Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2017, Vol. 12 Issue (1) : 71-81    https://doi.org/10.1007/s11515-016-1434-y
RESEARCH ARTICLE
Complete mitochondrial genome of Ampittia dioscorides (Lepidoptera: Hesperiidae) and its phylogenetic analysis
Xin-Min Qin(),Xiao-Wen Yang,Li-Xia Hou,Hui-Min Li
Guangxi Key Laboratory of Rare and Endangered Animal Ecology, College of Life Science, Guangxi Normal University, Guilin 541004, China
 Download: PDF(885 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The complete mitochondrial genome of Ampittia dioscorides (Lepidoptera: Hesperiidae) was determined. The sequenced genome is a circular molecule of 15313 bp, containing 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and an A+ T-rich region. The gene arrangements and transcribing directions are identical to those in most of the reported lepidopteran mitogenomes. The base composition of the whole genome and genes or regions are also similar to those in other lepidopteran species. All the PCGs are initiated by typical ATN codons; the exception being COI, which begins with a CGA codon. Eight genes (ND2, ATPase8, ATPase6, COIII, ND5, ND4L, ND6, and Cytb) end with a TAA stop codon, and two genes (ND1 and ND3) end with TAG. The remaining three genes (COI and COII, which end with TA-, and ND4, which ends with T-) have incomplete stop codons. All tRNAs have the typical clover-leaf structure of mitochondrial tRNAs, with the exception of tRNASer(AGY). On the basis of the concatenated nucleotide and amino acid sequences of the 13 PCGs and wingless gene of 22 butterfly species, maximum parsimony (MP) and Bayesian inference (BI) trees were constructed, respectively. Both MP and BI trees had the same topological structure: ((((Nymphalidae+ Danaidae) + Lycaenidae) + Pieridae) + Papilionidae) + Hesperiidae). The results provide support for Hesperiidae as a superfamily-level taxon.

Keywords Ampittia dioscorides      mitochondrial genome      phylogeny     
Corresponding Author(s): Xin-Min Qin   
Online First Date: 13 January 2017    Issue Date: 28 February 2017
 Cite this article:   
Xin-Min Qin,Xiao-Wen Yang,Li-Xia Hou, et al. Complete mitochondrial genome of Ampittia dioscorides (Lepidoptera: Hesperiidae) and its phylogenetic analysis[J]. Front. Biol., 2017, 12(1): 71-81.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-016-1434-y
https://academic.hep.com.cn/fib/EN/Y2017/V12/I1/71
Primer 1 Sequence(5′→3′) Primer 1 Sequence(5′→3′) Fragment
1A GCTAAATTAAGCTTTTGGGTTCA 1B CCCGGTAAAATTAAAATATAAACTTC ND2-COI
2A GGTCAACAAATCATAAAGATATTG 2B TAAACTTCAGGGTGACCAAAAAAT COI
3A GGATCACCTGATATAGCATTCCC 3B GAGACCATTACTTGCTTTCAGTCATC COI-COII
4A AGAGCCTCTTTAATAGAACA 4B GAGACCATTACTTGCTTTCAGTCATC COII
5A GAAATTTGTGGAGCTAATCATAG 5B TCAACAAAATGTCAATATCA COII-COIII
6A GGTTTACGATGAGGAATAATTT 6B TTACAATGAAAATGTAATG COIII-ND3
7A CATTACATTTTCATTGTAA 7B TTCTGCTTTGGTTCATTCT ND3-ND5
8A GGTTTACGATGAGGAATAATTT 8B TTAGGTTGAGATGGGTTAGG COIII-ND5
9A GCTAATTATGAATTTGATT 9B GATACTCTTCATCATATA ND5
10A ATAATAACTCCAGCACAT 10B GCTTATTCTTCAGTTGCTCA ND5-ND4
11A GAAGGAGGAGCTGCTATATTAG 11B CCTCAAAATGATATTTGACCTC ND4- Cytb
12A TACGTTTTACCATGAGGTCAAATATC 12B ACTTCTTTTCTTATGTTTTCAAAAC Cytb
13A CCGACCTGTTGAAGATCCTTAT 13B TCAGATCAAGATGCCGATT Cytb-12
14A GACGGGCGATRTGTRCATA 14B CCAGCAGTCGCGGTTATAC 12S
15A AGGGTATCTAATCCTAGTTT 15B TGGGGTATGAACCCAAAAGC 12S-ND2
WG1 GARTGYAARTGYCAYGGYATGTCTGG WG2 ACTICGCRCACCARTGGAATGTRCA Wingless
Tab.1  List of primers used to amplify and sequence the mitogenome of Ampittia dioscorides
Superfamily/Family Species GenBank Accession No. Wingless
Accession No.
Papilionoidea
Nymphalidae Kallima inachus JN857943 AY788769
Acraea issoria NC_013604 EU275636
Argynnis hyperbius NC_015988 GU372617
Issoria lathonia NC_018030 DQ922886
Melitaea cinxia NC_018029 AY788536
Junonia orithya NC_022697 EU53389
Danaidae Danaus plexippus NC_021452 KJ496142
Euploea midamus KJ866207 KP153246
Tirumala limniace KJ784473 GQ864909
Euploea mulciber NC_016720 GU365941
Papilionidae Lamproptera curius NC_023953 KP153247
Papilio bianor KF859738 GU372632
Papilio polytes KM014701 AK402256
Papilio machaon NC_018047 GU372637
Sericinus montela HQ259122 GU372642
Lycaenidae Curetis bulis JX_262888 JQ786749
Pieridae Eurema hecabe NC_022685 DQ018876
Pieris rapae NC_015895 GU372646
Leptidea morsei NC_022686 GU372654
Delias hyparete NC_020428 DQ082831
Aporia crataegi NC_018346 AY870529
Hesperioidea
Hesperiidae Ampittia dioscorides KM102732 KP153245
Bombycoidea
Bombycidae Bombyx mandarina NC_003395 EU033068
Bombyx mori NC_002355 EU141241
Tab.2  Related information on the complete mitogenome used in the phylogenetic analyses
Gene Direction Location Size (bp) Spacer(+)
Overlap(-)
Anti-codon Start codon Stop codon
tRNAMet F 1-68 68 +6 CAT
tRNAIle F 75-138 64 -3 GAT
tRNAGln R 136-204 69 +74 TTG
ND2 F 279-1300 1022 -2 ATT TAA
tRNATrp F 1299-1365 67 -9 TCA
tRNACys R 1357-1421 65 +1 GCA
tRNATyr R 1423-1487 65 +4 GTA
COI F 1492-3024 1533 CGA T--
tRNALeu(UUR) F 3025-3093 69 TAA
COII F 3094-3769 676 ATG T--
tRNALys F 3770-3840 71 +11 CTT
tRNAAsp F 3852-3918 67 GTC
ATPase8 F 3919-4080 162 -7 ATT TAA
ATPase6 F 4074-4760 687 -5 ATG TAA
COIII F 4756-5542 787 +2 ATT TAA
tRNAGly F 5545-5608 64 TCC
ND3 F 5609-5962 354 +7 ATA TAG
tRNAAla F 5970-6036 67 -1 TGC
tRNAArg F 6036-6098 63 TCG
tRNAAsn F 6099-6164 66 +13 GTT
tRNASer(AGY) F 6178-6234 57 +13 GCT
tRNAGlu F 6248-6313 66 -2 TTC
tRNAPhe R 6312-6379 68 -65 GAA
ND5 R 6315-8117 1803 ATG TAA
tRNAHis R 8118-8185 68 GTG
ND4 R 8186-9533 1348 +2 ATG TA-
ND4L R 9536-9821 286 +4 ATG TAA
tRNAThr F 9826-9890 65 TGT
tRNAPro R 9891-9955 65 -2 TGG
ND6 F 9954-10494 541 -4 ATT TAA
Cytb F 10491-11634 1144 +6 ATG TAA
tRNASer(UCN) F 11641-11705 65 +22 TGA
ND1 R 11728-12666 939 ATG TAG
tRNALeu(CUN) R 12667-12734 68 +6 TAG
16SrRNA R 12741-14056 1316 +4
tRNAVal R 14061--14125 65 TAC
12SrRNA R 14126-14846 721 +78
A+T-rich region 14925-15313 389
Tab.3  Summary of the mitogenome of Ampittia dioscorides
Fig.1  Circular map of the mitochondrial genome of Ampittia dioscorides
Fig.2  Predicted secondary clover-leaf structure for the tRNA genes of Ampittia dioscorides.
Fig.3  Maximum parsimony phylogenetic tree based on the concatenated amino acid sequences of 13 protein coding genes+ wingless genes.
Fig.4  Bayesian inference phylogenetic tree based on the concatenated amino acid sequences of 13 protein coding genes+ wingless genes.
17 Ojala D, Montoya J, Attardi G (1981). tRNA punctuation model of RNA processing in human mitochondria. Nature, 290(5806): 470–474
https://doi.org/10.1038/290470a0 pmid: 7219536
18 Peña C, Wahlberg N, Weingartner E, Kodandaramaiah U, Nylin S, Freitas A V J, Brower A V Z (2006). Higher level phylogeny of Satyrinae butterflies (Lepidoptera: Nymphalidae) based on DNA sequence data. Mol Phylogenet Evol, 40(1): 29–49
https://doi.org/10.1016/j.ympev.2006.02.007 pmid: 16563805
19 Regier J C, Cook C, Mitter C, Hussey A (2008). A phylogenetic study of the ‘bombycoid complex’ (Lepidoptera) using five protein-coding nuclear genes, with comments on the problem of macrolepidopteran phylogeny. Syst Entomol, 33(1): 175–189
https://doi.org/10.1111/j.1365-3113.2007.00409.x
20 Silva-Brandão K L, Wahlberg N, Francini R B, Azeredo-Espin A M L, Brown K S Jr, Paluch M, Lees D C, Freitas A V L (2008). Phylogenetic relationships of butterflies of the tribe Acraeini (Lepidoptera, Nymphalidae, Heliconiinae) and the evolution of host plant use. Mol Phylogenet Evol, 46(2): 515–531
https://doi.org/10.1016/j.ympev.2007.11.024 pmid: 18191590
21 Simon C, Frati F, Bekenbach A (1994). Evolution, weighting, and phylogenetic utility of mitochondrialgene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am, 87(6): 651–701
https://doi.org/10.1093/aesa/87.6.651
22 Singh V K, Mangalam A K, Dwivedi S, Naik S (1998). Primer premier: program for design of degenerate primers from a protein sequence. Biotechniques, 24(2): 318–319
pmid: 9494736
1 Altschul S F, Gish W, Miller W, Myers E W, Lipman D J (1990). Basic local alignment search tool. J Mol Biol, 215(3): 403–410
https://doi.org/10.1016/S0022-2836(05)80360-2 pmid: 2231712
2 Anderson S, Bankier A T, Barrell B G, de Bruijn M H, Coulson A R, Drouin J, Eperon I C, Nierlich D P, Roe B A, Sanger F, Schreier P H, Smith A J, Staden R, Young I G (1981). Sequence and organization of the human mitochondrial genome. Nature, 290(5806): 457–465
https://doi.org/10.1038/290457a0 pmid: 7219534
23 Wahlberg N, Braby M F, Brower A V,de Jong R, Lee M M, Nylin S, Pierce N E, Sperling F A, Vila R, Warren A D, Zakharov E (2005). Synergistic effects of combining morphological and molecular data in resolving the phylogeny of butterflies and skippers. Proc Biol Sci, 272: 1577–1586
24 Warren A D, Ogawa J R, Blower A V Z (2008). Phylogenetic relationships of subfamilies and circumscription of tribes in the family Hesperiidae (Lepidoptera:Hesperioidea). Cladistics, 24(5): 642–676
https://doi.org/10.1111/j.1096-0031.2008.00218.x
25 Warren A D, Ogawa J R, Brower A V (2009). Revised classification of the family Hesperiidae (Lepidoptera: Hesperioidea) based on combined molecular and morphological data. Syst Entomol, 34(3): 467–523
https://doi.org/10.1111/j.1365-3113.2008.00463.x
26 Weller S J, Pashley D P (1995). In search of butterfly origins. Mol Phylogenet Evol, 4(3): 235–246
https://doi.org/10.1006/mpev.1995.1022 pmid: 8845961
27 Xia X, Xie Z (2001). DAMBE: software package for data analysis in molecular biology and evolution. J Hered, 92(4): 371–373
https://doi.org/10.1093/jhered/92.4.371 pmid: 11535656
28 Zhou Z, Huang Y, Shi F (2007). The mitochondrial genome of Ruspolia dubia (Orthoptera: Conocephalidae) contains a short A+T-rich region of 70 bp in length. Genome, 50(9): 855–866
https://doi.org/10.1139/G07-057 pmid: 17893726
29 Zou F Z, Hao J S, Huang D Y, Zhang D X, Zhu G P, Zhu C D (2009). Molecular phylogeny of 12 families of the Chinese butterflies based on mitochondrial ND1 and 16S rRNA gene sequences (Lepidoptera: Ditrysia: Rhopalocera). Acta Entomologica Sinica, 52: 191–201
3 Brower A V Z (2000). Phylogenetic relationships among the Nymphalidae (Lepidoptera) inferred from partial sequences of the wingless gene. Proc Biol Sci, 267(1449): 1201–1211
https://doi.org/10.1098/rspb.2000.1129 pmid: 10902686
4 Campbell D L, Brower A V, Pierce N E (2000). Molecular evolution of the wingless gene and its implications for the phylogenetic placement of the butterfly family Riodinidae (Lepidoptera: papilionoidea). Mol Biol Evol, 17(5): 684–696
https://doi.org/10.1093/oxfordjournals.molbev.a026347 pmid: 10779529
5 Cha S Y, Yoon H J, Lee E M, Yoon M H, Hwang J S, Jin B R, Han Y S, Kim I (2007). The complete nucleotide sequence and gene organization of the mitochondrial genome of the bumblebee, Bombus ignitus (Hymenoptera: Apidae). Gene, 392(1-2): 206–220
https://doi.org/10.1016/j.gene.2006.12.031 pmid: 17321076
6 Harvey D J (1991). Higher classification of the Nymphalidae[A], Appendix B. The Development and Evolution of Butterfly Wing Patterns (HF Nijhout, ed)[M]. Smithsonian Institution Press, Washington DC, 255–273
7 Hong M Y, Lee E M, Jo Y H, Park H C, Kim S R, Hwang J S, Jin B R, Kang P D, Kim K G, Han Y S, Kim I (2008). Complete nucleotide sequence and organization of the mitogenome of the silk moth Caligula boisduvalii (Lepidoptera: Saturniidae) and comparison with other lepidopteran insects. Gene, 413(1-2): 49–57
https://doi.org/10.1016/j.gene.2008.01.019 pmid: 18337026
8 Hsu R, Briscoe A D, Chang B S, Chang W, Pierce N E (2001). Molecular evolution of a long wavelength-sensitive opsin in mimetic Heliconius butterflies (Lepidoptera: Nymphalidae). Biol J Linn Soc Lond, 72(3): 435–449
https://doi.org/10.1111/j.1095-8312.2001.tb01329.x
9 Jiang S T, Hong G Y, Yu M, Li N, Yang Y, Liu Y Q, Wei Z J (2009). Characterization of the complete mitochondrial genome of the giant silkworm moth, Eriogyna pyretorum (Lepidoptera: Saturniidae). Int J Biol Sci, 5(4): 351–365
https://doi.org/10.7150/ijbs.5.351 pmid: 19471586
10 Kim M J, Wan X L, Kim K G, Hwang J S, Kim I (2010). Complete nucleotide sequence and organization of the mitogenome of endangered Eumenis autonoe (Lepidoptera: Nymphalidae). Afr J Biotechnol, 9(5): 735–754
https://doi.org/10.5897/AJB09.1486
11 Kim M J, Wang A R, Park J S, Kim I (2014). Complete mitochondrial genomes of five skippers (Lepidoptera: Hesperiidae) and phylogenetic reconstruction of Lepidoptera. Gene, 549(1): 97–112
https://doi.org/10.1016/j.gene.2014.07.052 pmid: 25058696
12 Lavrov D V, Brown W M, Boore J L (2000). A novel type of RNA editing occurs in the mitochondrial tRNAs of the centipede Lithobius forficatus. Proc Natl Acad Sci U S A, 97(25): 13738–13742
https://doi.org/10.1073/pnas.250402997 pmid: 11095730
13 Lin C P, Danforth B N (2004). How do insect nuclear and mitochondrial gene substitution patterns differ? Insights from Bayesian analyses of combined datasets. Mol Phylogenet Evol, 30(3): 686–702
https://doi.org/10.1016/S1055-7903(03)00241-0 pmid: 15012948
14 Liu Y, Li Y, Pan M, Dai F, Zhu X, Lu C, Xiang Z (2008). The complete mitochondrial genome of the Chinese oak silkmoth, Antheraea pernyi (Lepidoptera: Saturniidae). Acta Biochim Biophys Sin (Shanghai), 40(8): 693–703
https://doi.org/10.1093/abbs/40.8.693 pmid: 18685785
15 Lowe T M, Eddy S R (1997). tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res, 25(5): 955–964
https://doi.org/10.1093/nar/25.5.0955 pmid: 9023104
16 Mutanen M, Wahlberg N, Kaila L (2010). Comprehensive gene and taxon coverage elucidates radiation patterns in moths and butterflies. Proc Biol Sci, 277(1695): 2839–2848
https://doi.org/10.1098/rspb.2010.0392 pmid: 20444718
[1] Xin-Min Qin,Qing-Xin Guan,Hui-Min Li,Yu Zhang,Yu-Ji Liu,Dan-Ni Guo. The complete mitogenome of Lamproptera curia (Lepidoptera: Papilionidae) and phylogenetic analyses of Lepidoptera[J]. Front. Biol., 2015, 10(5): 458-472.
[2] P. CHELLAPANDI. Molecular evolution of methanogens based on their metabolic facets[J]. Front Biol, 2011, 6(6): 490-503.
[3] XU Xiaohong, WU Min, ZHANG Huibin, LIU Zhihu. Genetic analysis of the gene in halophilic archaea isolated from Xinjiang region, China[J]. Front. Biol., 2008, 3(4): 392-396.
[4] ZHU Min, GAI Zhikun. Phylogenetic relationships of Galeaspids (Agnatha)[J]. Front. Biol., 2007, 2(2): 151-169.
[5] MU Linchun, WANG Li, YAO Li, HAO Bingqing, LUO Qin. Application of pet G-trn P sequence to systematic study of Chinese Cupressus species[J]. Front. Biol., 2006, 1(4): 349-352.
[6] Xu Xiaohong, Wu Min, Cao Yi, Wu Yuehong, Zhang Ting. Isolation and Phylogenetic Analysis of Halophilic Archaeon AJ6[J]. Front. Biol., 2006, 1(1): 29-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed