Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 6 Issue (6) : 477-481    https://doi.org/10.1007/s11515-011-1128-4
REVIEW
Epigenetics, a mode for plants to respond to abiotic stresses
Weihua QIAO1(), Liumin FAN2()
1. Insititute of Crop Sciences/National Key Facility for Crop Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China; 2. State Key Laboratory of Protein and Plant Gene Research, Genetic Engineering Peking-Yale Joint Center of Plant Molecular Genetics and Agro-biotechnology, College of Life Sciences, Peking University, Beijing 100871, China
 Download: PDF(104 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Epigenetics has been becoming a hot topic in recent years. It can be mechanisms that regulate gene expression without changing DNA base sequence. In plants epigenetic regulation has been implicated to be a very important phenomenon and mechanism for the regulation of responses to environmental stresses. Environmental signals induce various epigenetic modifications in the genome, and these epigenetic modifications might likely be inherited to the next generation that behaves with enhanced ability to tolerate stresses. This review highlights recent advances in the study of epigenetics in plant stress responses.

Keywords Epigenetics      chromatin      genome      environmental stress      histone modification     
Corresponding Author(s): QIAO Weihua,Email:qiao@caas.net.cn; FAN Liumin,Email:lmfan@pku.edu.cn   
Issue Date: 01 December 2011
 Cite this article:   
Weihua QIAO,Liumin FAN. Epigenetics, a mode for plants to respond to abiotic stresses[J]. Front Biol, 2011, 6(6): 477-481.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1128-4
https://academic.hep.com.cn/fib/EN/Y2011/V6/I6/477
Name of genes or proteinsFunctionSpecies (Organism)References
Domains rearranged methyltransferase (DRM) (CG, CNG and CNN)Contributes to de novo methylation in all sequence contextsTabacooWada et al., 2003; Wada 2005
Chromomethylase (CMT)Maintain CNG methylation in heterochromatin and silencing of methylated lociArabidopsis; maizeBartee et al., 2001; Papa et al., 2001
Methyltransferase (MET1)DNA methylation at CG sitesArabidopsis; carrot; pea; tomato and maizeFinnegan and Kovac, 2000
Glycerophosphodiesterase-like protein (NtGPDL)Aluminum, low temperature and salt stress can induce DNA demethylation in the coding regionTabacooChoi and Sano, 2007
Histone H3K9 methyltransferase; SDG33Histone methylation of Lys 9Tabacoo; ArabidopsisShen, 2001; Johnson et al., 2002
Methyl binding domain protein; MBD1 to 13Associated with histone and Some MBDs recognize methyl-cytosineArabidopsisZemach and Grafi, 2003
Histone deacetylase 19 HDA19; AtRPD3AResponse to Jasmonic Acid and Ethylene Signaling induced by stressArabidopsisZhou et al., 2005
DICER; DICER-LIKE; (DCL) 1, 2, 3, 4Cuts dsRNA into small fragmentsArabidopsisSchauer et al., 2002
RNA-denpendent RNA polymerase; RDR 1 to 6; SDE1/SGS2Amplifies microRNAsArabidopsis; Tabacoo (Nicotiana benthamiana)Dalmay et al., 2000; Mourrain et al., 2000; Vaistij et al., 2002
Tab.1  Genes or proteins involved in plant epigenetic responses to abiotic stresses
1 Ascenzi R, Gantt J S (1997). A drought-stress-inducible histone gene in Arabidopsis thaliana is a member of a distinct class of plant linker histone variants. Plant Mol Biol , 34(4): 629–641
doi: 10.1023/A:1005886011722 pmid:9247544
2 Aufsatz W, Mette M F, van der Winden J, Matzke M, Matzke A J (2002). HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA. EMBO J , 21(24): 6832–6841
doi: 10.1093/emboj/cdf663 pmid:12486004
3 Bartee L, Malagnac F, Bender J (2001). Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev , 15(14): 1753–1758
doi: 10.1101/gad.905701 pmid:11459824
4 Borsani O, Zhu J, Verslues P E, Sunkar R, Zhu J K (2005). Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell , 123(7): 1279–1291
doi: 10.1016/j.cell.2005.11.035 pmid:16377568
5 Camporeale G, Oommen A M, Griffin J B, Sarath G, Zempleni J (2007). K12-biotinylated histone H4 marks heterochromatin in human lymphoblastoma cells. J Nutr Biochem , 18(11): 760–768
doi: 10.1016/j.jnutbio.2006.12.014 pmid:17434721
6 Chen L T, Luo M, Wang Y Y, Wu K (2010). Involvement of Arabidopsis histone deacetylase HDA6 in ABA and salt stress response. J Exp Bot , 61(12): 3345–3353
doi: 10.1093/jxb/erq154 pmid:20519338
7 Chinnusamy E, Zhu J K (2009). Epigenetic regulation of stress responses in plants. Curr Opin Plant Biol , 12(2): 1–7
doi: 10.1016/j.pbi.2008.12.006 pmid:19112043
8 Choi C S, Sano H (2007). Abiotic-stress induces demethylation and transcriptional activation of a gene encoding a glycerophosphodiesterase-like protein in tobacco plants. Mol Genet Genomics , 277(5): 589–600
doi: 10.1007/s00438-007-0209-1 pmid:17273870
9 Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe D C (2000). An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell , 101(5): 543–553
doi: 10.1016/S0092-8674(00)80864-8 pmid:10850496
10 Dyachenko O V, Zakharchenko N S, Shevchuk T V, Bohnert H J, Cushman J C, Buryanov Y I (2006). Effect of hypermethylation of CCWGG sequences in DNA of Mesembryanthemum crystallinum plants on their adaptation to salt stress. Biochemistry (Mosc) , 71(4): 461–465
doi: 10.1134/S000629790604016X pmid:16615868
11 Finnegan E J, Kovac K A (2000). Plant DNA methyltransferases. Plant Mol Biol , 43(2–3): 189–201
doi: 10.1023/A:1006427226972 pmid:10999404
12 Fu W Q, Wu K Q, Duan J (2007). Sequence and expression analysis of histone deacetylases in rice. Biochem Biophys Res Commun , 356(4): 843–850
doi: 10.1016/j.bbrc.2007.03.010 pmid:17399684
13 Hashida S N, Uchiyama T, Martin C, Kishima Y, Sano Y, Mikami T (2006). The temperature-dependent change in methylation of the Antirrhinum transposon Tam3 is controlled by the activity of its transposase. Plant Cell , 18(1): 104–118
doi: 10.1105/tpc.105.037655 pmid:16326924
14 Henderson I R, Jacobsen S E (2007). Epigenetic inheritance in plants.Nature , 447(7143): 418–424
15 Johnson L, Cao X, Jacobsen S (2002). Interplay between two epigenetic marks. DNA methylation and histone H3 lysine 9 methylation. Curr Biol , 12(16): 1360–1367
doi: 10.1016/S0960-9822(02)00976-4 pmid:12194816
16 Kim J M, To T K, Ishida J, Morosawa T, Kawashima M, Matsui A, Toyoda T, Kimura H, Shinozaki K, Seki M (2008). Alterations of lysine modifications on the histone H3 N-tail under drought stress conditions in Arabidopsis thaliana. Plant Cell Physiol , 49(10): 1580–1588
doi: 10.1093/pcp/pcn133 pmid:18779215
17 Kovarik A, Koukalova B, Bezdek M, Opatrn Z (1997). Hypermethylation of tobacco heterochromatic loci in response to osmotic stress. Theor Appl Genet , 95(1–2): 301–306
doi: 10.1007/s001220050563
18 Labra M, Ghiani A, Citterio S, Sgorbati S, Sala F, Vannini C, Ruffini-Castiglione M, Bracale M (2002). Analysis of cytosine methylation pattern in response to water deficit in pea root tips. Plant Biol (Stuttgart) , 4(6): 694–699
doi: 10.1055/s-2002-37398
19 Lister R, O’Malley R C, Tonti-Filippini J, Gregory B D, Berry C C, Millar A H, Ecker J R (2008). Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell , 133(3): 523–536
doi: 10.1016/j.cell.2008.03.029 pmid:18423832
20 Martienssen R (1998). Transposons, DNA methylation and gene control. Trends Genet , 14(7): 263–264
doi: 10.1016/S0168-9525(98)01518-2 pmid:9676527
21 Mourrain P, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel J B, Jouette D, Lacombe A M, Nikic S, Picault N, Rémoué K, Sanial M, Vo T A, Vaucheret H (2000). ArabidopsisSGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell , 101(5): 533–542
doi: 10.1016/S0092-8674(00)80863-6 pmid:10850495
22 Nathan D, Ingvarsdottir K, Sterner D E, Bylebyl G R, Dokmanovic M, Dorsey J A, Whelan K A, Krsmanovic M, Lane W S, Meluh P B, Johnson E S, Berger S L (2006). Histone sumoylation is a negative regulator in Saccharomyces cerevisiae and shows dynamic interplay with positive-acting histone modifications. Genes Dev , 20(8): 966–976
doi: 10.1101/gad.1404206 pmid:16598039
23 Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones J D G (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science , 312(5772): 436–439
doi: 10.1126/science.1126088 pmid:16627744
24 Papa C M, Springer N M, Muszynski M G, Meeley R, Kaeppler S M (2001). Maize chromomethylase Zea methyltransferase2 is required for CpNpG methylation. Plant Cell , 13(8): 1919–1928
pmid:11487702
25 Phillips J R, Dalmay T, Bartels D (2007). The role of small RNAs in abiotic stress. FEBS Lett , 581(19): 3592–3597
doi: 10.1016/j.febslet.2007.04.007 pmid:17451688
26 Probst A V, Fagard M, Proux F, Mourrain P, Boutet S, Earley K, Lawrence R J, Pikaard C S, Murfett J, Furner I, Vaucheret H, Mittelsten Scheid O (2004). Arabidopsis histone deacetylase HDA6 is required for maintenance of transcriptional gene silencing and determines nuclear organization of rDNA repeats. Plant Cell , 16(4): 1021–1034
doi: 10.1105/tpc.018754 pmid:15037732
27 Qiu S P, Huang J, Pan L J, Wang M M, Zhang H S (2006). Salt induces expression of RH3.2A, encoding an H3.2-type histone H3 protein in rice (Oryza sativa L.). Yi Chuan Xue Bao , 33(9): 833–840
doi: 10.1016/S0379-4172(06)60117-0 pmid:16980130
28 Schauer S E, Jacobsen S E, Meinke D W, Ray A (2002). DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci , 7(11): 487–491 12417148
doi: 10.1016/S1360-1385(02)02355-5
29 Scippa G S, Griffiths A, Chiatante D, Bray E A (2000). The H1 histone variant of tomato, H1-S, is targeted to the nucleus and accumulates in chromatin in response to water-deficit stress. Planta , 211(2): 173–181
doi: 10.1007/s004250000278 pmid:10945211
30 Shen W H (2001). NtSET1, a member of a newly identified subgroup of plant SET-domain-containing proteins, is chromatin-associated and its ectopic overexpression inhibits tobacco plant growth. Plant J , 28(4): 371–383
doi: 10.1046/j.1365-313X.2001.01135.x pmid:11737775
31 Sokol A, Kwiatkowska A, Jerzmanowski A, Prymakowska-Bosak M (2007). Up-regulation of stress-inducible genes in tobacco and Arabidopsis cells in response to abiotic stresses and ABA treatment correlates with dynamic changes in histone H3 and H4 modifications. Planta , 227(1): 245–254
doi: 10.1007/s00425-007-0612-1 pmid:17721787
32 Sridha S, Wu K (2006). Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J , 46(1): 124–133
doi: 10.1111/j.1365-313X.2006.02678.x pmid:16553900
33 Sridhar V V, Kapoor A, Zhang K, Zhu J, Zhou T, Hasegawa P M, Bressan R A, Zhu J K (2007). Control of DNA methylation and heterochromatic silencing by histone H2B deubiquitination. Nature , 447(7145): 735–738
doi: 10.1038/nature05864 pmid:17554311
34 Steward N, Ito M, Yamaguchi Y, Koizumi N, Sano H (2002). Periodic DNA methylation in maize nucleosomes and demethylation by environmental stress. J Biol Chem , 277(40): 37741–37746
doi: 10.1074/jbc.M204050200 pmid:12124387
35 Stockinger E J, Mao Y, Regier M K, Triezenberg S J, Thomashow M F (2001). Transcriptional adaptor and histone acetyltransferase proteins in Arabidopsis and their interactions with CBF1, a transcriptional activator involved in cold-regulated gene expression. Nucleic Acids Res , 29(7): 1524–1533
doi: 10.1093/nar/29.7.1524 pmid:11266554
36 Sunkar R, Chinnusamy V, Zhu J, Zhu J K (2007). Small RNAs as big players in plant abiotic stress responses and nutrient deprivation. Trends Plant Sci , 12(7): 310–309
doi: 10.1016/j.tplants.2007.05.001 pmid:17596996
37 Sunkar R, Kapoor A, Zhu J K (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell , 18(8): 2051–2065
doi: 10.1105/tpc.106.041673 pmid:16861386
38 Sunkar R, Zhu J K (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell , 16(8): 2001–2019
doi: 10.1105/tpc.104.022830 pmid:15258262
39 Tsuji H, Saika H, Tsutsumi N, Hirai A, Nakazono M (2006). Dynamic and reversible changes in histone H3-Lys4 methylation and H3 acetylation occurring at submergence-inducible genes in rice. Plant Cell Physiol , 47(7): 995–1003
doi: 10.1093/pcp/pcj072 pmid:16774928
40 Vaistij F E, Jones L, Baulcombe D C (2002). Spreading of RNA targeting and DNA methylation in RNA silencing requires transcription of the target gene and a putative RNA-dependent RNA polymerase. Plant Cell , 14(4): 857–867
doi: 10.1105/tpc.010480 pmid:11971140
41 Wada Y (2005). Physiological functions of plant DNA methyltransferases. Plant Biotechnol , 22: 71–80
42 Wada Y, Ohya H, Yamaguchi Y, Koizumi N, Sano H (2003). Preferential de novo methylation of cytosine residues in non-CpG sequences by a domains rearranged DNA methyltransferase from tobacco plants. J Biol Chem , 278(43): 42386–42393
doi: 10.1074/jbc.M303892200 pmid:12917429
43 Yoder J A, Walsh C P, Bestor T H (1997). Cytosine methylation and the ecology of intragenomic parasites. Trends Genet , 13(8): 335–340
doi: 10.1016/S0168-9525(97)01181-5 pmid:9260521
44 Zemach A, Grafi G (2003). Characterization of Arabidopsis thaliana methyl-CpG-binding domain (MBD) proteins. Plant J , 34(5): 565–572
doi: 10.1046/j.1365-313X.2003.01756.x pmid:12787239
45 Zhang K, Sridhar V V, Zhu J, Kapoor A, Zhu J K (2007). Distinctive core histone post-translational modification patterns in Arabidopsis thaliana. PLoS ONE , 2(11): e1210
doi: 10.1371/journal.pone.0001210 pmid:18030344
46 Zhou C, Zhang L, Duan J, Miki B, Wu K (2005). HISTONE DEACETYLASE19 is involved in jasmonic acid and ethylene signaling of pathogen response in Arabidopsis. Plant Cell , 17(4): 1196–1204
doi: 10.1105/tpc.104.028514 pmid:15749761
47 Zhu J K (2008). Epigenome sequencing comes of age. Cell , 133(3): 395–397
doi: 10.1016/j.cell.2008.04.016 pmid:18455978
[1] Shipeng Shao, Lei Chang, Yingping Hou, Yujie Sun. Illuminating the structure and dynamics of chromatin by fluorescence labeling[J]. Front. Biol., 2017, 12(4): 241-257.
[2] Karim Mowla, Mohammad Amin Saki, Mohammad Taha Jalali, Zeinab Deris Zayeri. How to manage rheumatoid arthritis according to classic biomarkers and polymorphisms?[J]. Front. Biol., 2017, 12(3): 183-191.
[3] Andrew Brandmaier, Sheng-Qi Hou, Sandra Demaria, Silvia C. Formenti, Wen H. Shen. PTEN at the interface of immune tolerance and tumor suppression[J]. Front. Biol., 2017, 12(3): 163-174.
[4] Xin-Min Qin,Xiao-Wen Yang,Li-Xia Hou,Hui-Min Li. Complete mitochondrial genome of Ampittia dioscorides (Lepidoptera: Hesperiidae) and its phylogenetic analysis[J]. Front. Biol., 2017, 12(1): 71-81.
[5] Liang Hu,Edward Trope,Qi-Long Ying. Metabolism of pluripotent stem cells[J]. Front. Biol., 2016, 11(5): 355-365.
[6] Ying-Tao Zhao,Maria Fasolino,Zhaolan Zhou. Locus- and cell type-specific epigenetic switching during cellular differentiation in mammals[J]. Front. Biol., 2016, 11(4): 311-322.
[7] Nina K. Latcheva,Rupa Ghosh,Daniel R. Marenda. The epigenetics of CHARGE syndrome[J]. Front. Biol., 2016, 11(2): 85-95.
[8] Xin-Min Qin,Qing-Xin Guan,Hui-Min Li,Yu Zhang,Yu-Ji Liu,Dan-Ni Guo. The complete mitogenome of Lamproptera curia (Lepidoptera: Papilionidae) and phylogenetic analyses of Lepidoptera[J]. Front. Biol., 2015, 10(5): 458-472.
[9] Lihua Julie Zhu. Overview of guide RNA design tools for CRISPR-Cas9 genome editing technology[J]. Front. Biol., 2015, 10(4): 289-296.
[10] Joshua D. TOMPKINS,Arthur D. RIGGS. An epigenetic perspective on the failing heart and pluripotent-derived-cardiomyocytes for cell replacement therapy[J]. Front. Biol., 2015, 10(1): 11-27.
[11] Jamie K. WONG,Hongyan ZOU. Reshaping the chromatin landscape after spinal cord injury[J]. Front. Biol., 2014, 9(5): 356-366.
[12] Nidhi VISHNOI,Jie YAO. Gene positioning and genome function[J]. Front. Biol., 2014, 9(4): 255-268.
[13] Wenping GONG, Ling RAN, Guangrong LI, Jianping ZHOU, Cheng LIU, Zujun YANG. Development and utilization of new sequenced characterized amplified region markers specific for E genome of Thinopyrum[J]. Front Biol, 2013, 8(4): 451-459.
[14] Yiwei LIN, Binhua P. ZHOU. Histone mimics: digging down under[J]. Front Biol, 2013, 8(2): 228-233.
[15] Blanca E. BARRERA-FIGUEROA, Zhigang WU, Renyi LIU. Abiotic stress-associated microRNAs in plants: discovery, expression analysis, and evolution[J]. Front Biol, 2013, 8(2): 189-197.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed