|
|
The role of Nkx3.2 in chondrogenesis |
Roshni S. RAINBOW1,Heenam KWON2,Li ZENG1,2,3,*( ) |
1. Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine,136 Harrison Avenue, Boston, MA 02111, USA 2. Program in Cellular, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA 3. Department of Orthopaedics, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA |
|
|
Abstract Transcription factor, Nkx3.2, is a member of the NK family of developmental genes and is expressed during embryogenesis in a variety of mammalian model organisms, including chicken and mouse. It was first identified in Drosophila as the Bagpipe (bap) gene, where it has been demonstrated to be essential during formation of the midgut musculature. However, mammalian homolog Nkx3.2 has been shown to play a significant role in axial and limb skeletogenesis; in particular, the human skeletal disease, spondylo-megaepiphyseal-metaphyseal dysplasia (SMMD), is associated with mutations of the Nkx3.2 gene. In this review, we highlight the role of Nkx3.2 during musculoskeletal development, with an emphasis on the factor’s role in determining chondrogenic cell fate and its subsequent role in endochondral ossification and chondrocyte survival.
|
Keywords
Nkx3.2
musculoskeletal development
chondrogenesis
chondrocyte hypertrophy
|
Corresponding Author(s):
Li ZENG
|
Issue Date: 11 October 2014
|
|
1 |
Akazawa H, Komuro I, Sugitani Y, Yazaki Y, Nagai R, Noda T (2000). Targeted disruption of the homeobox transcription factor Bapx1 results in lethal skeletal dysplasia with asplenia and gastroduodenal malformation. Genes Cells, 5(6): 499–513
https://doi.org/10.1046/j.1365-2443.2000.00339.x
pmid: 10886375
|
2 |
Asayesh A, Sharpe J, Watson R P, Hecksher-S?rensen J, Hastie N D, Hill R E, Ahlgren U (2006). Spleen versus pancreas: strict control of organ interrelationship revealed by analyses of Bapx1-/- mice. Genes Dev, 20(16): 2208–2213
https://doi.org/10.1101/gad.381906
pmid: 16912273
|
3 |
Azpiazu N, Frasch M (1993). tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev, 7(7b7B): 1325–1340
https://doi.org/10.1101/gad.7.7b.1325
pmid: 8101173
|
4 |
Baffi M O, Slattery E, Sohn P, Moses H L, Chytil A, Serra R (2004). Conditional deletion of the TGF-beta type II receptor in Col2a expressing cells results in defects in the axial skeleton without alterations in chondrocyte differentiation or embryonic development of long bones. Dev Biol, 276(1): 124–142
https://doi.org/10.1016/j.ydbio.2004.08.027
pmid: 15531369
|
5 |
Bieberich C J, Fujita K, He W W, Jay G (1996). Prostate-specific and androgen-dependent expression of a novel homeobox gene. J Biol Chem, 271(50): 31779–31782
https://doi.org/10.1074/jbc.271.50.31779
pmid: 8943214
|
6 |
Brent A E, Tabin C J (2002). Developmental regulation of somite derivatives: muscle, cartilage and tendon. Curr Opin Genet Dev, 12(5): 548–557
https://doi.org/10.1016/S0959-437X(02)00339-8
pmid: 12200160
|
7 |
Cairns D M, Liu R, Sen M, Canner J P, Schindeler A, Little D G, Zeng L (2012). Interplay of Nkx3.2, Sox9 and Pax3 regulates chondrogenic differentiation of muscle progenitor cells. PLoS ONE, 7(7): e39642
https://doi.org/10.1371/journal.pone.0039642
pmid: 22768305
|
8 |
Cairns D M, Sato M E, Lee P G, Lassar A B, Zeng L (2008). A gradient of Shh establishes mutually repressing somitic cell fates induced by Nkx3.2 and Pax3. Dev Biol, 323(2): 152–165
https://doi.org/10.1016/j.ydbio.2008.08.024
pmid: 18796301
|
9 |
Caron M M J, Emans P J, Cremers A, Surtel D A M, Coolsen M M E, van Rhijn L W, Welting T J M (2013). Hypertrophic differentiation during chondrogenic differentiation of progenitor cells is stimulated by BMP-2 but suppressed by BMP-7. Osteoarthritis Cartilage, 21(4): 604–613
https://doi.org/10.1016/j.joca.2013.01.009
pmid: 23353668
|
10 |
Choi S W, Jeong D U, Kim J A, Lee B, Joeng K S, Long F, Kim D W (2012). Indian Hedgehog signalling triggers Nkx3.2 protein degradation during chondrocyte maturation. Biochem J, 443(3): 789–798
https://doi.org/10.1042/BJ20112062
pmid: 22507129
|
11 |
Church V, Yamaguchi K, Tsang P, Akita K, Logan C, Francis-West P (2005). Expression and function of Bapx1 during chick limb development. Anat Embryol (Berl), 209(6): 461–469
https://doi.org/10.1007/s00429-005-0464-z
pmid: 15887045
|
12 |
Collins C A, Olsen I, Zammit P S, Heslop L, Petrie A, Partridge T A, Morgan J E (2005). Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell, 122(2): 289–301
https://doi.org/10.1016/j.cell.2005.05.010
pmid: 16051152
|
13 |
Ducy P, Schinke T, Karsenty G (2000). The osteoblast: a sophisticated fibroblast under central surveillance. Science, 289(5484): 1501–1504
https://doi.org/10.1126/science.289.5484.1501
pmid: 10968779
|
14 |
Enomoto H, Enomoto-Iwamoto M, Iwamoto M, Nomura S, Himeno M, Kitamura Y, Kishimoto T, Komori T (2000). Cbfa1 is a positive regulatory factor in chondrocyte maturation. J Biol Chem, 275(12): 8695–8702
https://doi.org/10.1074/jbc.275.12.8695
pmid: 10722711
|
15 |
Guo J, Chung U I, Yang D, Karsenty G, Bringhurst F R, Kronenberg H M (2006). PTH/PTHrP receptor delays chondrocyte hypertrophy via both Runx2-dependent and -independent pathways. Dev Biol, 292(1): 116–128
https://doi.org/10.1016/j.ydbio.2005.12.044
pmid: 16476422
|
16 |
Guo X, Mak K K, Taketo M M, Yang Y (2009). The Wnt/beta-catenin pathway interacts differentially with PTHrP signaling to control chondrocyte hypertrophy and final maturation. PLoS ONE, 4(6): e6067
https://doi.org/10.1371/journal.pone.0006067
pmid: 19557172
|
17 |
Hellemans J, Simon M, Dheedene A, Alanay Y, Mihci E, Rifai L, Sefiani A, van Bever Y, Meradji M, Superti-Furga A, Mortier G (2009). Homozygous inactivating mutations in the NKX3-2 gene result in spondylo-megaepiphyseal-metaphyseal dysplasia. Am J Hum Genet, 85(6): 916–922
https://doi.org/10.1016/j.ajhg.2009.11.005
pmid: 20004766
|
18 |
Herbrand H, Pabst O, Hill R, Arnold H H (2002). Transcription factors Nkx3.1 and Nkx3.2 (Bapx1) play an overlapping role in sclerotomal development of the mouse. Mech Dev, 117(1–2): 217–224
https://doi.org/10.1016/S0925-4773(02)00207-1
pmid: 12204261
|
19 |
Kawato Y, Hirao M, Ebina K, Shi K, Hashimoto J, Honjo Y, Yoshikawa H, Myoui A (2012). Nkx3.2 promotes primary chondrogenic differentiation by upregulating Col2a1 transcription. PLoS ONE, 7(4): e34703
https://doi.org/10.1371/journal.pone.0034703
pmid: 22511961
|
20 |
Kawato Y, Hirao M, Ebina K, Tamai N, Shi K, Hashimoto J, Yoshikawa H, Myoui A (2011). Nkx3.2-induced suppression of Runx2 is a crucial mediator of hypoxia-dependent maintenance of chondrocyte phenotypes. Biochem Biophys Res Commun, 416(1–2): 205–210
https://doi.org/10.1016/j.bbrc.2011.11.026
pmid: 22093831
|
21 |
Kempf H, Ionescu A, Udager A M, Lassar A B (2007). Prochondrogenic signals induce a competence for Runx2 to activate hypertrophic chondrocyte gene expression. Dev Dyn, 236(7): 1954–1962
https://doi.org/10.1002/dvdy.21205
pmid: 17576141
|
22 |
Kim D W, Lassar A B (2003). Smad-dependent recruitment of a histone deacetylase/Sin3A complex modulates the bone morphogenetic protein-dependent transcriptional repressor activity of Nkx3.2. Mol Cell Biol, 23(23): 8704–8717
https://doi.org/10.1128/MCB.23.23.8704-8717.2003
pmid: 14612411
|
23 |
Kim Y, Nirenberg M (1989). Drosophila NK-homeobox genes. Proc Natl Acad Sci USA, 86(20): 7716–7720
https://doi.org/10.1073/pnas.86.20.7716
pmid: 2573058
|
24 |
Kronenberg H M (2003). Developmental regulation of the growth plate. Nature, 423(6937): 332–336
https://doi.org/10.1038/nature01657
pmid: 12748651
|
25 |
Lefebvre V, Smits P (2005). Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res C Embryo Today, 75(3): 200–212
https://doi.org/10.1002/bdrc.20048
pmid: 16187326
|
26 |
Lei Q, Jiao J, Xin L, Chang C J, Wang S, Gao J, Gleave M E, Witte O N, Liu X, Wu H (2006). NKX3.1 stabilizes p53, inhibits AKT activation, and blocks prostate cancer initiation caused by PTEN loss. Cancer Cell, 9(5): 367–378
https://doi.org/10.1016/j.ccr.2006.03.031
pmid: 16697957
|
27 |
Lettice L, Hecksher-S?rensen J, Hill R (2001). The role of Bapx1 (Nkx3.2) in the development and evolution of the axial skeleton. J Anat, 199(Pt 1-2): 181–187
https://doi.org/10.1046/j.1469-7580.2001.19910181.x
pmid: 11523821
|
28 |
Mackie E J, Ahmed Y A, Tatarczuch L, Chen K S, Mirams M (2008). Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol, 40(1): 46–62
https://doi.org/10.1016/j.biocel.2007.06.009
pmid: 17659995
|
29 |
Murtaugh L C, Zeng L, Chyung J H, Lassar A B (2001). The chick transcriptional repressor Nkx3.2 acts downstream of Shh to promote BMP-dependent axial chondrogenesis. Dev Cell, 1(3): 411–422
https://doi.org/10.1016/S1534-5807(01)00039-9
pmid: 11702952
|
30 |
Newman C S, Krieg P A (1999). The Xenopus bagpipe-related homeobox gene zampogna is expressed in the pharyngeal endoderm and the visceral musculature of the midgut. Dev Genes Evol, 209(2): 132–134
https://doi.org/10.1007/s004270050236
pmid: 10022957
|
31 |
Pacifici M, Koyama E, Iwamoto M (2005). Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res C Embryo Today, 75(3): 237–248
https://doi.org/10.1002/bdrc.20050
pmid: 16187328
|
32 |
Park M, Yong Y, Choi S W, Kim J H, Lee J E, Kim D W (2007). Constitutive RelA activation mediated by Nkx3.2 controls chondrocyte viability. Nat Cell Biol, 9(3): 287–298
https://doi.org/10.1038/ncb1538
pmid: 17310243
|
33 |
Provot S, Kempf H, Murtaugh L C, Chung U I, Kim D W, Chyung J, Kronenberg H M, Lassar A B (2006). Nkx3.2/Bapx1 acts as a negative regulator of chondrocyte maturation. Development, 133(4): 651–662
https://doi.org/10.1242/dev.02258
pmid: 16421188
|
34 |
Rodrigo I, Hill R E, Balling R, Münsterberg A, Imai K (2003). Pax1 and Pax9 activate Bapx1 to induce chondrogenic differentiation in the sclerotome. Development, 130(3): 473–482
https://doi.org/10.1242/dev.00240
pmid: 12490554
|
35 |
Schneider A, Mijalski T, Schlange T, Dai W, Overbeek P, Arnold H H, Brand T (1999). The homeobox gene NKX3.2 is a target of left-right signalling and is expressed on opposite sides in chick and mouse embryos. Curr Biol, 9(16): 911–914
https://doi.org/10.1016/S0960-9822(99)80397-2
pmid: 10469600
|
36 |
Shen M M, Abate-Shen C (2003). Roles of the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis. Dev Dyn, 228(4): 767–778
https://doi.org/10.1002/dvdy.10397
pmid: 14648854
|
37 |
Simon M, Campos-Xavier A B, Mittaz-Crettol L, Valadares E R, Carvalho D, Speck-Martins C E, Nampoothiri S, Alanay Y, Mihci E, van Bever Y, Garcia-Segarra N, Cavalcanti D, Mortier G, Bonafé L, Superti-Furga A (2012). Severe neurologic manifestations from cervical spine instability in spondylo-megaepiphyseal-metaphyseal dysplasia. Am J Med Genet C Semin Med Genet, 160C(3): 230– 237
https://doi.org/10.1002/ajmg.c.31339
pmid: 22791571
|
38 |
Takimoto A, Mohri H, Kokubu C, Hiraki Y, Shukunami C (2013). Pax1 acts as a negative regulator of chondrocyte maturation. Exp Cell Res, 319(20): 3128–3139
https://doi.org/10.1016/j.yexcr.2013.09.015
pmid: 24080012
|
39 |
Tanaka M, Komuro I, Inagaki H, Jenkins N A, Copeland N G, Izumo S (2000). Nkx3.1, a murine homolog of Ddrosophila bagpipe, regulates epithelial ductal branching and proliferation of the prostate and palatine glands. Dev Dyn, 219(2): 248–260
https://doi.org/10.1002/1097-0177(2000)9999:9999<::AID-DVDY1054>3.3.CO;2-5
pmid: 11002344
|
40 |
Tribioli C, Frasch M, Lufkin T (1997). Bapx1: an evolutionary conserved homologue of the Drosophila bagpipe homeobox gene is expressed in splanchnic mesoderm and the embryonic skeleton. Mech Dev, 65(1-2): 145–162
https://doi.org/10.1016/S0925-4773(97)00067-1
pmid: 9256352
|
41 |
Tribioli C, Lufkin T (1997). Molecular cloning, chromosomal mapping and developmental expression of BAPX1, a novel human homeobox-containing gene homologous to Drosophila bagpipe. Gene, 203(2): 225–233
https://doi.org/10.1016/S0378-1119(97)00520-9
pmid: 9426254
|
42 |
Tribioli C, Lufkin T (1999). The murine Bapx1 homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen. Development, 126(24): 5699–5711
pmid: 10572046
|
43 |
Tribioli C, Lufkin T (2006). Bapx1 homeobox gene gain-of-function mice show preaxial polydactyly and activated Shh signaling in the developing limb. Dev Dyn, 235(9): 2483–2492
https://doi.org/10.1002/dvdy.20867
pmid: 16791844
|
44 |
Verzi M P, Stanfel M N, Moses K A, Kim B M, Zhang Y, Schwartz R J, Shivdasani R A, Zimmer W E (2009). Role of the homeodomain transcription factor Bapx1 in mouse distal stomach development. Gastroenterology, 136(5): 1701–1710
https://doi.org/10.1053/j.gastro.2009.01.009
pmid: 19208343
|
45 |
Yamashita S, Andoh M, Ueno-Kudoh H, Sato T, Miyaki S, Asahara H (2009). Sox9 directly promotes Bapx1 gene expression to repress Runx2 in chondrocytes. Exp Cell Res, 315(13): 2231–2240
https://doi.org/10.1016/j.yexcr.2009.03.008
pmid: 19306868
|
46 |
Yong Y, Choi S W, Choi H J, Nam H W, Kim J A, Jeong D U, Kim D Y, Kim Y S, Kim D W (2011). Exogenous signal-independent nuclear IkappaB kinase activation triggered by Nkx3.2 enables constitutive nuclear degradation of IkappaB-alpha in chondrocytes. Mol Cell Biol, 31(14): 2802–2816
https://doi.org/10.1128/MCB.00253-10
pmid: 21606193
|
47 |
Yoon B S, Lyons K M (2004). Multiple functions of BMPs in chondrogenesis. J Cell Biochem, 93(1): 93–103
https://doi.org/10.1002/jcb.20211
pmid: 15352166
|
48 |
Yoshiura K I, Murray J C (1997). Sequence and chromosomal assignment of human BAPX1, a bagpipe-related gene, to 4p16.1: a candidate gene for skeletal dysplasia. Genomics, 45(2): 425–428
https://doi.org/10.1006/geno.1997.4926
pmid: 9344671
|
49 |
Zeng L, Kempf H, Murtaugh L C, Sato M E, Lassar A B (2002). Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes Dev, 16(15): 1990–2005
https://doi.org/10.1101/gad.1008002
pmid: 12154128
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|