Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2010, Vol. 5 Issue (2) : 171-179    https://doi.org/10.1007/s11515-010-0009-6
Research articles
MicroRNA target prediction based on second-order Hidden Markov Model
Song GAO1,Diangang QIN1,Tienan FENG1,Yifei WANG1,Liangsheng ZHANG2,
1.Department of Mathematics, School of Sciences, Shanghai University, Shanghai 200444, China; 2.Department of Mathematics, School of Sciences, Shanghai University, Shanghai 200444, China;School of Life Sciences, Institute of Plant Biology, Fudan University, Shanghai 200433, China;
 Download: PDF(232 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract MicroRNAs are one class of small single-stranded RNA of about 22nt serving as important negative gene regulators. In animals, miRNAs mainly repress protein translation by binding itself to the 3’ UTR regions of mRNAs with imperfect complementary pairing. Although bioinformatics investigations have resulted in a number of target prediction tools, all of these have a common shortcoming—a high false positive rate. Therefore, it is important to further filter the predicted targets. In this paper, based on miRNA:target duplex, we construct a second-order Hidden Markov Model, implement Baum-Welch training algorithm and apply this model to further process predicted targets. The model trains the classifier by 244 positive and 49 negative miRNA:target interaction pairs and achieves a sensitivity of 72.54%, specificity of 55.10% and accuracy of 69.62% by 10-fold cross-validation experiments. In order to further verify the applicability of the algorithm, previously collected datasets, including 195 positive and 38 negative, are chosen to test it, with consistent results. We believe that our method will provide some guidance for experimental biologists, especially in choosing miRNA targets for validation.
Keywords microRNA      target gene      experimentally supported targets      second-order Hidden Markov Model      forward algorithm      
Issue Date: 01 April 2010
 Cite this article:   
Song GAO,Tienan FENG,Diangang QIN, et al. MicroRNA target prediction based on second-order Hidden Markov Model[J]. Front. Biol., 2010, 5(2): 171-179.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0009-6
https://academic.hep.com.cn/fib/EN/Y2010/V5/I2/171
Barciszewski J, Erdmann V A (2008). Noncoding RNAs: Molecular Biology and Molecular Medicine(in Chinese, Trans. Zheng X F). Beijing: Chemical Industry Press, 104–119
Borodovsky M, Sprizhitskii Y, Golovanov E, Aleksandrov A (1986a). Statistical patterns in primary structuresof functional regions in the E. coli genome. I. Oligonucleotide frequencies analysis. Mol Biol, 20: 826–833
Borodovsky M, Sprizhitskii Y, Golovanov E, Aleksandrov A (1986b). Statistical patterns in primary structuresof functional regions in the E. coli genome. II. Non-homogeneous Markov models. Mol Biol, 20: 833–840
Borodovsky M, Sprizhitskii Y, Golovanov E, Aleksandrov A (1986c). Statistical patterns in primary structuresof functional regions in the E. coli genome. III. Computer recognition of coding regions. Mol Biol, 20: 1145–1150
Churchill G A (1989). Stochastic models for heterogeneousDNA sequences. Bull Mathem Biol, 51: 79–94
Du S P (2007). The Baum-Welch Algorithm of HMM2 withMultiple Observations. J Biomathem, 22(4): 685–690 (in Chinese)
Du S P, Li H (2004). Second-order Hidden Markov Models and Its Application to ComputationalLinguistics. J Sichuan Uni (Nat Sci Edi), 41(2): 284–289 (in Chinese)
Duursma A M, Martijn K, Mariette S, Carlos L S, Reuven A (2008). miR-148 targets human DNMT3b protein coding region. RNA, 14(5): 872–877

doi: 10.1261/rna.972008
Enright A J, John B, Gaul U, Tuschl T, Sander C, Marks D S (2003). MicroRNA targets in Drosophila. Genome Biol, 5(1): Article Rl
Gough J, Chothia C (2002). SUPERFAMILY: HMMs representing all proteins of knownstructure, SCOP sequence searches, alignments, and genome assignments. Nucl Acids Res, 30(1): 268–272

doi: 10.1093/nar/30.1.268
Griffiths-Jones S, Grocock R J, van Dongen S, Bateman A, Enright A J (2006). miRBase: microRNA sequences, targets and gene nomenclature. Nucl Acids Res, 34: D140–D144

doi: 10.1093/nar/gkj112
Hébert S S, Horré K, Nicolaï L, Papadopoulou A S, Mandemakers W, Silahtaroglu A N, Kauppinen S, Delacourte A, De Strooper B (2008). Loss ofmicroRNA cluster miR-29a/b-1 in sporadic Alzheimer’s diseasecorrelates with increased BACE1/beta-secretase expression. Proc Natl Acad Sci USA, 105(17): 6415–6420

doi: 10.1073/pnas.0710263105
Huynh T, Miranda K, Tay Y, Ang Y S, Tam W L, Thomson A M, Lim B, Rigoutsos I (2006). A pattern- based method for the identification of microRNA-targetsites and their corresponding RNA/RNA complexes. Cell, 126: 1203–1217

doi: 10.1016/j.cell.2006.07.031
John B, Enright A J, Aravin A, Uschl T, Sander C, Marks D S (2004). HumanMicroRNA Targets. PLoS Biology, 2(11): 1862–1879
Kim S K, Nam J W, Rhee J K, Lee W J, Zhang B T (2006). MiTarget:microRNA target gene prediction using a support vector machine. BMC Bioinformatics, 7: 411

doi: 10.1186/1471-2105-7-411
Kiriakidou M, Nelson P T, Kouranov A, Fitziev P, Bouyioukos C, Mourelatos Z, Hatzigeorgiou A (2004). A combined computational-experimentalapproach predicts human microRNA targets. Genes Dev, 18: 1165–1178

doi: 10.1101/gad.1184704
Krek A, Grün D, Poy M N, Wolf R, Rosenberg L, Epstein E J, MacMenamin P, da Piedade I, Gunsalus K C, Stoffel M, Rajewsky N (2005). Combinatorial microRNA target predictions. Nat Genet, 37: 495–500

doi: 10.1038/ng1536
Landais S, Landry S, Legault P, Rassart E (2007). Oncogenic potential of the miR-106-363cluster and its implication in human T-cell leukemia. Cancer Res, 67(12): 5699–5707

doi: 10.1158/0008-5472.CAN-06-4478
Lewis B P, Burge C B, Bartel D P (2005). Conservedseed pairing, often flanked by adenosines, indicates that thousandsof human genes are microRNA targets. Cell, 120: 15–20

doi: 10.1016/j.cell.2004.12.035
Lewis B P, Shih I H, Jones-Rhoades M W, Bartel D P, Burge C B(2003). Prediction of mammalian microRNA targets. Cell, 115: 787–798

doi: 10.1016/S0092-8674(03)01018-3
Luo X B, Lin H X, Pan Z W, Xiao J N, Zhang Y, Lu Y J, Yang B F, Wang Z G (2008). Down-regulation ofmiR-1/miR-133 Contributes to Re-expression of Pacemaker Channel GenesHCN2 and HCN4 in Hypertrophic Heart. JBiol Chem, 283(29): 20045–20052

doi: 10.1074/jbc.M801035200
Nam J W, Shin K R, Han J, Lee Y, Kim V N, Zhang B T(2005). Human microRNA prediction througha probabilistic co-learning model of sequence and structure. Nucl Acids Res, 33(11): 3570–3581

doi: 10.1093/nar/gki668
Rabiner L R, Juang B H (1986). An introduction to hidden Markov models. In: IEEE Acoustics, Speech & Signal Processing Magazine, 3: 4–16
Rehmsmeier M, Steffen P, Hochsmann M, Giegerich R (2004). Fast and effective prediction of microRNA/targetduplexes. RNA, 10: 1507–1517

doi: 10.1261/rna.5248604
Rossi J J, Hannon G J (2008). MicroRNA Methods. Beijing: Science Press, 1–83
Rusinov V, Baev V, Minkov I N, Tabler M (2005). MicroInspector: a web tool for detection of miRNA bindingsites in an RNA sequence. Nucl Acids Res, 33: W696–W700

doi: 10.1093/nar/gki364
Saetrom O, Ola S J, Saetrom P (2005). Weighted sequencemotifs as an improved seeding step in microRNA target prediction algorithms. RNA, 11: 995–1003

doi: 10.1261/rna.7290705
Sengupta S, den Boon J A, Chen I H, Newton M A, Stanhope S A, Cheng Y J, Chen C J, Hildesheim A, Sugden B, Ahlquist P (2008). MicroRNA 29c is down-regulated innasopharyngeal carcinomas, up-regulating mRNAs encoding extracellularmatrix proteins. Proc Natl Acad Sci USA, 5(15): 5874–5878

doi: 10.1073/pnas.0801130105
Sethupathy P, Corda B, Hatzigeorgiou A G (2006). TarBase:A comprehensive database of experimentally supported animal microRNAtargets. RNA, 12(2): 192–197

doi: 10.1261/rna.2239606
Shi X X, Wang T J, He Z Y (2001). The Learning Algorithmof the Second Order HMM and Its Relationship with the First OrderHMM. J Appl Sci, 19(1): 29–32 (in Chinese)
Skalsky R L, Samols M A, Plaisance K B, Boss I W, Riva A, Lopez M C, Baker H V, Renne R(2007). Kaposi’ssarcoma-associated herpesvirus encodes an ortholog of miR-155. J Virol, 81(23): 12836–12845

doi: 10.1128/JVI.01804-07
Thadanil R, Tammi M T (2006). MicroTar: predicting microRNA targets from RNA duplexes. BMC Bioinformatics, 7(Suppl 5): S20

doi: 10.1186/1471-2105-7-S5-S20
Wang Y, Lee A T, Ma J Z, Wang J, Ren J, Yang Y, Tantoso E, Li K B, Tan P, Lee C G L(2008). Profiling microRNA expression in hepatocellular carcinomareveals microRNA-224 up-regulation and apoptosis inhibitor-5 as amicroRNA-224-specific target. J Biol Chem, 283(19): 13205–13215

doi: 10.1074/jbc.M707629200
Xia W, Cao G J, Shao N S (2009). Research approachof microRNA target gene in search and indentification. Sci China, C: Life Sci, 39(1): 121–128 (in Chinese)
Xu D, Liu H J, Wang Y F (2005). BSS-HMM3s: An improved HMM method for identifying transcriptionfactor binding sites. DNA Sequence, 16(6): 403–411

doi: 10.1080/10425170500356032
Yang Y C, Wang Y P, Li K B(2008). MiRTif: a supportvector machine-based microRNA target interaction filter. BMC Bioinformatics, 9(Suppl 12): S4

doi: 10.1186/1471-2105-9-S12-S4
Yousef M, Jung S, Kossenkov A V, Showe L C, Owe M K Sh (2007). Naïve Bayes for MicroRNA Target Predictions MachineLearning for MicroRNA Targets. Bioinformatics, 23(22): 2987–2992

doi: 10.1093/bioinformatics/btm484
Zhang B H, Pan X P, Wang Q L, Cobb G P, Anderson T A (2006). Computationalidentification of microRNAs and their targets. Comput Biol Chem, 30: 395–407

doi: 10.1016/j.compbiolchem.2006.08.006
[1] Razia Rahman, Lokesh Kumar Gahlot, Yasha Hasija. miRACA: A database for miRNAs associated with cancers and age related disorders (ARD)[J]. Front. Biol., 2018, 13(1): 36-50.
[2] Pang-Kuo Lo,Benjamin Wolfson,Qun Zhou. Cellular, physiological and pathological aspects of the long non-coding RNA NEAT1[J]. Front. Biol., 2016, 11(6): 413-426.
[3] Yunsong LAI, Huanxiu LI, Masumi YAMAGISHI. A review of target gene specificity of flavonoid R2R3-MYB transcription factors and a discussion of factors contributing to the target gene selectivity[J]. Front Biol, 2013, 8(6): 577-598.
[4] P. Shannon PENDERGRAST, Tom VOLPE. MicroRNA rules: Made to be broken[J]. Front Biol, 2013, 8(5): 468-474.
[5] Blanca E. BARRERA-FIGUEROA, Zhigang WU, Renyi LIU. Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution[J]. Front Biol, 2013, 8(2): 189-197.
[6] Zhaohui FENG, Rui WU, Meihua LIN, Wenwei HU. Tumor suppressor p53: new functions of an old protein[J]. Front Biol, 2011, 06(01): 58-68.
[7] Peng ZHAO, Dong-Qiao SHI, Wei-Cai YANG. Patterning the embryo in higher plants: Emerging pathways and challenges[J]. Front Biol, 2011, 06(01): 3-11.
[8] Richard D. Smrt, Xinyu Zhao, . Epigenetic regulation of neuronal dendrite and dendritic spine development[J]. Front. Biol., 2010, 5(4): 304-323.
[9] Qiumin LE, Zhaoyang HU, Lan MA. MicroRNAs in the neural system[J]. Front Biol, 2010, 5(3): 219-226.
[10] MU Junjie, YAO Xue, CHEN Qimin, GENG Yunqi, QIAO Wentao. MicroRNAs and their role in viral infection[J]. Front. Biol., 2007, 2(1): 15-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed