|
|
Molecular evolution of methanogens based on their metabolic facets |
P. CHELLAPANDI( ) |
Department of Bioinformatics, Centre for Excellence in School of Life Sciences, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India |
|
|
Abstract The information provided by completely sequenced genomes of methanogens can yield insights into a deeper molecular understanding of evolutionary mechanisms. This review describes the advantages of using metabolic pathways to clarify evolutionary correlation of methanogens with archaea and prokaryotes. Metabolic trees can be used to highlight similarities in metabolic networks related to the biology of methanogens. Metabolic genes are among the most modular in the cell and their genes are expected to travel laterally, even in recent evolution. Phylogenetic analysis of protein superfamilies provides a perspective on the evolutionary history of some key metabolic modules of methanogens. Phage-related genes from distantly related organisms typically invade methanogens by horizontal gene transfer. Metabolic modules in methanogenesis are phylogenetically aligned in closely related methanogens. Reverse order reactions of methanogenesis are achieved in methylotrophic methanogens using metabolic and structural modules of key enzymes. A significant evolutionary process is thought to couple the utilization of heavy metal ions with energetic metabolism in methanogens. Over 30 of methanogens genomes have been sequenced to date, and a variety of databases are being developed that will provide for genome annotation and phylogenomic analysis of methanogens. Into the context of the evolutionary hypothesis, the integration of metabolomic and proteomic data into large-scale mathematical models holds promise for fostering rational strategies for strain improvement.
|
Keywords
methanogens
genomics
metabolic module
phylogeny
protein superfamily
molecular evolution
|
Corresponding Author(s):
CHELLAPANDI P.,Email:pchellapandi@gmail.com
|
Issue Date: 01 December 2011
|
|
1 |
Aguilar D, Aviles F X, Querol E, Sternberg M J (2004). Analysis of phenetic trees based on metabolic capabilites across the three domains of life. J Mol Biol , 340(3): 491–512 doi: 10.1016/j.jmb.2004.04.059 pmid:15210350
|
2 |
Apic G, Gough J, Teichmann S A (2001). Domain combinations in archaeal, eubacterial and eukaryotic proteomes. J Mol Biol , 310(2): 311–325 doi: 10.1006/jmbi.2001.4776 pmid:11428892
|
3 |
Bansal A K (1999). An automated comparative analysis of 17 complete microbial genomes. Bioinformatics , 15(11): 900–908 doi: 10.1093/bioinformatics/15.11.900 pmid:10743556
|
4 |
Bapteste E, Brochier C, Boucher Y (2005). Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea , 1(5): 353–363 doi: 10.1155/2005/859728 pmid:15876569
|
5 |
Beja O, Aravind L, Koonin E V, Suzuki M T, Hadd A, Nguyen L P, Jovanovich S B, Gates C M, Feldman R A, Spudich J L, Spudich E N, DeLong E F (2000). Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science , 289(5486): 1902–1906 doi: 10.1126/science.289.5486.1902 pmid:10988064
|
6 |
Briones C, Manrubia S C, Lázaro E, Lazcano A, Amils R (2005). Reconstructing evolutionary relationships from functional data: a consistent classification of organisms based on translation inhibition response. Mol Evol Phylogenet , 34(2): 371–381 doi: 10.1016/j.ympev.2004.10.020 pmid:15619448
|
7 |
Brochier C, Forterre P, Gribaldo S (2004). Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox. Genome Biol , 5(3): R17 doi: 10.1186/gb-2004-5-3-r17 pmid:15003120
|
8 |
Brochier C, Forterre P, Gribaldo S (2005). An emerging phylogenetic core of Archaea: phylogenies of transcription and translation machineries converge following addition of new genome sequences. BMC Evol Biol , 5(1): 36 doi: 10.1186/1471-2148-5-36 pmid:15932645
|
9 |
Brown J R, Doolittle W F (1997). Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev , 61(4): 456–502 pmid:9409149
|
10 |
Brown J R, Douady C J, Italia M J, Marshall W E, Stanhope M J (2001). Universal trees based on large combined protein sequence data sets. Nat Genet , 28(3): 281–285 doi: 10.1038/90129 pmid:11431701
|
11 |
Bult C J, White O, Olsen G J, Zhou L, Fleischmann R D, Sutton G G, Blake J A, FitzGerald L M, Clayton R A, Gocayne J D, Kerlavage A R, Dougherty B A, Tomb J F, Adams M D, Reich C I, Overbeek R, Kirkness E F, Weinstock K G, Merrick J M, Glodek A, Scott J L, Geoghagen N S M, Venter J C, Fuhrmann J L, Nguyen D, Utterback T R, Kelley J M, Peterson J D, Sadow P W, Hanna M C, Cotton M D, Roberts K M, Hurst M A, Kaine B P, Borodovsky M, Klenk H P, Fraser C M, Smith H O, Woese C R, Venter C J (1996). Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science , 273(5278): 1058–1073 doi: 10.1126/science.273.5278.1058 pmid:8688087
|
12 |
Chellapandi P (2004). Enzymes and microbiological pretreatments of oil industry wastes for biogas production in batch digesters. In: Pathade G R, Goel P K, ed. Biotechnology in Environmental Management , India: ABD Publishers
|
13 |
Chellapandi P (2011). A molecular conception for protein engineering algorithms. Adv Biotech , 10(7): 41–46
|
14 |
Chellapandi P, Dhivya C (2010). Overview of microbial metabolomics: A special insight to cyanobacterial methylotrophy. J Adv Develop Res , 1: 59–73
|
15 |
Chellapandi P, Kalaimathy S (2010). Molecular aspects of β-galactosidase production system in Aspergillus genomes. J Adv Develop Res , 1: 81–89
|
16 |
Chellapandi P, Karthigeyan C, Sivaramakrishnan S (2009). Evolutionary implication of protein secondary structure among archaea and bacteria. Internet J Genomics Proteomics , 4(2)
|
17 |
Chellapandi P, Prabaharan D, Uma L (2008). A preliminary study on co-digestion of ossein factory waste for methane production. EurAsian J Biosci , 2: 110–114
|
18 |
Chellapandi P, Prabaharan D, Uma L (2010a). Evaluation of methanogenic activity of biogas plant slurry for monitoring codigestion of ossein factory wastes and cyanobacterial biomass. Appl Biochem Biotechnol , 162(2): 524–535 doi: 10.1007/s12010-009-8834-2 pmid:19911119
|
19 |
Chellapandi P, Ranjani J (2011). Molecular machinery of CRISPR-CAS system – RNA mediated defense pathway in Prokaryotes. Asian J Biotechnol , 3(4): 329–336 doi: 10.3923/ajbkr.2011
|
20 |
Chellapandi P, Sivaramakrishnan S, Viswanathan M B (2010b). Systems biotechnology: An emerging trend in metabolic engineering of industrial microorganisms. J Comput Sci Syst Biol , 3(2): 43–49
|
21 |
Chellapandi P, Sivaramakrishnan S (2011). In: Baginski S J, ed. Protein superfamilies based phylogenomic analysis of archaeal domain. Biochemistry Research Updates , USA: Nova Science Publications, Inc.
|
22 |
Chellapandi P, Suman L S, Sivaramakrishnan S (2007). Biomethanation of fungal predigested caster seed cake in acclimatized seed. Biotechnol: An Indian Journal , 1: 19–24
|
23 |
Chistoserdova L, Vorholt J A, Thauer R K, Lidstrom M E (1998). C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. Science , 281(5373): 99–102 doi: 10.1126/science.281.5373.99 pmid:9651254
|
24 |
Corbett K D, Berger J M (2003). Structure of the topoisomerase VI-B subunit: implications for type II topoisomerase mechanism and evolution. EMBO J , 22(1): 151–163 doi: 10.1093/emboj/cdg008 pmid:12505993
|
25 |
Daiyasu H, Kuma K, Yokoi T, Morii H, Koga Y, Toh H (2005). A study of archaeal enzymes involved in polar lipid synthesis linking amino acid sequence information, genomic contexts and lipid composition. Archaea , 1(6): 399–410 doi: 10.1155/2005/452563 pmid:16243780
|
26 |
Daubin V, Gouy M, Perrière G (2002). A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Res , 12(7): 1080–1090 doi: 10.1101/gr.187002 pmid:12097345
|
27 |
Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz R A, Martinez-Arias R, Henne A, Wiezer A, B?umer S, Jacobi C, Brüggemann H, Lienard T, Christmann A, B?meke M, Steckel S, Bhattacharyya A, Lykidis A, Overbeek R, Klenk H P, Gunsalus R P, Fritz H J, Gottschalk G (2002). The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol , 4(4): 453–461 pmid:12125824
|
28 |
Doolittle R F, Feng D F, Tsang S, Cho G, Little E (1996). Determining divergence times of the major kingdoms of living organisms with a protein clock. Science , 271(5248): 470–477 doi: 10.1126/science.271.5248.470 pmid:8560259
|
29 |
Downs D M (2006). Understanding microbial metabolism. Annu Rev Microbiol , 60(1): 533–559 doi: 10.1146/annurev.micro.60.080805.142308 pmid:16771650
|
30 |
Dvornyk V, Vinogradova O, Nevo E (2003). Origin and evolution of circadian clock genes in prokaryotes. Proc Natl Acad Sci U S A , 100(5): 2495–2500 doi: 10.1073/pnas.0130099100 pmid:12604787
|
31 |
Edgell D R, Doolittle W F (1997). Archaea and the origin(s) of DNA replication proteins. Cell , 89(7): 995–998 doi: 10.1016/S0092-8674(00)80285-8 pmid:9215620
|
32 |
Eisen J A (1998). Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res , 8(3): 163–167 pmid:9521918
|
33 |
Feng D F, Cho G, Doolittle R F (1997). Determining divergence times with a protein clock: update and reevaluation. Proc Natl Acad Sci U S A , 94(24): 13028–13033 doi: 10.1073/pnas.94.24.13028 pmid:9371794
|
34 |
Fitz-Gibbon S T, House C H (1999). Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res , 27(21): 4218–4222 doi: 10.1093/nar/27.21.4218 pmid:10518613
|
35 |
Forst C V, Schulten K (1999). Evolution of metabolisms: a new method for the comparison of metabolic pathways using genomics information. J Comput Biol , 6(3–4): 343–360 doi: 10.1089/106652799318319 pmid:10582571
|
36 |
Forst C V, Schulten K (2001). Phylogenetic analysis of metabolic pathways. J Mol Evol , 52(6): 471–489 pmid:11443351
|
37 |
Fournier G P, Gogarten J P (2008). Evolution of acetoclastic methanogenesis in Methanosarcina via horizontal gene transfer from cellulolytic Clostridia. J Bacteriol , 190(3): 1124–1127 doi: 10.1128/JB.01382-07 pmid:18055595
|
38 |
Friedrich M W (2005). Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. Methods Enzymol , 397: 428–442 doi: 10.1016/S0076-6879(05)97026-2 pmid:16260307
|
39 |
Frigaard N U, Martinez A, Mincer T J, DeLong E F (2006). Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature , 439(7078): 847–850 doi: 10.1038/nature04435 pmid:16482157
|
40 |
Gaasterland T, Ragan M A (1998). Constructing multigenome views of whole microbial genomes. Microb Comp Genomics , 3(3): 177–192 doi: 10.1089/omi.1.1998.3.177 pmid:9775388
|
41 |
Gadelle D, Filée J, Buhler C, Forterre P (2003). Phylogenomics of type II DNA topoisomerases. Bioessays , 25(3): 232–242 doi: 10.1002/bies.10245 pmid:12596227
|
42 |
Galagan J E C, Nusbaum C, Roy A, Endrizzi M G, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, DeArellano K, Johnson R, Linton L, McEwan P, McKernan K, Talamas J, Tirrell A, Ye W, Zimmer A, Barber R D, Cann I, Graham D E, Grahame D A, Guss A M, Hedderich R, Ingram-Smith C, Kuettner H C, Krzycki J A, Leigh J A, Li W, Liu J, Mukhopadhyay B, Reeve J N, Smith K, Springer T A, Umayam L A, White O, White R H, Conway de Macario E, Ferry J G, Jarrell K F, Jing H, Macario A J, Paulsen I, Pritchett M, Sowers K R, Swanson R V, Zinder S H, Lander E, Metcalf W W, Birren B (2002). The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res , 12(4): 532–542 doi: 10.1101/gr.223902 pmid:11932238
|
43 |
Graham D E, Overbeek R, Olsen G J, Woese C R (2000). An archaeal genomic signature. Proc Natl Acad Sci U S A , 97(7): 3304–3308 doi: 10.1073/pnas.050564797 pmid:10716711
|
44 |
Hallam S J, Girguis P R, Preston C M, Richardson P M, DeLong E F (2003). Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl Environ Microbiol , 69(9): 5483–5491 doi: 10.1128/AEM.69.9.5483-5491.2003 pmid:12957937
|
45 |
Hallam S J, Putnam N, Preston C M, Detter J C, Rokhsar D, Richardson P M, DeLong E F (2004). Reverse methanogenesis: testing the hypothesis with environmental genomics. Science , 305(5689): 1457–1462 doi: 10.1126/science.1100025 pmid:15353801
|
46 |
Hartzell P L, Zvilius G, Escalante-Semerena J C, Donnelly M I (1985). Coenzyme F420 dependence of the methylenetetrahydromethanopterin dehydrogenase of Methanobacterium thermoautotrophicum. Biochem Biophys Res Commun , 133(3): 884–890 doi: 10.1016/0006-291X(85)91218-5 pmid:4084309
|
47 |
Hedges S B (2002). The origin and evolution of model organisms. Nat Rev Genet , 3(11): 838–849 pmid:12415314
|
48 |
Hedges S B, Kumar S (2004). Precision of molecular time estimates. Trends Genet , 20(5): 242–247 doi: 10.1016/j.tig.2004.03.004 pmid:15109778
|
49 |
Heymans M, Singh A K (2003). Deriving phylogenetic trees from the similarity analysis of metabolic pathways. Bioinformatics , 19(Suppl 1): i138–i146 doi: 10.1093/bioinformatics/btg1018 pmid:12855450
|
50 |
Hong S H, Kim T Y, Lee S Y (2004). Phylogenetic analysis based on genome-scale metabolic pathway reaction content. Appl Microbiol Biotechnol , 65(2): 203–210 doi: 10.1007/s00253-004-1641-3 pmid:15197509
|
51 |
Huynen M A, Bork P (1998). Measuring genome evolution. Proc Natl Acad Sci U S A , 95(11): 5849–5856 doi: 10.1073/pnas.95.11.5849 pmid:9600883
|
52 |
John U, Fensome R A, Medlin L K (2003). The application of a molecular clock based on molecular sequences and the fossil record to explain biogeographic distributions within the Alexandrium tamarense “species complex” (Dinophyceae). Mol Biol Evol , 20(7): 1015–1027 doi: 10.1093/molbev/msg105 pmid:12716990
|
53 |
Johnson E F, Mukhopadhyay B (2005). A new type of sulfite reductase, a novel coenzyme F420-dependent enzyme, from the methanarchaeon Methanocaldococcus jannaschii. J Biol Chem , 280(46): 38776–38786 doi: 10.1074/jbc.M503492200 pmid:16048999
|
54 |
Johnson E F, Mukhopadhyay B (2007). A novel coenzyme F420 dependent sulfite reductase and a small sulfite reductase in methanogenic archaea. In: Dahl C, Friedrich C G, eds. Microbial Sulfur Metabolism , Berlin: Springer, 202–216
|
55 |
Kalyuzhnaya M G, Bowerman S, Nercessian O, Lidstrom M E, Chistoserdova L (2005). Highly divergent genes for methanopterin-linked C1 transfer reactions in Lake Washington, assessed via metagenomic analysis and mRNA detection. Appl Environ Microbiol , 71(12): 8846–8854 doi: 10.1128/AEM.71.12.8846-8854.2005 pmid:16332881
|
56 |
Karthigeyan C, Sivaramakrishnan S, Chellapandi P (2007). Phylogenomic analysis of archaeal domain. Bioinformatics Trends , 2(1): 37–55
|
57 |
Kato N, Yurimoto H, Thauer R K (2006). The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci Biotechnol Biochem , 70(1): 10–21 doi: 10.1271/bbb.70.10 pmid:16428816
|
58 |
Klein M, Friedrich M, Roger A J, Hugenholtz P, Fishbain S, Abicht H, Blackall L L, Stahl D A, Wagner M (2001). Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J Bacteriol , 183(20): 6028–6035 doi: 10.1128/JB.183.20.6028-6035.2001 pmid:11567003
|
59 |
Klenk H P, Clayton R A, Tomb J F, White O, Nelson K E, Ketchum K A, Dodson R J, Gwinn M, Hickey E K, Peterson J D, Richardson D L, Kerlavage A R, Graham D E, Kyrpides N C, Fleischmann R D, Quackenbush J, Lee N H, Sutton G G, Gill S, Kirkness E F, Dougherty B A, McKenney K, Adams M D, Loftus B, Peterson S, Reich C I, McNeil L K, Badger J H, Glodek A, Zhou L, Overbeek R, Gocayne J D, Weidman J F, McDonald L, Utterback T, Cotton M D, Spriggs T, Artiach P, Kaine B P, Sykes S M, Sadow P W, D’Andrea K P, Bowman C, Fujii C, Garland S A, Mason T M, Olsen G J, Fraser C M, Smith H O, Woese C R, Venter J C (1997). The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature , 390(6658): 364–370 doi: 10.1038/37052 pmid:9389475
|
60 |
Koonin E V (2005). Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet , 39(1): 309–338 doi: 10.1146/annurev.genet.39.073003.114725 pmid:16285863
|
61 |
Koonin E V, Mushegian A R, Galperin M Y, Walker D R (1997). Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea. Mol Microbiol , 25(4): 619–637 doi: 10.1046/j.1365-2958.1997.4821861.x pmid:9379893
|
62 |
Koonin E V, Wolf Y I (2008). Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res , 36(21): 6688–6719 doi: 10.1093/nar/gkn668 pmid:18948295
|
63 |
Koonin E V, Wolf Y I, Kondrashov A S, Aravind L (2000). Bacterial homologs of the small subunit of eukaryotic DNA primase. J Mol Microbiol Biotechnol , 2(4): 509–512 pmid:11075926
|
64 |
Kyrpides N C, Olsen G J, Klenk H P, White O, Woese C R (1996). Methanococcus jannaschii genome: revisited. Microb Comp Genomics , 1(4): 329–338 pmid:9689216
|
65 |
Lake J A, Clark M W, Henderson E, Fay S P, Oakes M, Scheinman A, Thornber J P, Mah R A (1985). Eubacteria, halobacteria, and the origin of photosynthesis: the photocytes. Proc Natl Acad Sci U S A , 82(11): 3716–3720 doi: 10.1073/pnas.82.11.3716 pmid:3858845
|
66 |
Ma H W, Zeng A P (2004). Phylogenetic comparison of metabolic capacities of organisms at genome level. Mol Phylogenet Evol , 31(1): 204–213 doi: 10.1016/j.ympev.2003.08.011 pmid:15019620
|
67 |
Macario A J, Lange M, Ahring B K, Conway de Macario E (1999). Stress genes and proteins in the archaea. Microbiol Mol Biol Rev , 63(4): 923–967 pmid:10585970
|
68 |
Makarova K S, Koonin E V (2003). Comparative genomics of Archaea: how much have we learned in six years, and what’s next? Genome Biol , 4(8): 115 doi: 10.1186/gb-2003-4-8-115 pmid:12914651
|
69 |
Makarova K S, Koonin E V (2007). Evolutionary genomics of lactic acid bacteria. J Bacteriol , 189(4): 1199–1208 doi: 10.1128/JB.01351-06 pmid:17085562
|
70 |
Masinovsky Z, Lozovaya G I, Sivash A A (1992). Some aspects of the early evolution of photosynthesis. Adv Space Res , 12(4): 199–205 doi: 10.1016/0273-1177(92)90173-U pmid:11538139
|
71 |
Min H, Zinder S H (1989). Kinetics of acetate utilization by two thermophilic acetotrophic methanogens: Methanosarcina sp. strain CALS-1 and Methanothrix sp. strain CALS-1. Appl Environ Microbiol , 55(2): 488–491 pmid:16347856
|
72 |
Morii H, Kiyonari S, Ishino Y, Koga Y (2009). A novel biosynthetic pathway of archaetidyl-myo-inositol via archaetidyl-myo-inositol phosphate from CDP-archaeol and D-glucose 6-phosphate in methanoarchaeon Methanothermobacter thermautotrophicus cells. J Biol Chem , 284(45): 30766–30774 doi: 10.1074/jbc.M109.034652 pmid:19740749
|
73 |
Müller V, Spanheimer R, Santos H (2005). Stress response by solute accumulation in archaea. Curr Opin Microbiol , 8(6): 729–736 doi: 10.1016/j.mib.2005.10.011 pmid:16256422
|
74 |
Nielsen J, Oliver S (2005). The next wave in metabolome analysis. Trends Biotechnol , 23(11): 544–546 doi: 10.1016/j.tibtech.2005.08.005 pmid:16154652
|
75 |
Nolling J, Elfner A, Palmer J R, Steigerwald V J, Pihl T D, Lake J A, Reeve J N (1996). Phylogeny of Methanopyrus kandleri based on methyl coenzyme M reductase operons. Int J Syst Bacteriol , 46(4): 1170–1173 doi: 10.1099/00207713-46-4-1170 pmid:8863453
|
76 |
Olsen G J, Woese C R (1997). Archaeal genomics: an overview. Cell , 89(7): 991–994 doi: 10.1016/S0092-8674(00)80284-6 pmid:9215619
|
77 |
Pagel M (1999). Inferring the historical patterns of biological evolution. Nature , 401(6756): 877–884 doi: 10.1038/44766 pmid:10553904
|
78 |
Patel C N, Chellapandi P (2008). Anaerobic digestion of cotton seed cake using developed mixed consortia. Electronic J Environ Agri Food Chem , 7: 3035–3046
|
79 |
Ponomarev V A, Makarova K S, Aravind L, Koonin E V (2003). Gene duplication with displacement and rearrangement: origin of the bacterial replication protein PriB from the single-stranded DNA-binding protein Ssb. J Mol Microbiol Biotechnol , 5(4): 225–229 doi: 10.1159/000071074 pmid:12867746
|
80 |
Razia M, Karthik Raja R, Padmanaban K, Sivaramakrishnan S, Chellapandi P (2010). Phylogenetic approach for assigning function of hypothetical proteins in Photorhabdus luminescens subsp. laumondii T101 genome. J Comput Sci Syst Biol , 3(1): 21–29 doi: 10.4172/jcsb.1000051
|
81 |
Razia M, Padmanaban K, Karthick Raja R, Chellapandi P, Sivaramakrishnan S (2011). 16S rDNA-based phylogeny of non-symbiotic bacteria associating entomopathogenic nematode from infected insect cadavers. Genomics Proteomics Bioinformatics (In press)
|
82 |
Schmidt S, Christen P, Kiefer P, Vorholt J A (2010). Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1. Microbiology , 156(Pt 8): 2575–2586 doi: 10.1099/mic.0.038570-0 pmid:20447995
|
83 |
Schopf J W (2006). Fossil evidence of Archaean life. Philos Trans R Soc Lond B Biol Sci , 361(1470): 869–885 doi: 10.1098/rstb.2006.1834 pmid:16754604
|
84 |
Snel B, Bork P, Huynen M A (1999). Genome phylogeny based on gene content. Nat Genet , 21(1): 108–110 doi: 10.1038/5052 pmid:9916801
|
85 |
Snel B, Bork P, Huynen M A (2002). Genomes in flux: the evolution of archaeal and proteobacterial gene content. Genome Res , 12(1): 17–25 doi: 10.1101/gr.176501 pmid:11779827
|
86 |
Tatusov R L, Koonin E V, Lipman D J (1997). A genomic perspective on protein families. Science , 278(5338): 631–637 doi: 10.1126/science.278.5338.631 pmid:9381173
|
87 |
Tekaia F, Lazcano A, Dujon B (1999). The genomic tree as revealed from whole proteome comparisons. Genome Res , 9(6): 550–557 pmid:10400922
|
88 |
Thauer R K (1998). Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiology , 144(Pt 9): 2377–2406 doi: 10.1099/00221287-144-9-2377 pmid:9782487
|
89 |
Thauer R K, Bonacker L G (1994). Biosynthesis of coenzyme F430, a nickel porphinoid involved in methanogenesis. Ciba Found Symp , 180: 210–222 pmid:7842854
|
90 |
Thauer R K, Kaster A K, Seedorf H, Buckel W, Hedderich R (2008). Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol , 6(8): 579–591 doi: 10.1038/nrmicro1931 pmid:18587410
|
91 |
van Hoek A H A M, van Alen T A, Sprakel V S I, Leunissen J A, Brigge T, Vogels G D, Hackstein J H P (2000). Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol , 17(2): 251–258 pmid:10677847
|
92 |
Vedhagiri K, Natarajaseenivasan K, Chellapandi P, Prabhakaran S G, Selvin J, Sharma S, Vijayachari P (2009). Evolutionary implication of outer membrane lipoprotein-encoding genes ompL1, UpL32 and lipL41 of pathogenic Leptospira species. Genomics Proteomics Bioinformatics , 7(3): 96–106 doi: 10.1016/S1672-0229(08)60038-8 pmid:19944382
|
93 |
Verhees C H, Kengen S W, Tuininga J E, Schut G J, Adams M W W, de VOS W M, van der Oost J (2003). The unique features of glycolytic pathways in Archaea. Biochem J , 375(Pt 2): 231–246 doi: 10.1042/BJ20021472 pmid:12921536
|
94 |
Vorholt J A, Marx C J, Lidstrom M E, Thauer R K (2000). Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol , 182(23): 6645–6650 doi: 10.1128/JB.182.23.6645-6650.2000 pmid:11073907
|
95 |
Vothknecht U C, Tumbula D L (1999). Archaea: from genomics to physiology and the origin of life. Trends Cell Biol , 9(4): 159–161 doi: 10.1016/S0962-8924(99)01522-6 pmid:10203795
|
96 |
Waters E, Hohn M J, Ahel I, Graham D E, Adams M D, Barnstead M, Beeson K Y, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton G G, Simon M, S?ll D, Stetter K O, Short J M, Noordewier M (2003). The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci U S A , 100(22): 12984–12988 doi: 10.1073/pnas.1735403100 pmid:14566062
|
97 |
Wilson R C, Bohlen C J, Foster M P, Bell C E (2006). Structure of Pfu Pop5, an archaeal RNase P protein. Proc Natl Acad Sci U S A , 103(4): 873–878 doi: 10.1073/pnas.0508004103 pmid:16418270
|
98 |
Woese C R, Kandler O, Wheelis M L (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A , 87(12): 4576–4579 doi: 10.1073/pnas.87.12.4576 pmid:2112744
|
99 |
Woese C R, Magrum L J, Fox G E (1978). Archaebacteria. J Mol Evol , 11(3): 245–251 doi: 10.1007/BF01734485 pmid:69107
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|