Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (5) : 468-474    https://doi.org/10.1007/s11515-013-1273-z
MINI-REVIEW
MicroRNA rules: Made to be broken
P. Shannon PENDERGRAST1(), Tom VOLPE2()
1. Ymir Genomics, 516 Green Street, 1A, Cambridge, MA 02139, USA; 2. Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
 Download: PDF(134 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression. For over a decade the deluge of research describing the biogenesis and activity of miRNAs has lead researchers to postulate rules to help make sense of the enormous amount of data produced. These rules are repeated in miRNA research papers and reviews. While these rules have been helpful one must be conscious of their limitations or risk missing future breakthroughs. Here we describe some of the most commonly stated rules, the reasoning behind their formation, their uses, and limitations.

Keywords microRNA      post-transcriptional      gene regulation      mRNA      3' UTR      conservation rule      seed pairing rule      biogenesis rule      mechanism of action rule     
Corresponding Author(s): PENDERGRAST P. Shannon,Email:shannon@ymirgenomics.com; VOLPE Tom,Email:t-volpe2@northwestern.edu   
Issue Date: 01 October 2013
 Cite this article:   
P. Shannon PENDERGRAST,Tom VOLPE. MicroRNA rules: Made to be broken[J]. Front Biol, 2013, 8(5): 468-474.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-013-1273-z
https://academic.hep.com.cn/fib/EN/Y2013/V8/I5/468
1 Alexiou P, Maragkakis M, Papadopoulos G L, Reczko M, Hatzigeorgiou A G (2009). Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics , 25(23): 3049-3055
doi: 10.1093/bioinformatics/btp565 pmid:19789267
2 Baek D, Villén J, Shin C, Camargo F D, Gygi S P, Bartel D P (2008). The impact of microRNAs on protein output. Nature , 455(7209): 64-71
doi: 10.1038/nature07242 pmid:18668037
3 Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli A E (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell , 122(4): 553-563
doi: 10.1016/j.cell.2005.07.031 pmid:16122423
4 Bartel D P (2009). MicroRNAs: target recognition and regulatory functions. Cell , 136(2): 215-233
doi: 10.1016/j.cell.2009.01.002 pmid:19167326
5 Bazzini A A, Lee M T, Giraldez A J (2012). Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science , 336(6078): 233-237
doi: 10.1126/science.1215704 pmid:22422859
6 Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E (2006). mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev , 20(14): 1885-1898
doi: 10.1101/gad.1424106 pmid:16815998
7 Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet , 37(7): 766-770
doi: 10.1038/ng1590 pmid:15965474
8 Berezikov E, van Tetering G, Verheul M, van de Belt J, van Laake L, Vos J, Verloop R, van de Wetering M, Guryev V, Takada S, van Zonneveld A J, Mano H, Plasterk R, Cuppen E (2006). Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis. Genome Res , 16(10): 1289-1298
doi: 10.1101/gr.5159906 pmid:16954537
9 Brennecke J, Stark A, Cohen S M (2005). Not miR-ly muscular: microRNAs and muscle development. Genes Dev , 19(19): 2261-2264
doi: 10.1101/gad.1363905 pmid:16204177
10 Carthew R W, Sontheimer E J (2009). Origins and mechanisms of miRNAs and siRNAs. Cell , 136(4): 642-655
doi: 10.1016/j.cell.2009.01.035 pmid:19239886
11 Chi S W, Zang J B, Mele A, Darnell R B (2009). Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature , 460(7254): 479-486
pmid:19536157
12 D'Alessio G, Riordan J F (1997) Ribonucleases: Structures and Functions. Academic Press , New York, NY
13 Djuranovic S, Nahvi A, Green R (2012). miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science , 336(6078): 237-240
doi: 10.1126/science.1215691 pmid:22499947
14 Elbashir S M, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature , 411(6836): 494-498
doi: 10.1038/35078107 pmid:11373684
15 Elefant N, Altuvia Y, Margalit H (2011). A wide repertoire of miRNA binding sites: prediction and functional implications. Bioinformatics , 27(22): 3093-3101
doi: 10.1093/bioinformatics/btr534 pmid:21953484
16 Elkayam E, Kuhn C D, Tocilj A, Haase A D, Greene E M, Hannon G J, Joshua-Tor L (2012). The structure of human argonaute-2 in complex with miR-20a. Cell , 150(1): 100-110
doi: 10.1016/j.cell.2012.05.017 pmid:22682761
17 Friedman R C, Farh K K, Burge C B, Bartel D P (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res , 19(1): 92-105
doi: 10.1101/gr.082701.108 pmid:18955434
18 Giraldez A J, Mishima Y, Rihel J, Grocock R J, Van Dongen S, Inoue K, Enright A J, Schier A F (2006). Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science , 312(5770): 75-79
doi: 10.1126/science.1122689 pmid:16484454
19 Grimson A, Farh K K, Johnston W K, Garrett-Engele P, Lim L P, Bartel D P (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell , 27(1): 91-105
doi: 10.1016/j.molcel.2007.06.017 pmid:17612493
20 Gu S, Jin L, Zhang F, Sarnow P, Kay M A (2009). Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nat Struct Mol Biol , 16(2): 144-150
doi: 10.1038/nsmb.1552 pmid:19182800
21 Guo H, Ingolia N T, Weissman J S, Bartel D P (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature , 466(7308): 835-840
doi: 10.1038/nature09267 pmid:20703300
22 Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp A C, Munschauer M, Ulrich A, Wardle G S, Dewell S, Zavolan M, Tuschl T (2010). Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell , 141(1): 129-141
doi: 10.1016/j.cell.2010.03.009 pmid:20371350
23 Hendrickson D G, Hogan D J, McCullough H L, Myers J W, Herschlag D, Ferrell J E, Brown P O (2009). Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol , 7(11): e1000238
doi: 10.1371/journal.pbio.1000238 pmid:19901979
24 Jopling C L, Yi M, Lancaster A M, Lemon S M, Sarnow P (2005). Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science , 309(5740): 1577-1581
doi: 10.1126/science.1113329 pmid:16141076
25 Kim V N, Han J, Siomi M C (2009). Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol , 10(2): 126-139
doi: 10.1038/nrm2632 pmid:19165215
26 Krol J, Krzyzosiak W J (2004). Structural aspects of microRNA biogenesis. IUBMB Life , 56(2): 95-100
doi: 10.1080/15216540410001670142 pmid:15085933
27 Krol J, Loedige I, Filipowicz W (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet , 11(9): 597-610
pmid:20661255
28 Krützfeldt J, Rajewsky N, Braich R, Rajeev K G, Tuschl T, Manoharan M, Stoffel M (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature , 438(7068): 685-689
doi: 10.1038/nature04303 pmid:16258535
29 Lee R C, Feinbaum R L, Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell , 75(5): 843-854
doi: 10.1016/0092-8674(93)90529-Y pmid:8252621
30 Lee S, Vasudevan S (2013). Post-transcriptional stimulation of gene expression by microRNAs. Adv Exp Med Biol , 768: 97-126
doi: 10.1007/978-1-4614-5107-5_7 pmid:23224967
31 Lewis B P, Shih I H, Jones-Rhoades M W, Bartel D P, Burge C B (2003). Prediction of mammalian microRNA targets. Cell , 115(7): 787-798
doi: 10.1016/S0092-8674(03)01018-3 pmid:14697198
32 Lim L P, Lau N C, Weinstein E G, Abdelhakim A, Yekta S, Rhoades M W, Burge C B, Bartel D P (2003). The microRNAs of Caenorhabditis elegans. Genes Dev , 17(8): 991-1008
doi: 10.1101/gad.1074403 pmid:12672692
33 Llave C, Xie Z, Kasschau K D, Carrington J C (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science , 297(5589): 2053-2056
doi: 10.1126/science.1076311 pmid:12242443
34 Machlin E S, Sarnow P, Sagan S M (2011). Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc Natl Acad Sci USA , 108(8): 3193-3198
doi: 10.1073/pnas.1012464108 pmid:21220300
35 Mayr C, Bartel D P (2009). Widespread shortening of 3’UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell , 138(4): 673-684
doi: 10.1016/j.cell.2009.06.016 pmid:19703394
36 Mitchell P S, Parkin R K, Kroh E M, Fritz B R, Wyman S K, Pogosova-Agadjanyan E L, Peterson A, Noteboom J, O’Briant K C, Allen A, Lin D W, Urban N, Drescher C W, Knudsen B S, Stirewalt D L, Gentleman R, Vessella R L, Nelson P S, Martin D B, Tewari M (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA , 105(30): 10513-10518
doi: 10.1073/pnas.0804549105 pmid:18663219
37 Miyoshi K, Miyoshi T, Siomi H (2010). Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Mol Genet Genomics , 284(2): 95-103
doi: 10.1007/s00438-010-0556-1 pmid:20596726
38 Nguyen H T, Frasch M (2006). MicroRNAs in muscle differentiation: lessons from Drosophila and beyond. Curr Opin Genet Dev , 16(5): 533-539
doi: 10.1016/j.gde.2006.08.010 pmid:16919443
39 Olsen P H, Ambros V (1999). The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol , 216(2): 671-680
doi: 10.1006/dbio.1999.9523 pmid:10642801
40 Pasquinelli A E, McCoy A, Jiménez E, Saló E, Ruvkun G, Martindale M Q, Bagu?à J (2003). Expression of the 22 nucleotide let-7 heterochronic RNA throughout the Metazoa: a role in life history evolution? Evol Dev , 5(4): 372-378
doi: 10.1046/j.1525-142X.2003.03044.x pmid:12823453
41 Pasquinelli A E, Reinhart B J, Slack F, Martindale M Q, Kuroda M I, Maller B, Hayward D C, Ball E E, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature , 408(6808): 86-89
doi: 10.1038/35040556 pmid:11081512
42 Rehwinkel J, Behm-Ansmant I, Gatfield D, Izaurralde E (2005). A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA , 11(11): 1640-1647
doi: 10.1261/rna.2191905 pmid:16177138
43 Reinhart B J, Slack F J, Basson M, Pasquinelli A E, Bettinger J C, Rougvie A E, Horvitz H R, Ruvkun G (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature , 403(6772): 901-906
doi: 10.1038/35002607 pmid:10706289
44 Roush S, Slack F J (2008). The let-7 family of microRNAs. Trends Cell Biol , 18(10): 505-516
doi: 10.1016/j.tcb.2008.07.007 pmid:18774294
45 Sandberg R, Neilson J R, Sarma A, Sharp P A, Burge C B (2008). Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science , 320(5883): 1643-1647
doi: 10.1126/science.1155390 pmid:18566288
46 Schirle N T, MacRae I J (2012). The crystal structure of human Argonaute2. Science , 336(6084): 1037-1040
doi: 10.1126/science.1221551 pmid:22539551
47 Schnall-Levin M, Rissland O S, Johnston W K, Perrimon N, Bartel D P, Berger B (2011). Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs. Genome Res , 21(9): 1395-1403
doi: 10.1101/gr.121210.111 pmid:21685129
48 Selbach M, Schwanh?usser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008). Widespread changes in protein synthesis induced by microRNAs. Nature , 455(7209): 58-63
doi: 10.1038/nature07228 pmid:18668040
49 Shin C, Nam J W, Farh K K, Chiang H R, Shkumatava A, Bartel D P (2010). Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell , 38(6): 789-802
doi: 10.1016/j.molcel.2010.06.005 pmid:20620952
50 Sokol N S, Ambros V (2005). Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev , 19(19): 2343-2354
doi: 10.1101/gad.1356105 pmid:16166373
51 Sun J, Gao B, Zhou M, Wang Z Z, Zhang F, Deng J E, Li X (2013). Comparative genomic analysis reveals evolutionary characteristics and patterns of microRNA clusters in vertebrates. Gene , 512(2): 383-391
doi: 10.1016/j.gene.2012.09.102 pmid:23063939
52 Tsui N B, Ng E K, Lo Y M (2002). Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem , 48(10): 1647-1653
pmid:12324479
53 Wang Y, Sheng G, Juranek S, Tuschl T, Patel D J (2008). Structure of the guide-strand-containing argonaute silencing complex. Nature , 456(7219): 209-213
doi: 10.1038/nature07315 pmid:18754009
54 Weber J A, Baxter D H, Zhang S, Huang D Y, Huang K H, Lee M J, Galas D J, Wang K (2010). The microRNA spectrum in 12 body fluids. Clin Chem , 56(11): 1733-1741
doi: 10.1373/clinchem.2010.147405 pmid:20847327
55 Wen M, Shen Y, Shi S, Tang T (2012). miREvo: an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments. BMC Bioinformatics , 13(1): 140
doi: 10.1186/1471-2105-13-140 pmid:22720726
56 Wightman B, Ha I, Ruvkun G (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell , 75(5): 855-862
doi: 10.1016/0092-8674(93)90530-4 pmid:8252622
57 Williamson V, Kim A, Xie B, McMichael G O, Gao Y, Vladimirov V (2013). Detecting miRNAs in deep-sequencing data: a software performance comparison and evaluation. Brief Bioinform , 14(1): 36-45
doi: 10.1093/bib/bbs010 pmid:23334922
58 Wu L, Fan J, Belasco J G (2006). MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA , 103(11): 4034-4039
doi: 10.1073/pnas.0510928103 pmid:16495412
59 Yang J S, Lai E C (2011). Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell , 43(6): 892-903
doi: 10.1016/j.molcel.2011.07.024 pmid:21925378
60 Yekta S, Shih I H, Bartel D P (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science , 304(5670): 594-596
doi: 10.1126/science.1097434 pmid:15105502
61 Zamore P D, Tuschl T, Sharp P A, Bartel D P (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell , 101(1): 25-33
doi: 10.1016/S0092-8674(00)80620-0 pmid:10778853
62 Zhang R, Wang Y Q, Su B (2008). Molecular evolution of a primate-specific microRNA family. Mol Biol Evol , 25(7): 1493-1502
doi: 10.1093/molbev/msn094 pmid:18417486
[1] Pang-Kuo Lo,Benjamin Wolfson,Qun Zhou. Cellular, physiological and pathological aspects of the long non-coding RNA NEAT1[J]. Front. Biol., 2016, 11(6): 413-426.
[2] Blanca E. BARRERA-FIGUEROA, Zhigang WU, Renyi LIU. Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution[J]. Front Biol, 2013, 8(2): 189-197.
[3] Iouri CHEPELEV, Xin CHEN. Alternative splicing switching in stem cell lineages[J]. Front Biol, 2013, 8(1): 50-59.
[4] Gang WEI, Keji ZHAO. 3C-based methods to detect long-range chromatin interactions[J]. Front Biol, 2011, 06(01): 76-81.
[5] Zhaohui FENG, Rui WU, Meihua LIN, Wenwei HU. Tumor suppressor p53: new functions of an old protein[J]. Front Biol, 2011, 06(01): 58-68.
[6] Peng ZHAO, Dong-Qiao SHI, Wei-Cai YANG. Patterning the embryo in higher plants: Emerging pathways and challenges[J]. Front Biol, 2011, 06(01): 3-11.
[7] Lei XIAO, Lixiazi HE, Saul J. SHARKIS. Screening for self-renewal factors by a combination of mRNA and CGH microarray in human embryonic stem cells[J]. Front Biol, 2010, 5(5): 431-438.
[8] Richard D. Smrt, Xinyu Zhao, . Epigenetic regulation of neuronal dendrite and dendritic spine development[J]. Front. Biol., 2010, 5(4): 304-323.
[9] Qiumin LE, Zhaoyang HU, Lan MA. MicroRNAs in the neural system[J]. Front Biol, 2010, 5(3): 219-226.
[10] Song GAO, Diangang QIN, Tienan FENG, Yifei WANG, Liangsheng ZHANG, . MicroRNA target prediction based on second-order Hidden Markov Model[J]. Front. Biol., 2010, 5(2): 171-179.
[11] Jinbiao MA, Ying HUANG, . Post-transcriptional regulation of miRNA biogenesis and functions[J]. Front. Biol., 2010, 5(1): 32-40.
[12] MU Junjie, YAO Xue, CHEN Qimin, GENG Yunqi, QIAO Wentao. MicroRNAs and their role in viral infection[J]. Front. Biol., 2007, 2(1): 15-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed