Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (5) : 376-381    https://doi.org/10.1007/s11515-014-1321-3
REVIEW
The role of Nkx3.2 in chondrogenesis
Roshni S. RAINBOW1,Heenam KWON2,Li ZENG1,2,3,*()
1. Department of Integrative Physiology and Pathobiology, Tufts University School of Medicine,136 Harrison Avenue, Boston, MA 02111, USA
2. Program in Cellular, Molecular and Developmental Biology, Sackler School of Graduate Biomedical Sciences, Tufts University, 136 Harrison Avenue, Boston, MA 02111, USA
3. Department of Orthopaedics, Tufts Medical Center, 800 Washington Street, Boston, MA 02111, USA
 Download: PDF(124 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Transcription factor, Nkx3.2, is a member of the NK family of developmental genes and is expressed during embryogenesis in a variety of mammalian model organisms, including chicken and mouse. It was first identified in Drosophila as the Bagpipe (bap) gene, where it has been demonstrated to be essential during formation of the midgut musculature. However, mammalian homolog Nkx3.2 has been shown to play a significant role in axial and limb skeletogenesis; in particular, the human skeletal disease, spondylo-megaepiphyseal-metaphyseal dysplasia (SMMD), is associated with mutations of the Nkx3.2 gene. In this review, we highlight the role of Nkx3.2 during musculoskeletal development, with an emphasis on the factor’s role in determining chondrogenic cell fate and its subsequent role in endochondral ossification and chondrocyte survival.

Keywords Nkx3.2      musculoskeletal development      chondrogenesis      chondrocyte hypertrophy     
Corresponding Author(s): Li ZENG   
Issue Date: 11 October 2014
 Cite this article:   
Roshni S. RAINBOW,Heenam KWON,Li ZENG. The role of Nkx3.2 in chondrogenesis[J]. Front. Biol., 2014, 9(5): 376-381.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1321-3
https://academic.hep.com.cn/fib/EN/Y2014/V9/I5/376
1 Akazawa H, Komuro I, Sugitani Y, Yazaki Y, Nagai R, Noda T (2000). Targeted disruption of the homeobox transcription factor Bapx1 results in lethal skeletal dysplasia with asplenia and gastroduodenal malformation. Genes Cells, 5(6): 499–513
https://doi.org/10.1046/j.1365-2443.2000.00339.x pmid: 10886375
2 Asayesh A, Sharpe J, Watson R P, Hecksher-S?rensen J, Hastie N D, Hill R E, Ahlgren U (2006). Spleen versus pancreas: strict control of organ interrelationship revealed by analyses of Bapx1-/- mice. Genes Dev, 20(16): 2208–2213
https://doi.org/10.1101/gad.381906 pmid: 16912273
3 Azpiazu N, Frasch M (1993). tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. Genes Dev, 7(7b7B): 1325–1340
https://doi.org/10.1101/gad.7.7b.1325 pmid: 8101173
4 Baffi M O, Slattery E, Sohn P, Moses H L, Chytil A, Serra R (2004). Conditional deletion of the TGF-beta type II receptor in Col2a expressing cells results in defects in the axial skeleton without alterations in chondrocyte differentiation or embryonic development of long bones. Dev Biol, 276(1): 124–142
https://doi.org/10.1016/j.ydbio.2004.08.027 pmid: 15531369
5 Bieberich C J, Fujita K, He W W, Jay G (1996). Prostate-specific and androgen-dependent expression of a novel homeobox gene. J Biol Chem, 271(50): 31779–31782
https://doi.org/10.1074/jbc.271.50.31779 pmid: 8943214
6 Brent A E, Tabin C J (2002). Developmental regulation of somite derivatives: muscle, cartilage and tendon. Curr Opin Genet Dev, 12(5): 548–557
https://doi.org/10.1016/S0959-437X(02)00339-8 pmid: 12200160
7 Cairns D M, Liu R, Sen M, Canner J P, Schindeler A, Little D G, Zeng L (2012). Interplay of Nkx3.2, Sox9 and Pax3 regulates chondrogenic differentiation of muscle progenitor cells. PLoS ONE, 7(7): e39642
https://doi.org/10.1371/journal.pone.0039642 pmid: 22768305
8 Cairns D M, Sato M E, Lee P G, Lassar A B, Zeng L (2008). A gradient of Shh establishes mutually repressing somitic cell fates induced by Nkx3.2 and Pax3. Dev Biol, 323(2): 152–165
https://doi.org/10.1016/j.ydbio.2008.08.024 pmid: 18796301
9 Caron M M J, Emans P J, Cremers A, Surtel D A M, Coolsen M M E, van Rhijn L W, Welting T J M (2013). Hypertrophic differentiation during chondrogenic differentiation of progenitor cells is stimulated by BMP-2 but suppressed by BMP-7. Osteoarthritis Cartilage, 21(4): 604–613
https://doi.org/10.1016/j.joca.2013.01.009 pmid: 23353668
10 Choi S W, Jeong D U, Kim J A, Lee B, Joeng K S, Long F, Kim D W (2012). Indian Hedgehog signalling triggers Nkx3.2 protein degradation during chondrocyte maturation. Biochem J, 443(3): 789–798
https://doi.org/10.1042/BJ20112062 pmid: 22507129
11 Church V, Yamaguchi K, Tsang P, Akita K, Logan C, Francis-West P (2005). Expression and function of Bapx1 during chick limb development. Anat Embryol (Berl), 209(6): 461–469
https://doi.org/10.1007/s00429-005-0464-z pmid: 15887045
12 Collins C A, Olsen I, Zammit P S, Heslop L, Petrie A, Partridge T A, Morgan J E (2005). Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell, 122(2): 289–301
https://doi.org/10.1016/j.cell.2005.05.010 pmid: 16051152
13 Ducy P, Schinke T, Karsenty G (2000). The osteoblast: a sophisticated fibroblast under central surveillance. Science, 289(5484): 1501–1504
https://doi.org/10.1126/science.289.5484.1501 pmid: 10968779
14 Enomoto H, Enomoto-Iwamoto M, Iwamoto M, Nomura S, Himeno M, Kitamura Y, Kishimoto T, Komori T (2000). Cbfa1 is a positive regulatory factor in chondrocyte maturation. J Biol Chem, 275(12): 8695–8702
https://doi.org/10.1074/jbc.275.12.8695 pmid: 10722711
15 Guo J, Chung U I, Yang D, Karsenty G, Bringhurst F R, Kronenberg H M (2006). PTH/PTHrP receptor delays chondrocyte hypertrophy via both Runx2-dependent and -independent pathways. Dev Biol, 292(1): 116–128
https://doi.org/10.1016/j.ydbio.2005.12.044 pmid: 16476422
16 Guo X, Mak K K, Taketo M M, Yang Y (2009). The Wnt/beta-catenin pathway interacts differentially with PTHrP signaling to control chondrocyte hypertrophy and final maturation. PLoS ONE, 4(6): e6067
https://doi.org/10.1371/journal.pone.0006067 pmid: 19557172
17 Hellemans J, Simon M, Dheedene A, Alanay Y, Mihci E, Rifai L, Sefiani A, van Bever Y, Meradji M, Superti-Furga A, Mortier G (2009). Homozygous inactivating mutations in the NKX3-2 gene result in spondylo-megaepiphyseal-metaphyseal dysplasia. Am J Hum Genet, 85(6): 916–922
https://doi.org/10.1016/j.ajhg.2009.11.005 pmid: 20004766
18 Herbrand H, Pabst O, Hill R, Arnold H H (2002). Transcription factors Nkx3.1 and Nkx3.2 (Bapx1) play an overlapping role in sclerotomal development of the mouse. Mech Dev, 117(1–2): 217–224
https://doi.org/10.1016/S0925-4773(02)00207-1 pmid: 12204261
19 Kawato Y, Hirao M, Ebina K, Shi K, Hashimoto J, Honjo Y, Yoshikawa H, Myoui A (2012). Nkx3.2 promotes primary chondrogenic differentiation by upregulating Col2a1 transcription. PLoS ONE, 7(4): e34703
https://doi.org/10.1371/journal.pone.0034703 pmid: 22511961
20 Kawato Y, Hirao M, Ebina K, Tamai N, Shi K, Hashimoto J, Yoshikawa H, Myoui A (2011). Nkx3.2-induced suppression of Runx2 is a crucial mediator of hypoxia-dependent maintenance of chondrocyte phenotypes. Biochem Biophys Res Commun, 416(1–2): 205–210
https://doi.org/10.1016/j.bbrc.2011.11.026 pmid: 22093831
21 Kempf H, Ionescu A, Udager A M, Lassar A B (2007). Prochondrogenic signals induce a competence for Runx2 to activate hypertrophic chondrocyte gene expression. Dev Dyn, 236(7): 1954–1962
https://doi.org/10.1002/dvdy.21205 pmid: 17576141
22 Kim D W, Lassar A B (2003). Smad-dependent recruitment of a histone deacetylase/Sin3A complex modulates the bone morphogenetic protein-dependent transcriptional repressor activity of Nkx3.2. Mol Cell Biol, 23(23): 8704–8717
https://doi.org/10.1128/MCB.23.23.8704-8717.2003 pmid: 14612411
23 Kim Y, Nirenberg M (1989). Drosophila NK-homeobox genes. Proc Natl Acad Sci USA, 86(20): 7716–7720
https://doi.org/10.1073/pnas.86.20.7716 pmid: 2573058
24 Kronenberg H M (2003). Developmental regulation of the growth plate. Nature, 423(6937): 332–336
https://doi.org/10.1038/nature01657 pmid: 12748651
25 Lefebvre V, Smits P (2005). Transcriptional control of chondrocyte fate and differentiation. Birth Defects Res C Embryo Today, 75(3): 200–212
https://doi.org/10.1002/bdrc.20048 pmid: 16187326
26 Lei Q, Jiao J, Xin L, Chang C J, Wang S, Gao J, Gleave M E, Witte O N, Liu X, Wu H (2006). NKX3.1 stabilizes p53, inhibits AKT activation, and blocks prostate cancer initiation caused by PTEN loss. Cancer Cell, 9(5): 367–378
https://doi.org/10.1016/j.ccr.2006.03.031 pmid: 16697957
27 Lettice L, Hecksher-S?rensen J, Hill R (2001). The role of Bapx1 (Nkx3.2) in the development and evolution of the axial skeleton. J Anat, 199(Pt 1-2): 181–187
https://doi.org/10.1046/j.1469-7580.2001.19910181.x pmid: 11523821
28 Mackie E J, Ahmed Y A, Tatarczuch L, Chen K S, Mirams M (2008). Endochondral ossification: how cartilage is converted into bone in the developing skeleton. Int J Biochem Cell Biol, 40(1): 46–62
https://doi.org/10.1016/j.biocel.2007.06.009 pmid: 17659995
29 Murtaugh L C, Zeng L, Chyung J H, Lassar A B (2001). The chick transcriptional repressor Nkx3.2 acts downstream of Shh to promote BMP-dependent axial chondrogenesis. Dev Cell, 1(3): 411–422
https://doi.org/10.1016/S1534-5807(01)00039-9 pmid: 11702952
30 Newman C S, Krieg P A (1999). The Xenopus bagpipe-related homeobox gene zampogna is expressed in the pharyngeal endoderm and the visceral musculature of the midgut. Dev Genes Evol, 209(2): 132–134
https://doi.org/10.1007/s004270050236 pmid: 10022957
31 Pacifici M, Koyama E, Iwamoto M (2005). Mechanisms of synovial joint and articular cartilage formation: recent advances, but many lingering mysteries. Birth Defects Res C Embryo Today, 75(3): 237–248
https://doi.org/10.1002/bdrc.20050 pmid: 16187328
32 Park M, Yong Y, Choi S W, Kim J H, Lee J E, Kim D W (2007). Constitutive RelA activation mediated by Nkx3.2 controls chondrocyte viability. Nat Cell Biol, 9(3): 287–298
https://doi.org/10.1038/ncb1538 pmid: 17310243
33 Provot S, Kempf H, Murtaugh L C, Chung U I, Kim D W, Chyung J, Kronenberg H M, Lassar A B (2006). Nkx3.2/Bapx1 acts as a negative regulator of chondrocyte maturation. Development, 133(4): 651–662
https://doi.org/10.1242/dev.02258 pmid: 16421188
34 Rodrigo I, Hill R E, Balling R, Münsterberg A, Imai K (2003). Pax1 and Pax9 activate Bapx1 to induce chondrogenic differentiation in the sclerotome. Development, 130(3): 473–482
https://doi.org/10.1242/dev.00240 pmid: 12490554
35 Schneider A, Mijalski T, Schlange T, Dai W, Overbeek P, Arnold H H, Brand T (1999). The homeobox gene NKX3.2 is a target of left-right signalling and is expressed on opposite sides in chick and mouse embryos. Curr Biol, 9(16): 911–914
https://doi.org/10.1016/S0960-9822(99)80397-2 pmid: 10469600
36 Shen M M, Abate-Shen C (2003). Roles of the Nkx3.1 homeobox gene in prostate organogenesis and carcinogenesis. Dev Dyn, 228(4): 767–778
https://doi.org/10.1002/dvdy.10397 pmid: 14648854
37 Simon M, Campos-Xavier A B, Mittaz-Crettol L, Valadares E R, Carvalho D, Speck-Martins C E, Nampoothiri S, Alanay Y, Mihci E, van Bever Y, Garcia-Segarra N, Cavalcanti D, Mortier G, Bonafé L, Superti-Furga A (2012). Severe neurologic manifestations from cervical spine instability in spondylo-megaepiphyseal-metaphyseal dysplasia. Am J Med Genet C Semin Med Genet, 160C(3): 230– 237
https://doi.org/10.1002/ajmg.c.31339 pmid: 22791571
38 Takimoto A, Mohri H, Kokubu C, Hiraki Y, Shukunami C (2013). Pax1 acts as a negative regulator of chondrocyte maturation. Exp Cell Res, 319(20): 3128–3139
https://doi.org/10.1016/j.yexcr.2013.09.015 pmid: 24080012
39 Tanaka M, Komuro I, Inagaki H, Jenkins N A, Copeland N G, Izumo S (2000). Nkx3.1, a murine homolog of Ddrosophila bagpipe, regulates epithelial ductal branching and proliferation of the prostate and palatine glands. Dev Dyn, 219(2): 248–260
https://doi.org/10.1002/1097-0177(2000)9999:9999<::AID-DVDY1054>3.3.CO;2-5 pmid: 11002344
40 Tribioli C, Frasch M, Lufkin T (1997). Bapx1: an evolutionary conserved homologue of the Drosophila bagpipe homeobox gene is expressed in splanchnic mesoderm and the embryonic skeleton. Mech Dev, 65(1-2): 145–162
https://doi.org/10.1016/S0925-4773(97)00067-1 pmid: 9256352
41 Tribioli C, Lufkin T (1997). Molecular cloning, chromosomal mapping and developmental expression of BAPX1, a novel human homeobox-containing gene homologous to Drosophila bagpipe. Gene, 203(2): 225–233
https://doi.org/10.1016/S0378-1119(97)00520-9 pmid: 9426254
42 Tribioli C, Lufkin T (1999). The murine Bapx1 homeobox gene plays a critical role in embryonic development of the axial skeleton and spleen. Development, 126(24): 5699–5711
pmid: 10572046
43 Tribioli C, Lufkin T (2006). Bapx1 homeobox gene gain-of-function mice show preaxial polydactyly and activated Shh signaling in the developing limb. Dev Dyn, 235(9): 2483–2492
https://doi.org/10.1002/dvdy.20867 pmid: 16791844
44 Verzi M P, Stanfel M N, Moses K A, Kim B M, Zhang Y, Schwartz R J, Shivdasani R A, Zimmer W E (2009). Role of the homeodomain transcription factor Bapx1 in mouse distal stomach development. Gastroenterology, 136(5): 1701–1710
https://doi.org/10.1053/j.gastro.2009.01.009 pmid: 19208343
45 Yamashita S, Andoh M, Ueno-Kudoh H, Sato T, Miyaki S, Asahara H (2009). Sox9 directly promotes Bapx1 gene expression to repress Runx2 in chondrocytes. Exp Cell Res, 315(13): 2231–2240
https://doi.org/10.1016/j.yexcr.2009.03.008 pmid: 19306868
46 Yong Y, Choi S W, Choi H J, Nam H W, Kim J A, Jeong D U, Kim D Y, Kim Y S, Kim D W (2011). Exogenous signal-independent nuclear IkappaB kinase activation triggered by Nkx3.2 enables constitutive nuclear degradation of IkappaB-alpha in chondrocytes. Mol Cell Biol, 31(14): 2802–2816
https://doi.org/10.1128/MCB.00253-10 pmid: 21606193
47 Yoon B S, Lyons K M (2004). Multiple functions of BMPs in chondrogenesis. J Cell Biochem, 93(1): 93–103
https://doi.org/10.1002/jcb.20211 pmid: 15352166
48 Yoshiura K I, Murray J C (1997). Sequence and chromosomal assignment of human BAPX1, a bagpipe-related gene, to 4p16.1: a candidate gene for skeletal dysplasia. Genomics, 45(2): 425–428
https://doi.org/10.1006/geno.1997.4926 pmid: 9344671
49 Zeng L, Kempf H, Murtaugh L C, Sato M E, Lassar A B (2002). Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes Dev, 16(15): 1990–2005
https://doi.org/10.1101/gad.1008002 pmid: 12154128
[1] Yaojuan LU,Longwei QIAO,Guanghua LEI,Ranim R. MIRA,Junxia GU,Qiping ZHENG. Col10a1 gene expression and chondrocyte hypertrophy during skeletal development and disease[J]. Front. Biol., 2014, 9(3): 195-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed