|
|
MicroRNA rules: Made to be broken |
P. Shannon PENDERGRAST1( ), Tom VOLPE2( ) |
1. Ymir Genomics, 516 Green Street, 1A, Cambridge, MA 02139, USA; 2. Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA |
|
|
Abstract MicroRNAs (miRNAs) are important post-transcriptional regulators of gene expression. For over a decade the deluge of research describing the biogenesis and activity of miRNAs has lead researchers to postulate rules to help make sense of the enormous amount of data produced. These rules are repeated in miRNA research papers and reviews. While these rules have been helpful one must be conscious of their limitations or risk missing future breakthroughs. Here we describe some of the most commonly stated rules, the reasoning behind their formation, their uses, and limitations.
|
Keywords
microRNA
post-transcriptional
gene regulation
mRNA
3' UTR
conservation rule
seed pairing rule
biogenesis rule
mechanism of action rule
|
Corresponding Author(s):
PENDERGRAST P. Shannon,Email:shannon@ymirgenomics.com; VOLPE Tom,Email:t-volpe2@northwestern.edu
|
Issue Date: 01 October 2013
|
|
1 |
Alexiou P, Maragkakis M, Papadopoulos G L, Reczko M, Hatzigeorgiou A G (2009). Lost in translation: an assessment and perspective for computational microRNA target identification. Bioinformatics , 25(23): 3049-3055 doi: 10.1093/bioinformatics/btp565 pmid:19789267
|
2 |
Baek D, Villén J, Shin C, Camargo F D, Gygi S P, Bartel D P (2008). The impact of microRNAs on protein output. Nature , 455(7209): 64-71 doi: 10.1038/nature07242 pmid:18668037
|
3 |
Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli A E (2005). Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell , 122(4): 553-563 doi: 10.1016/j.cell.2005.07.031 pmid:16122423
|
4 |
Bartel D P (2009). MicroRNAs: target recognition and regulatory functions. Cell , 136(2): 215-233 doi: 10.1016/j.cell.2009.01.002 pmid:19167326
|
5 |
Bazzini A A, Lee M T, Giraldez A J (2012). Ribosome profiling shows that miR-430 reduces translation before causing mRNA decay in zebrafish. Science , 336(6078): 233-237 doi: 10.1126/science.1215704 pmid:22422859
|
6 |
Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E (2006). mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev , 20(14): 1885-1898 doi: 10.1101/gad.1424106 pmid:16815998
|
7 |
Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E, Sharon E, Spector Y, Bentwich Z (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet , 37(7): 766-770 doi: 10.1038/ng1590 pmid:15965474
|
8 |
Berezikov E, van Tetering G, Verheul M, van de Belt J, van Laake L, Vos J, Verloop R, van de Wetering M, Guryev V, Takada S, van Zonneveld A J, Mano H, Plasterk R, Cuppen E (2006). Many novel mammalian microRNA candidates identified by extensive cloning and RAKE analysis. Genome Res , 16(10): 1289-1298 doi: 10.1101/gr.5159906 pmid:16954537
|
9 |
Brennecke J, Stark A, Cohen S M (2005). Not miR-ly muscular: microRNAs and muscle development. Genes Dev , 19(19): 2261-2264 doi: 10.1101/gad.1363905 pmid:16204177
|
10 |
Carthew R W, Sontheimer E J (2009). Origins and mechanisms of miRNAs and siRNAs. Cell , 136(4): 642-655 doi: 10.1016/j.cell.2009.01.035 pmid:19239886
|
11 |
Chi S W, Zang J B, Mele A, Darnell R B (2009). Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature , 460(7254): 479-486 pmid:19536157
|
12 |
D'Alessio G, Riordan J F (1997) Ribonucleases: Structures and Functions. Academic Press , New York, NY
|
13 |
Djuranovic S, Nahvi A, Green R (2012). miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science , 336(6078): 237-240 doi: 10.1126/science.1215691 pmid:22499947
|
14 |
Elbashir S M, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001). Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature , 411(6836): 494-498 doi: 10.1038/35078107 pmid:11373684
|
15 |
Elefant N, Altuvia Y, Margalit H (2011). A wide repertoire of miRNA binding sites: prediction and functional implications. Bioinformatics , 27(22): 3093-3101 doi: 10.1093/bioinformatics/btr534 pmid:21953484
|
16 |
Elkayam E, Kuhn C D, Tocilj A, Haase A D, Greene E M, Hannon G J, Joshua-Tor L (2012). The structure of human argonaute-2 in complex with miR-20a. Cell , 150(1): 100-110 doi: 10.1016/j.cell.2012.05.017 pmid:22682761
|
17 |
Friedman R C, Farh K K, Burge C B, Bartel D P (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res , 19(1): 92-105 doi: 10.1101/gr.082701.108 pmid:18955434
|
18 |
Giraldez A J, Mishima Y, Rihel J, Grocock R J, Van Dongen S, Inoue K, Enright A J, Schier A F (2006). Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science , 312(5770): 75-79 doi: 10.1126/science.1122689 pmid:16484454
|
19 |
Grimson A, Farh K K, Johnston W K, Garrett-Engele P, Lim L P, Bartel D P (2007). MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell , 27(1): 91-105 doi: 10.1016/j.molcel.2007.06.017 pmid:17612493
|
20 |
Gu S, Jin L, Zhang F, Sarnow P, Kay M A (2009). Biological basis for restriction of microRNA targets to the 3′ untranslated region in mammalian mRNAs. Nat Struct Mol Biol , 16(2): 144-150 doi: 10.1038/nsmb.1552 pmid:19182800
|
21 |
Guo H, Ingolia N T, Weissman J S, Bartel D P (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature , 466(7308): 835-840 doi: 10.1038/nature09267 pmid:20703300
|
22 |
Hafner M, Landthaler M, Burger L, Khorshid M, Hausser J, Berninger P, Rothballer A, Ascano M Jr, Jungkamp A C, Munschauer M, Ulrich A, Wardle G S, Dewell S, Zavolan M, Tuschl T (2010). Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell , 141(1): 129-141 doi: 10.1016/j.cell.2010.03.009 pmid:20371350
|
23 |
Hendrickson D G, Hogan D J, McCullough H L, Myers J W, Herschlag D, Ferrell J E, Brown P O (2009). Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol , 7(11): e1000238 doi: 10.1371/journal.pbio.1000238 pmid:19901979
|
24 |
Jopling C L, Yi M, Lancaster A M, Lemon S M, Sarnow P (2005). Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science , 309(5740): 1577-1581 doi: 10.1126/science.1113329 pmid:16141076
|
25 |
Kim V N, Han J, Siomi M C (2009). Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol , 10(2): 126-139 doi: 10.1038/nrm2632 pmid:19165215
|
26 |
Krol J, Krzyzosiak W J (2004). Structural aspects of microRNA biogenesis. IUBMB Life , 56(2): 95-100 doi: 10.1080/15216540410001670142 pmid:15085933
|
27 |
Krol J, Loedige I, Filipowicz W (2010). The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet , 11(9): 597-610 pmid:20661255
|
28 |
Krützfeldt J, Rajewsky N, Braich R, Rajeev K G, Tuschl T, Manoharan M, Stoffel M (2005). Silencing of microRNAs in vivo with ‘antagomirs’. Nature , 438(7068): 685-689 doi: 10.1038/nature04303 pmid:16258535
|
29 |
Lee R C, Feinbaum R L, Ambros V (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell , 75(5): 843-854 doi: 10.1016/0092-8674(93)90529-Y pmid:8252621
|
30 |
Lee S, Vasudevan S (2013). Post-transcriptional stimulation of gene expression by microRNAs. Adv Exp Med Biol , 768: 97-126 doi: 10.1007/978-1-4614-5107-5_7 pmid:23224967
|
31 |
Lewis B P, Shih I H, Jones-Rhoades M W, Bartel D P, Burge C B (2003). Prediction of mammalian microRNA targets. Cell , 115(7): 787-798 doi: 10.1016/S0092-8674(03)01018-3 pmid:14697198
|
32 |
Lim L P, Lau N C, Weinstein E G, Abdelhakim A, Yekta S, Rhoades M W, Burge C B, Bartel D P (2003). The microRNAs of Caenorhabditis elegans. Genes Dev , 17(8): 991-1008 doi: 10.1101/gad.1074403 pmid:12672692
|
33 |
Llave C, Xie Z, Kasschau K D, Carrington J C (2002). Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science , 297(5589): 2053-2056 doi: 10.1126/science.1076311 pmid:12242443
|
34 |
Machlin E S, Sarnow P, Sagan S M (2011). Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc Natl Acad Sci USA , 108(8): 3193-3198 doi: 10.1073/pnas.1012464108 pmid:21220300
|
35 |
Mayr C, Bartel D P (2009). Widespread shortening of 3’UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell , 138(4): 673-684 doi: 10.1016/j.cell.2009.06.016 pmid:19703394
|
36 |
Mitchell P S, Parkin R K, Kroh E M, Fritz B R, Wyman S K, Pogosova-Agadjanyan E L, Peterson A, Noteboom J, O’Briant K C, Allen A, Lin D W, Urban N, Drescher C W, Knudsen B S, Stirewalt D L, Gentleman R, Vessella R L, Nelson P S, Martin D B, Tewari M (2008). Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA , 105(30): 10513-10518 doi: 10.1073/pnas.0804549105 pmid:18663219
|
37 |
Miyoshi K, Miyoshi T, Siomi H (2010). Many ways to generate microRNA-like small RNAs: non-canonical pathways for microRNA production. Mol Genet Genomics , 284(2): 95-103 doi: 10.1007/s00438-010-0556-1 pmid:20596726
|
38 |
Nguyen H T, Frasch M (2006). MicroRNAs in muscle differentiation: lessons from Drosophila and beyond. Curr Opin Genet Dev , 16(5): 533-539 doi: 10.1016/j.gde.2006.08.010 pmid:16919443
|
39 |
Olsen P H, Ambros V (1999). The lin-4 regulatory RNA controls developmental timing in Caenorhabditis elegans by blocking LIN-14 protein synthesis after the initiation of translation. Dev Biol , 216(2): 671-680 doi: 10.1006/dbio.1999.9523 pmid:10642801
|
40 |
Pasquinelli A E, McCoy A, Jiménez E, Saló E, Ruvkun G, Martindale M Q, Bagu?à J (2003). Expression of the 22 nucleotide let-7 heterochronic RNA throughout the Metazoa: a role in life history evolution? Evol Dev , 5(4): 372-378 doi: 10.1046/j.1525-142X.2003.03044.x pmid:12823453
|
41 |
Pasquinelli A E, Reinhart B J, Slack F, Martindale M Q, Kuroda M I, Maller B, Hayward D C, Ball E E, Degnan B, Müller P, Spring J, Srinivasan A, Fishman M, Finnerty J, Corbo J, Levine M, Leahy P, Davidson E, Ruvkun G (2000). Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature , 408(6808): 86-89 doi: 10.1038/35040556 pmid:11081512
|
42 |
Rehwinkel J, Behm-Ansmant I, Gatfield D, Izaurralde E (2005). A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA , 11(11): 1640-1647 doi: 10.1261/rna.2191905 pmid:16177138
|
43 |
Reinhart B J, Slack F J, Basson M, Pasquinelli A E, Bettinger J C, Rougvie A E, Horvitz H R, Ruvkun G (2000). The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature , 403(6772): 901-906 doi: 10.1038/35002607 pmid:10706289
|
44 |
Roush S, Slack F J (2008). The let-7 family of microRNAs. Trends Cell Biol , 18(10): 505-516 doi: 10.1016/j.tcb.2008.07.007 pmid:18774294
|
45 |
Sandberg R, Neilson J R, Sarma A, Sharp P A, Burge C B (2008). Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science , 320(5883): 1643-1647 doi: 10.1126/science.1155390 pmid:18566288
|
46 |
Schirle N T, MacRae I J (2012). The crystal structure of human Argonaute2. Science , 336(6084): 1037-1040 doi: 10.1126/science.1221551 pmid:22539551
|
47 |
Schnall-Levin M, Rissland O S, Johnston W K, Perrimon N, Bartel D P, Berger B (2011). Unusually effective microRNA targeting within repeat-rich coding regions of mammalian mRNAs. Genome Res , 21(9): 1395-1403 doi: 10.1101/gr.121210.111 pmid:21685129
|
48 |
Selbach M, Schwanh?usser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008). Widespread changes in protein synthesis induced by microRNAs. Nature , 455(7209): 58-63 doi: 10.1038/nature07228 pmid:18668040
|
49 |
Shin C, Nam J W, Farh K K, Chiang H R, Shkumatava A, Bartel D P (2010). Expanding the microRNA targeting code: functional sites with centered pairing. Mol Cell , 38(6): 789-802 doi: 10.1016/j.molcel.2010.06.005 pmid:20620952
|
50 |
Sokol N S, Ambros V (2005). Mesodermally expressed Drosophila microRNA-1 is regulated by Twist and is required in muscles during larval growth. Genes Dev , 19(19): 2343-2354 doi: 10.1101/gad.1356105 pmid:16166373
|
51 |
Sun J, Gao B, Zhou M, Wang Z Z, Zhang F, Deng J E, Li X (2013). Comparative genomic analysis reveals evolutionary characteristics and patterns of microRNA clusters in vertebrates. Gene , 512(2): 383-391 doi: 10.1016/j.gene.2012.09.102 pmid:23063939
|
52 |
Tsui N B, Ng E K, Lo Y M (2002). Stability of endogenous and added RNA in blood specimens, serum, and plasma. Clin Chem , 48(10): 1647-1653 pmid:12324479
|
53 |
Wang Y, Sheng G, Juranek S, Tuschl T, Patel D J (2008). Structure of the guide-strand-containing argonaute silencing complex. Nature , 456(7219): 209-213 doi: 10.1038/nature07315 pmid:18754009
|
54 |
Weber J A, Baxter D H, Zhang S, Huang D Y, Huang K H, Lee M J, Galas D J, Wang K (2010). The microRNA spectrum in 12 body fluids. Clin Chem , 56(11): 1733-1741 doi: 10.1373/clinchem.2010.147405 pmid:20847327
|
55 |
Wen M, Shen Y, Shi S, Tang T (2012). miREvo: an integrative microRNA evolutionary analysis platform for next-generation sequencing experiments. BMC Bioinformatics , 13(1): 140 doi: 10.1186/1471-2105-13-140 pmid:22720726
|
56 |
Wightman B, Ha I, Ruvkun G (1993). Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell , 75(5): 855-862 doi: 10.1016/0092-8674(93)90530-4 pmid:8252622
|
57 |
Williamson V, Kim A, Xie B, McMichael G O, Gao Y, Vladimirov V (2013). Detecting miRNAs in deep-sequencing data: a software performance comparison and evaluation. Brief Bioinform , 14(1): 36-45 doi: 10.1093/bib/bbs010 pmid:23334922
|
58 |
Wu L, Fan J, Belasco J G (2006). MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci USA , 103(11): 4034-4039 doi: 10.1073/pnas.0510928103 pmid:16495412
|
59 |
Yang J S, Lai E C (2011). Alternative miRNA biogenesis pathways and the interpretation of core miRNA pathway mutants. Mol Cell , 43(6): 892-903 doi: 10.1016/j.molcel.2011.07.024 pmid:21925378
|
60 |
Yekta S, Shih I H, Bartel D P (2004). MicroRNA-directed cleavage of HOXB8 mRNA. Science , 304(5670): 594-596 doi: 10.1126/science.1097434 pmid:15105502
|
61 |
Zamore P D, Tuschl T, Sharp P A, Bartel D P (2000). RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell , 101(1): 25-33 doi: 10.1016/S0092-8674(00)80620-0 pmid:10778853
|
62 |
Zhang R, Wang Y Q, Su B (2008). Molecular evolution of a primate-specific microRNA family. Mol Biol Evol , 25(7): 1493-1502 doi: 10.1093/molbev/msn094 pmid:18417486
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|