3): 29–33 pmid: 12925606
|
2 |
ArnoldM A, KimY, CzubrytM P, PhanD, McAnallyJ, QiX, SheltonJ M, RichardsonJ A, Bassel-DubyR, OlsonE N (2007). MEF2C transcription factor controls chondrocyte hypertrophy and bone development. Dev Cell, 12(3): 377–389 doi: 10.1016/j.devcel.2007.02.004 pmid: 17336904
|
3 |
BatemanJ F, FreddiS, McNeilR, ThompsonE, HermannsP, SavarirayanR, LamandéS R (2004). Identification of four novel COL10A1 missense mutations in schmid metaphyseal chondrodysplasia: further evidence that collagen X NC1 mutations impair trimer assembly. Hum Mutat, 23(4): 396 doi: 10.1002/humu.9222 pmid: 15024737
|
4 |
BatemanJ F, FreddiS, NattrassG, SavarirayanR (2003). Tissue-specific RNA surveillance? Nonsense-mediated mRNA decay causes collagen X haploinsufficiency in Schmid metaphyseal chondrodysplasia cartilage. Hum Mol Genet, 12(3): 217–225 doi: 10.1093/hmg/ddg054 pmid: 12554676
|
5 |
BatemanJ F, WilsonR, FreddiS, LamandéS R, SavarirayanR (2005). Mutations of COL10A1 in Schmid metaphyseal chondrodysplasia. Hum Mutat, 25(6): 525–534 doi: 10.1002/humu.20183 pmid: 15880705
|
6 |
BeierF, VornehmS, PöschlE, von der MarkK, LammiM J (1997). Localization of silencer and enhancer elements in the human type X collagen gene. J Cell Biochem, 66(2): 210–218 doi: 10.1002/(SICI)1097-4644(19970801)66:2<210::AID-JCB8>3.0.CO;2-T pmid: 9213222
|
7 |
ChambersD, YoungD A, HowardC, ThomasJ T, BoamD S, GrantM E, WallisG A, Boot-HandfordR P (2002). An enhancer complex confers both high-level and cell-specific expression of the human type X collagen gene. FEBS Lett, 531(3): 505–508 doi: 10.1016/S0014-5793(02)03606-2 pmid: 12435601
|
8 |
ChanD, ColeW G, RogersJ G, BatemanJ F (1995). Type X collagen multimer assembly in vitro is prevented by a Gly618 to Val mutation in the alpha 1(X) NC1 domain resulting in Schmid metaphyseal chondrodysplasia. J Biol Chem, 270(9): 4558–4562 doi: 10.1074/jbc.270.9.4558 pmid: 7876225
|
9 |
ChangH J, YangM J, YangY H, HouM F, HsuehE J, LinS R (2009). MMP13 is potentially a new tumor marker for breast cancer diagnosis. Oncol Rep, 22(5): 1119–1127 pmid: 19787229
|
10 |
ChapmanK B, PrendesM J, SternbergH, KiddJ L, FunkW D, WagnerJ, WestM D (2012). COL10A1 expression is elevated in diverse solid tumor types and is associated with tumor vasculature. Future Oncol, 8(8): 1031–1040 doi: 10.2217/fon.12.79 pmid: 22894674
|
11 |
D’AlonzoR C, SelvamuruganN, KarsentyG, PartridgeN C (2002). Physical interaction of the activator protein-1 factors c-Fos and c-Jun with Cbfa1 for collagenase-3 promoter activation. J Biol Chem, 277(1): 816–822 doi: 10.1074/jbc.M107082200 pmid: 11641401
|
12 |
DesmedtC, MajjajS, KheddoumiN, SinghalS K, Haibe-KainsB, El OuriaghliF, ChaboteauxC, MichielsS, LallemandF, JourneF, DuvillierH, LoiS, QuackenbushJ, DekoninckS, BlanpainC, LagneauxL, HouhouN, DelorenziM, LarsimontD, PiccartM, SotiriouC (2012). Characterization and clinical evaluation of CD10+ stroma cells in the breast cancer microenvironment. Clin Cancer Res, 18(4): 1004–1014 doi: 10.1158/1078-0432.CCR-11-0383 pmid: 22235100
|
13 |
DongY, DrissiH, ChenM, ChenD, ZuscikM J, SchwarzE M, O’KeefeR J (2005). Wnt-mediated regulation of chondrocyte maturation: modulation by TGF-beta. J Cell Biochem, 95(5): 1057–1068 doi: 10.1002/jcb.20466 pmid: 15962307
|
14 |
DongY F, SoungY, SchwarzE M, O’KeefeR J, DrissiH (2006). Wnt induction of chondrocyte hypertrophy through the Runx2 transcription factor. J Cell Physiol, 208(1): 77–86 doi: 10.1002/jcp.20656 pmid: 16575901
|
15 |
DouradoG, LuValleP (1998). Proximal DNA elements mediate repressor activity conferred by the distal portion of the chicken collagen X promoter. J Cell Biochem, 70(4): 507–516 doi: 10.1002/(SICI)1097-4644(19980915)70:4<507::AID-JCB7>3.0.CO;2-N pmid: 9712148
|
15 |
DrissiM H, LiX, SheuT J, ZuscikM J, SchwarzE M, PuzasJ E, RosierR N, O’KeefeR J (2003). Runx2/Cbfa1 stimulation by retinoic acid is potentiated by BMP2 signaling through interaction with Smad1 on the collagen X promoter in chondrocytes. J Cell Biochem, 90(6): 1287–1298 doi: 10.1002/jcb.10677 pmid: 14635200
|
17 |
DyP, WangW, BhattaramP, WangQ, WangL, BallockR T, LefebvreV (2012). Sox9 directs hypertrophic maturation and blocks osteoblast differentiation of growth plate chondrocytes. Dev Cell, 22(3): 597–609 doi: 10.1016/j.devcel.2011.12.024 pmid: 22421045
|
18 |
EerolaI, SalminenH, LammiP, LammiM, von der MarkK, VuorioE, SäämänenA M (1998). Type X collagen, a natural component of mouse articular cartilage: association with growth, aging, and osteoarthritis. Arthritis Rheum, 41(7): 1287–1295 doi: 10.1002/1529-0131(199807)41:7<1287::AID-ART20>3.0.CO;2-D pmid: 9663487
|
19 |
EferlR, HoebertzA, SchillingA F, RathM, KarrethF, KennerL, AmlingM, WagnerE F (2004). The Fos-related antigen Fra-1 is an activator of bone matrix formation. EMBO J, 23(14): 2789–2799 doi: 10.1038/sj.emboj.7600282 pmid: 15229648
|
20 |
EferlR, WagnerE F (2003). AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer, 3(11): 859–868 doi: 10.1038/nrc1209 pmid: 14668816
|
21 |
FangJ, HallB K (1997). Chondrogenic cell differentiation from membrane bone periostea. Anat Embryol (Berl), 196(5): 349–362 (Review) doi: 10.1007/s004290050104 pmid: 9406838
|
22 |
GebhardS, PöschlE, RiemerS, BauerE, HattoriT, EberspaecherH, ZhangZ, LefebvreV, de CrombruggheB, von der MarkK (2004). A highly conserved enhancer in mammalian type X collagen genes drives high levels of tissue-specific expression in hypertrophic cartilage in vitro and in vivo. Matrix Biol, 23(5): 309–322 doi: 10.1016/j.matbio.2004.05.010 pmid: 15464363
|
23 |
GoldringM B, TsuchimochiK, IjiriK (2006). The control of chondrogenesis. J Cell Biochem, 97(1): 33–44 doi: 10.1002/jcb.20652 pmid: 16215986
|
24 |
GomezS, Lopez-CeperoJ M, SilvestriniG, BonucciE (1996). Matrix vesicles and focal proteoglycan aggregates are the nucleation sites revealed by the lanthanum incubation method: a correlated study on the hypertrophic zone of the rat epiphyseal cartilage. Calcif Tissue Int, 58(4): 273–282 doi: 10.1007/BF02508648 pmid: 8661960
|
25 |
GregoryC A, ZabelB, GrantM E, Boot-HandfordR P, WallisG A (2000). Equal expression of typ X collagen mRNA fom mutant and wild type COL10A1 alleles in growth plate cartilage from a patient with metaphyseal chondrodysplasia type Schmid. J Med Genet, 37(8): 627–629 doi: 10.1136/jmg.37.8.627 pmid: 10991694
|
26 |
GrskovicI, KutschA, FrieC, GromaG, StermannJ, Schlötzer-SchrehardtU, NiehoffA, MossS E, RosenbaumS, PöschlE, ChmielewskiM, RapplG, AbkenH, BatemanJ F, CheahK S, PaulssonM, BrachvogelB (2012). Depletion of annexin A5, annexin A6, and collagen X causes no gross changes in matrix vesicle-mediated mineralization, but lack of collagen X affects hematopoiesis and the Th1/Th2 response. J Bone Miner Res, 27(11): 2399–2412 doi: 10.1002/jbmr.1682 pmid: 22692895
|
27 |
HattoriT, MüllerC, GebhardS, BauerE, PauschF, SchlundB, BöslM R, HessA, Surmann-SchmittC, von der MarkH, de CrombruggheB, von der MarkK (2010). SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development, 137(6): 901–911 doi: 10.1242/dev.045203 pmid: 20179096
|
28 |
HessJ, AngelP, Schorpp-KistnerM (2004). AP-1 subunits: quarrel and harmony among siblings. J Cell Sci, 117(Pt 25): 5965–5973 doi: 10.1242/jcs.01589 pmid: 15564374
|
29 |
HessJ, HartensteinB, TeurichS, SchmidtD, Schorpp-KistnerM, AngelP (2003). Defective endochondral ossification in mice with strongly compromised expression of JunB. J Cell Sci, 116(Pt 22): 4587–4596 doi: 10.1242/jcs.00772 pmid: 14576352
|
30 |
HessJ, PorteD, MunzC, AngelP (2001). AP-1 and Cbfa/runt physically interact and regulate parathyroid hormone-dependent MMP13 expression in osteoblasts through a new osteoblast-specific element 2/AP-1 composite element. J Biol Chem, 276(23): 20029–20038 doi: 10.1074/jbc.M010601200 pmid: 11274169
|
31 |
HigashikawaA, SaitoT, IkedaT, KamekuraS, KawamuraN, KanA, OshimaY, OhbaS, OgataN, TakeshitaK, NakamuraK, ChungU I, KawaguchiH (2009). Identification of the core element responsive to runt-related transcription factor 2 in the promoter of human type X collagen gene. Arthritis Rheum, 60(1): 166–178 doi: 10.1002/art.24243 pmid: 19116917
|
32 |
HinoiE, BialekP, ChenY T, RachedM T, GronerY, BehringerR R, OrnitzD M, KarsentyG (2006). Runx2 inhibits chondrocyte proliferation and hypertrophy through its expression in the perichondrium. Genes Dev, 20(21): 2937–2942 doi: 10.1101/gad.1482906 pmid: 17050674
|
33 |
HoM S, TsangK Y, LoR L, SusicM, MäkitieO, ChanT W, NgV C, SillenceD O, Boot-HandfordR P, GibsonG, CheungK M, ColeW G, CheahK S, ChanD (2007). COL10A1 nonsense and frame-shift mutations have a gain-of-function effect on the growth plate in human and mouse metaphyseal chondrodysplasia type Schmid. Hum Mol Genet, 16(10): 1201–1215 doi: 10.1093/hmg/ddm067 pmid: 17403716
|
34 |
HovhannisyanH, ZhangY, HassanM Q, WuH, GlackinC, LianJ B, SteinJ L, MontecinoM, SteinG S, van WijnenA J (2013). Genomic occupancy of HLH, AP1 and Runx2 motifs within a nuclease sensitive site of the Runx2 gene. J Cell Physiol, 228(2): 313–321 doi: 10.1002/jcp.22109 pmid: 22886425
|
35 |
IjiriK, ZerbiniL F, PengH, CorreaR G, LuB, WalshN, ZhaoY, TaniguchiN, HuangX L, OtuH, WangH, WangJ F, KomiyaS, DucyP, RahmanM U, FlavellR A, GravalleseE M, OettgenP, LibermannT A, GoldringM B (2005). A novel role for GADD45beta as a mediator of MMP-13 gene expression during chondrocyte terminal differentiation. J Biol Chem, 280(46): 38544–38555 doi: 10.1074/jbc.M504202200 pmid: 16144844
|
36 |
IkegawaS, NakamuraK, NaganoA, HagaN, NakamuraY (1997). Mutations in the N-terminal globular domain of the type X collagen gene (COL10A1) in patients with Schmid metaphyseal chondrodysplasia. Hum Mutat, 9(2): 131–135 doi: 10.1002/(SICI)1098-1004(1997)9:2<131::AID-HUMU5>3.0.CO;2-C pmid: 9067753
|
37 |
IkegawaS, NishimuraG, NagaiT, HasegawaT, OhashiH, NakamuraY (1998). Mutation of the type X collagen gene (COL10A1) causes spondylometaphyseal dysplasia. Am J Hum Genet, 63(6): 1659–1662 doi: 10.1086/302158 pmid: 9837818
|
38 |
ImabuchiR, OhmiyaY, KwonH J, OnoderaS, KitamuraN, KurokawaT, GongJ P, YasudaK (2011). Gene expression profile of the cartilage tissue spontaneously regenerated in vivo by using a novel double-network gel: comparisons with the normal articular cartilage. BMC Musculoskelet Disord, 12(1): 213 doi: 10.1186/1471-2474-12-213 pmid: 21955995
|
39 |
InadaM, YasuiT, NomuraS, MiyakeS, DeguchiK, HimenoM, SatoM, YamagiwaH, KimuraT, YasuiN, OchiT, EndoN, KitamuraY, KishimotoT, KomoriT (1999). Maturational disturbance of chondrocytes in Cbfa1-deficient mice. Dev Dyn, 214(4): 279–290 doi: 10.1002/(SICI)1097-0177(199904)214:4<279::AID-AJA1>3.0.CO;2-W pmid: 10213384
|
40 |
JacenkoO, LuValleP A, OlsenB R (1993). Spondylometaphyseal dysplasia in mice carrying a dominant negative mutation in a matrix protein specific for cartilage-to-bone transition. Nature, 365(6441): 56–61 doi: 10.1038/365056a0 pmid: 8361538
|
41 |
JochumW, DavidJ P, ElliottC, WutzA, PlenkH Jr, MatsuoK, WagnerE F (2000). Increased bone formation and osteosclerosis in mice overexpressing the transcription factor Fra-1. Nat Med, 6(9): 980–984 doi: 10.1038/79676 pmid: 10973316
|
42 |
JochumW, PasseguéE, WagnerE F (2001). AP-1 in mouse development and tumorigenesis. Oncogene, 20(19): 2401–2412 doi: 10.1038/sj.onc.1204389 pmid: 11402336
|
43 |
KamekuraS, KawasakiY, HoshiK, ShimoakaT, ChikudaH, MaruyamaZ, KomoriT, SatoS, TakedaS, KarsentyG, NakamuraK, ChungU I, KawaguchiH (2006). Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. Arthritis Rheum, 54(8): 2462–2470 doi: 10.1002/art.22041 pmid: 16868966
|
44 |
KarrethF, HoebertzA, ScheuchH, EferlR, WagnerE F (2004). The AP1 transcription factor Fra2 is required for efficient cartilage development. Development, 131(22): 5717–5725 doi: 10.1242/dev.01414 pmid: 15509771
|
45 |
KawaguchiH (2008). Endochondral ossification signals in cartilage degradation during osteoarthritis progression in experimental mouse models. Mol Cells, 25(1): 1–6 pmid: 18319608
|
46 |
KennerL, HoebertzA, BeilF T, KeonN, KarrethF, EferlR, ScheuchH, SzremskaA, AmlingM, Schorpp-KistnerM, AngelP, WagnerE F (2004). Mice lacking JunB are osteopenic due to cell-autonomous osteoblast and osteoclast defects. J Cell Biol, 164(4): 613–623 doi: 10.1083/jcb.200308155 pmid: 14769860
|
47 |
KimI S, OttoF, ZabelB, MundlosS (1999). Regulation of chondrocyte differentiation by Cbfa1. Mech Dev, 80(2): 159–170 doi: 10.1016/S0925-4773(98)00210-X pmid: 10072783
|
48 |
KomoriT, YagiH, NomuraS, YamaguchiA, SasakiK, DeguchiK, ShimizuY, BronsonR T, GaoY H, InadaM, SatoM, OkamotoR, KitamuraY, YoshikiS, KishimotoT (1997). Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell, 89(5): 755–764 doi: 10.1016/S0092-8674(00)80258-5 pmid: 9182763
|
49 |
KronenbergH M (2003). Developmental regulation of the growth plate. Nature, 423(6937): 332–336 doi: 10.1038/nature01657 pmid: 12748651
|
50 |
KungL H, RajparM H, BriggsM D, Boot-HandfordR P (2012). Hypertrophic chondrocytes have a limited capacity to cope with increases in endoplasmic reticulum stresswithout triggering the unfolded protein response. J Histochem Cytochem, 60(10): 734–48
|
51 |
KwanK M, PangM K, ZhouS, CowanS K, KongR Y, PfordteT, OlsenB R, SillenceD O, TamP P, CheahK S (1997). Abnormal compartmentalization of cartilage matrix components in mice lacking collagen X: implications for function. J Cell Biol, 136(2): 459–471 doi: 10.1083/jcb.136.2.459 pmid: 9015315
|
52 |
LeeB, ThirunavukkarasuK, ZhouL, PastoreL, BaldiniA, HechtJ, GeoffroyV, DucyP, KarsentyG (1997). Missense mutations abolishing DNA binding of the osteoblast-specific transcription factor OSF2/CBFA1 in cleidocranial dysplasia. Nat Genet, 16(3): 307–310 doi: 10.1038/ng0797-307 pmid: 9207800
|
53 |
LeungV Y, GaoB, LeungK K, MelhadoI G, WynnS L, AuT Y, DungN W, LauJ Y, MakA C, ChanD, CheahK S (2011). SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression. PLoS Genet, 7(11): e1002356 doi: 10.1371/journal.pgen.1002356 pmid: 22072985
|
54 |
LiF, LuY, DingM, NapieralaD, AbbassiS, ChenY, DuanX, WangS, LeeB, ZhengQ (2011). Runx2 contributes to murine Col10a1 gene regulation through direct interaction with its cis-enhancer. J Bone Miner Res, 26(12): 2899–2910 doi: 10.1002/jbmr.504 pmid: 21887706
|
55 |
LinsenmayerT F, ChenQ A, GibneyE, GordonM K, MarchantJ K, MayneR, SchmidT M (1991). Collagen types IX and X in the developing chick tibiotarsus: analyses of mRNAs and proteins. Development, 111(1): 191–196 pmid: 2015794
|
56 |
LinsenmayerT F, FitchJ M, GrossJ, MayneR (1985). Are collagen fibrils in the developing avian cornea composed of two different collagen types? Evidence from monoclonal antibody studies. Ann N Y Acad Sci, 460(1 Biology, Chem): 232–245 doi: 10.1111/j.1749-6632.1985.tb51171.x pmid: 3868949
|
57 |
LongF, LinsenmayerT F (1995). Tissue-specific regulation of the type X collagen gene. Analyses by in vivo footprinting and transfection with a proximal promoter region. J Biol Chem, 270(52): 31310–31314 doi: 10.1074/jbc.270.52.31310 pmid: 8537401
|
58 |
MackieE J, AhmedY A, TatarczuchL, ChenK S, MiramsM (2008). Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol, 40(1): 46–62 doi: 10.1016/j.biocel.2007.06.009 pmid: 17659995
|
59 |
MacLeanH E, KimJ I, GlimcherM J, WangJ, KronenbergH M, GlimcherL H (2003). Absence of transcription factor c-maf causes abnormal terminal differentiation of hypertrophic chondrocytes during endochondral bone development. Dev Biol, 262(1): 51–63 doi: 10.1016/S0012-1606(03)00324-5 pmid: 14512017
|
60 |
MageeC, NurminskayaM, FavermanL, GaleraP, LinsenmayerT F (2005). SP3/SP1 transcription activity regulates specific expression of collagen type X in hypertrophic chondrocytes. J Biol Chem, 280(27): 25331–25338 doi: 10.1074/jbc.M412549200 pmid: 15849196
|
61 |
MäkitieO, SusicM, ColeW G (2010). Early-onset metaphyseal chondrodysplasia type Schmid associated with a COL10A1 frame-shift mutation and impaired trimerization of wild-type α1(X) protein chains. J Orthop Res, 28(11): 1497–1501 doi: 10.1002/jor.21161 pmid: 20872587
|
62 |
MäkitieO, SusicM, WardL, BarclayC, GlorieuxF H, ColeW G (2005). Schmid type of metaphyseal chondrodysplasia and COL10A1 mutations—findings in 10 patients. Am J Med Genet A, 137A(3): 241–248 doi: 10.1002/ajmg.a.30855 pmid: 16088909
|
63 |
MarksD S, GregoryC A, WallisG A, BrassA, KadlerK E, Boot-HandfordR P (1999). Metaphyseal chondrodysplasia type Schmid mutations are predicted to occur in two distinct three-dimensional clusters within type X collagen NC1 domains that retain the ability to trimerize. J Biol Chem, 274(6): 3632–3641 doi: 10.1074/jbc.274.6.3632 pmid: 9920912
|
64 |
MaruyamaT, MiyamotoY, YamamotoG, YamadaA, YoshimuraK, SuzawaT, TakamiM, AkiyamaT, HoshinoM, IwasaF, IkumiN, TachikawaT, MishimaK, BabaK, KamijoR (2013). Downregulation of carbonic anhydrase IX promotes Col10a1 expression in chondrocytes. PLoS ONE, 8(2): e56984 doi: 10.1371/journal.pone.0056984 pmid: 23441228
|
65 |
MatsuiY, YasuiN, KawabataH, OzonoK, NakataK, MizushimaT, TsumakiN, KataokaE, FujitaY, OchiT (2000). A novel type X collagen gene mutation (G595R) associated with Schmid-type metaphyseal chondrodysplasia. J Hum Genet, 45(2): 105–108 doi: 10.1007/s100380050024 pmid: 10721676
|
66 |
McIntoshI, AbbottM H, FrancomanoC A (1995). Concentration of mutations causing Schmid metaphyseal chondrodysplasia in the C-terminal noncollagenous domain of type X collagen. Hum Mutat, 5(2): 121–125 doi: 10.1002/humu.1380050204 pmid: 7749409
|
67 |
MyšičkováA, VingronM (2012). Detection of interacting transcription factors in human tissues using predicted DNA binding affinity. BMC Genomics, 13(13 Suppl 1): S2 doi: 10.1186/1471-2164-13-S1-S2 pmid: 22369666
|
68 |
NaefF, HuelskenJ (2005). Cell-type-specific transcriptomics in chimeric models using transcriptome-based masks. Nucleic Acids Res, 33(13): e111 doi: 10.1093/nar/gni104 pmid: 16030348
|
69 |
OttoF, ThornellA P, CromptonT, DenzelA, GilmourK C, RosewellI R, StampG W, BeddingtonR S, MundlosS, OlsenB R, SelbyP B, OwenM J (1997). Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell, 89(5): 765–771 doi: 10.1016/S0092-8674(00)80259-7 pmid: 9182764
|
70 |
PapachristouD, PirttiniemiP, KantomaaT, AgnantisN, BasdraE K (2006). Fos- and Jun-related transcription factors are involved in the signal transduction pathway of mechanical loading in condylar chondrocytes. Eur J Orthod, 28(1): 20–26 doi: 10.1093/ejo/cji101 pmid: 16373449
|
71 |
PenolazziL, LisignoliG, LambertiniE, TorreggianiE, ManferdiniC, LolliA, VecchiatiniR, CiardoF, GabusiE, FacchiniA, GambariR, PivaR (2011). Transcription factor decoy against NFATc1 in human primary osteoblasts. Int J Mol Med, 28(2): 199–206 doi: 10.3892/ijmm.2011.701 pmid: 21584488
|
72 |
PulligO, WeselohG, RonnebergerD, KäkönenS, SwobodaB (2000). Chondrocyte differentiation in human osteoarthritis: expression of osteocalcin in normal and osteoarthritic cartilage and bone. Calcif Tissue Int, 67(3): 230–240 doi: 10.1007/s002230001108 pmid: 10954778
|
73 |
RajparM H, McDermottB, KungL, EardleyR, KnowlesL, HeeranM, ThorntonD J, WilsonR, BatemanJ F, PoulsomR, ArvanP, KadlerK E, BriggsM D, Boot-HandfordR P (2009). Targeted induction of endoplasmic reticulum stress induces cartilage pathology. PLoS Genet, 5(10): e1000691 doi: 10.1371/journal.pgen.1000691 pmid: 19834559
|
74 |
RiemerS, GebhardS, BeierF, PöschlE, von der MarkK (2002). Role of c-fos in the regulation of type X collagen gene expression by PTH and PTHrP: Localization of a PTH/PTHrPresponsive region in the human COL10A1 enhancer. J Cell Biochem, 86: 688–699
|
75 |
SaharD E, LongakerM T, QuartoN (2005). Sox9 neural crest determinant gene controls patterning and closure of the posterior frontal cranial suture. Dev Biol, 280(2): 344–361 doi: 10.1016/j.ydbio.2005.01.022 pmid: 15882577
|
76 |
SaitoT, FukaiA, MabuchiA, IkedaT, YanoF, OhbaS, NishidaN, AkuneT, YoshimuraN, NakagawaT, NakamuraK, TokunagaK, ChungU I, KawaguchiH (2010). Transcriptional regulation of endochondral ossification by HIF-2alpha during skeletal growth and osteoarthritis development. Nat Med, 16(6): 678–686 doi: 10.1038/nm.2146 pmid: 20495570
|
77 |
SakimuraR, TanakaK, YamamotoS, MatsunobuT, LiX, HanadaM, OkadaT, NakamuraT, LiY, IwamotoY (2007). The effects of histone deacetylase inhibitors on the induction of differentiation in chondrosarcoma cells. Clin Cancer Res, 13(1): 275–282 doi: 10.1158/1078-0432.CCR-06-1696 pmid: 17200366
|
78 |
SawaiH, IdaA, NakataY, KoyamaK (1998). Novel missense mutation resulting in the substitution of tyrosine by cysteine at codon 597 of the type X collagen gene associated with Schmid metaphyseal chondrodysplasia. J Hum Genet, 43(4): 259–261 doi: 10.1007/s100380050085 pmid: 9852679
|
79 |
SchipaniE, ProvotS (2003). PTHrP, PTH, and the PTH/PTHrP receptor in endochondral bone development. Birth Defects Res C Embryo Today, 69(4): 352–362 doi: 10.1002/bdrc.10028 pmid: 14745975
|
80 |
ShenG (2005). The role of type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod Craniofac Res, 8(1): 11–17 doi: 10.1111/j.1601-6343.2004.00308.x pmid: 15667640
|
81 |
SimõesB, ConceiçãoN, ViegasC S, PintoJ P, GavaiaP J, HurstL D, KelshR N, CancelaM L (2006). Identification of a promoter element within the zebrafish colXalpha1 gene responsive to runx2 isoforms Osf2/Cbfa1 and til-1 but not to pebp2alphaA2. Calcif Tissue Int, 79(4): 230–244 doi: 10.1007/s00223-006-0111-6 pmid: 17033725
|
82 |
StratakisC A, OrbanZ, BurnsA L, VotteroA, MitsiadesC S, MarxS J, AbbassiV, ChrousosG P (1996). Dideoxyfingerprinting (ddF) analysis of the type X collagen gene (COL10A1) and identification of a novel mutation (S671P) in a kindred with Schmid metaphyseal chondrodysplasia. Biochem Mol Med, 59(2): 112–117 doi: 10.1006/bmme.1996.0075 pmid: 8986632
|
83 |
TakedaS, BonnamyJ P, OwenM J, DucyP, KarsentyG (2001). Continuous expression of Cbfa1 in nonhypertrophic chondrocytes uncovers its ability to induce hypertrophic chondrocyte differentiation and partially rescues Cbfa1-deficient mice. Genes Dev, 15(4): 467–481 doi: 10.1101/gad.845101 pmid: 11230154
|
84 |
TanJ T, KremerF, FreddiS, BellK M, BakerN L, LamandéS R, BatemanJ F (2008). Competency for nonsense-mediated reduction in collagen X mRNA is specified by the 3′ UTR and corresponds to the position of mutations in Schmid metaphyseal chondrodysplasia. Am J Hum Genet, 82(3): 786–793 doi: 10.1016/j.ajhg.2008.01.006 pmid: 18304492
|
85 |
ThomasD P, SuntersA, GentryA, GrigoriadisA E (2000). Inhibition of chondrocyte differentiation in vitro by constitutive and inducible overexpression of the c-fos proto-oncogene. J Cell Sci, 113(Pt 3): 439–450 pmid: 10639331
|
86 |
Thomas-ChollierM, HuftonA, HeinigM, O’KeeffeS, MasriN E, RoiderH G, MankeT, VingronM (2011). Transcription factor binding predictions using TRAP for the analysis of ChIP-seq data and regulatory SNPs. Nat Protoc, 6(12): 1860–1869 doi: 10.1038/nprot.2011.409 pmid: 22051799
|
87 |
TsuchimochiK, OteroM, DragomirC L, PlumbD A, ZerbiniL F, LibermannT A, MarcuK B, KomiyaS, IjiriK, GoldringM B (2010). GADD45beta enhances Col10a1 transcription via the MTK1/MKK3/6/p38 axis and activation of C/EBPbeta-TAD4 in terminally differentiating chondrocytes. J Biol Chem, 285(11): 8395–8407 doi: 10.1074/jbc.M109.038638 pmid: 20048163
|
88 |
van der KraanP M, van den BergW B (2012). Chondrocyte hypertrophy and osteoarthritis: role in initiation and progression of cartilage degeneration? Osteoarthritis Cartilage, 20(3): 223–232 doi: 10.1016/j.joca.2011.12.003 pmid: 22178514
|
89 |
von der MarkK, FrischholzS, AignerT, BeierF, BelkeJ, ErdmannS, BurkhardtH (1995). Upregulation of type X collagen expression in osteoarthritic cartilage. Acta Orthop Scand Suppl, 266: 125–129 pmid: 8553841
|
90 |
von der MarkK, KirschT, NerlichA, KussA, WeselohG, GlückertK, StössH (1992). Type X collagen synthesis in human osteoarthritic cartilage. Indication of chondrocyte hypertrophy. Arthritis Rheum, 35(7): 806–811 doi: 10.1002/art.1780350715 pmid: 1622419
|
91 |
VonkL A, KragtenA H, DhertW J, SarisD B, CreemersL B (2014). Overexpression of hsa-miR-148a promotes cartilage production and inhibits cartilage degradation by osteoarthritic chondrocytes. Osteoarthritis Cartilage, 22(1): 145–153 doi: 10.1016/j.joca.2013.11.006 pmid: 24269634
|
92 |
WagnerE F (2002). Functions of AP1 (Fos/Jun) in bone development. Ann Rheum Dis, 61(61 Suppl 2): ii40–ii42 pmid: 12379619
|
93 |
WallisG A, RashB, SykesB, BonaventureJ, MaroteauxP, ZabelB, Wynne-DaviesR, GrantM E, Boot-HandfordR P (1996). Mutations within the gene encoding the alpha 1 (X) chain of type X collagen (COL10A1) cause metaphyseal chondrodysplasia type Schmid but not several other forms of metaphyseal chondrodysplasia. J Med Genet, 33(6): 450–457 doi: 10.1136/jmg.33.6.450 pmid: 8782043
|
94 |
WarmanM L, AbbottM, ApteS S, HefferonT, McIntoshI, CohnD H, HechtJ T, OlsenB R, FrancomanoC A (1993). A type X collagen mutation causes Schmid metaphyseal chondrodysplasia. Nat Genet, 5(1): 79–82 doi: 10.1038/ng0993-79 pmid: 8220429
|
95 |
WilsonR, FreddiS, ChanD, CheahK S, BatemanJ F (2005). Misfolding of collagen X chains harboring Schmid metaphyseal chondrodysplasia mutations results in aberrant disulfide bond formation, intracellular retention, and activation of the unfolded protein response. J Biol Chem, 280(16): 15544–15552 doi: 10.1074/jbc.M410758200 pmid: 15695517
|
96 |
WoelfleJ V, BrennerR E, ZabelB, ReichelH, NelitzM (2011). Schmid-type metaphyseal chondrodysplasia as the result of a collagen type X defect due to a novel COL10A1 nonsense mutation: A case report of a novel COL10A1 mutation. J Orthop Sci, 16(2): 245–249 doi: 10.1007/s00776-011-0021-y pmid: 21360259
|
97 |
ZanottiS, CanalisE (2013). Notch suppresses nuclear factor of activated T cells (NFAT) transactivation and Nfatc1 expression in chondrocytes. Endocrinology, 154(2): 762–772 doi: 10.1210/en.2012-1925 pmid: 23264614
|
98 |
ZhengQ, KellerB, ZhouG, NapieralaD, ChenY, ZabelB, ParkerA E, LeeB (2009). Localization of the cis-enhancer element for mouse type X collagen expression in hypertrophic chondrocytes in vivo. J Bone Miner Res, 24(6): 1022–1032 doi: 10.1359/jbmr.081249 pmid: 19113928
|
99 |
ZhengQ, SebaldE, ZhouG, ChenY, WilcoxW, LeeB, KrakowD (2005). Dysregulation of chondrogenesis in human cleidocranial dysplasia. Am J Hum Genet, 77(2): 305–312 doi: 10.1086/432261 pmid: 15952089
|
100 |
ZhengQ, ZhouG, MorelloR, ChenY, Garcia-RojasX, LeeB (2003). Type X collagen gene regulation by Runx2 contributes directly to its hypertrophic chondrocyte-specific expression in vivo. J Cell Biol, 162(5): 833–842 doi: 10.1083/jcb.200211089 pmid: 12952936
|
101 |
ZhouG, ZhengQ, EnginF, MunivezE, ChenY, SebaldE, KrakowD, LeeB (2006). Dominance of SOX9 function over RUNX2 during skeletogenesis. Proc Natl Acad Sci USA, 103(50): 19004–19009 doi: 10.1073/pnas.0605170103 pmid: 17142326
|
102 |
ZhuY, LiL, ZhouL, MeiH, JinK, LiuK, XuW, TangJ, YangY, ZhaoR, HeX (2011). A novel mutation leading to elongation of the deduced α1(X) chain results in Metaphyseal Chondrodysplasia type Schmid. Clin Chim Acta, 412(13–14): 1266–1269 doi: 10.1016/j.cca.2011.03.026 pmid: 21447328
|
103 |
ZimmermannP, BoeufS, DickhutA, BoehmerS, OlekS, RichterW (2008). Correlation of COL10A1 induction during chondrogenesis of mesenchymal stem cells with demethylation of two CpG sites in the COL10A1 promoter. Arthritis Rheum, 58(9): 2743–2753 doi: 10.1002/art.23736 pmid: 18759285
|
104 |
DrissiH, ZuscikM, RosierR, O’KeefeR (2005). Transcriptional regulation of chondrocyte maturation: potential involvement of transcription factors in OA pathogenesis. Mol Aspects Med, 26(3): 169–179 doi: 10.1016/j.mam.2005.01.003 pmid: 15811433
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|