Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 6 Issue (6) : 490-503    https://doi.org/10.1007/s11515-011-1154-2
REVIEW
Molecular evolution of methanogens based on their metabolic facets
P. CHELLAPANDI()
Department of Bioinformatics, Centre for Excellence in School of Life Sciences, Bharathidasan University, Tiruchirappalli-620024, Tamil Nadu, India
 Download: PDF(1073 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The information provided by completely sequenced genomes of methanogens can yield insights into a deeper molecular understanding of evolutionary mechanisms. This review describes the advantages of using metabolic pathways to clarify evolutionary correlation of methanogens with archaea and prokaryotes. Metabolic trees can be used to highlight similarities in metabolic networks related to the biology of methanogens. Metabolic genes are among the most modular in the cell and their genes are expected to travel laterally, even in recent evolution. Phylogenetic analysis of protein superfamilies provides a perspective on the evolutionary history of some key metabolic modules of methanogens. Phage-related genes from distantly related organisms typically invade methanogens by horizontal gene transfer. Metabolic modules in methanogenesis are phylogenetically aligned in closely related methanogens. Reverse order reactions of methanogenesis are achieved in methylotrophic methanogens using metabolic and structural modules of key enzymes. A significant evolutionary process is thought to couple the utilization of heavy metal ions with energetic metabolism in methanogens. Over 30 of methanogens genomes have been sequenced to date, and a variety of databases are being developed that will provide for genome annotation and phylogenomic analysis of methanogens. Into the context of the evolutionary hypothesis, the integration of metabolomic and proteomic data into large-scale mathematical models holds promise for fostering rational strategies for strain improvement.

Keywords methanogens      genomics      metabolic module      phylogeny      protein superfamily      molecular evolution     
Corresponding Author(s): CHELLAPANDI P.,Email:pchellapandi@gmail.com   
Issue Date: 01 December 2011
 Cite this article:   
P. CHELLAPANDI. Molecular evolution of methanogens based on their metabolic facets[J]. Front Biol, 2011, 6(6): 490-503.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1154-2
https://academic.hep.com.cn/fib/EN/Y2011/V6/I6/490
Taxon IDGenome nameGC countGC %BasesGenesCDSRNAPseudo genesCRISPR
456442Candidatus Methanoregula boonei 6A813862500.5525429432518246454180
634498Methanobrevibacter ruminantium M19587320.332937203228322176654
420247Methanobrevibacter smithii PS, ATCC 350615751140.311853160184117954601
573064Methanocaldococcus fervens AG864856120.3215072511663162043397
573063Methanocaldococcus infernus ME4465190.34132819415131467462616
243232Methanocaldococcus jannaschii DSM 26615444840.31173991618441789552915
644281Methanocaldococcus sp. FS406-225680970.32177313618931849443319
579137Methanocaldococcus vulcanius M7, DSM 120945562820.32176173718081765432317
304371Methanocella paludicola SANAE16242410.552957635306230045800
351160Methanocella sp. RC-I17363280.553179916314930856401
259564Methanococcoides burtonii DSM 624210495340.41257503225062431751582
419665Methanococcus aeolicus Nankai-34714380.315695001554150351161
402880Methanococcus maripaludis C55899550.3317890461896184551231
444158Methanococcus maripaludis C65829650.331744193187418264830
426368Methanococcus maripaludis C75900310.3317726941858180751220
267377Methanococcus maripaludis S25498420.331661137177717284970
406327Methanococcus vannielii SB5388620.3117200481755170154262
456320Methanococcus voltae A35537020.291936387176817214743
410358Methanocorpusculum labreanum Z9026000.518049621830176565262
368407Methanoculleus marisnigri JR1, DSM 149815379810.6224781012560250654170
547558Methanohalophilus mahii SLP, DSM 52198576590.4320124242095203263450
679926Methanoplanus petrolearius SEBR 4847, DSM 1157113476960.4728432902881282457390
190192Methanopyrus kandleri AV1910366290.6116949691767172740174
349307Methanosaeta thermophila PT10063680.5418794711785173055344
188937Methanosarcina acetivorans C2A24547880.43575149248074721862785
269797Methanosarcina barkeri Fusaro, DSM 80419121560.39487376638343758761345
192952Methanosarcina mazei Go1, DSM 364716993650.4140963453469339871942
339860Methanosphaera stadtmanae DSM 30914883990.281767403159215365623
521011Methanosphaerula palustris E1-9c, DSM 1995816179420.55292291728592792671371
323259Methanospirillum hungatei JF-116004150.4535447383307323968996
187420Methanothermobacter thermoautotrophicus Delta H8677010.517513771893184548233
Tab.1  Genomics features of completely sequenced methanogens
Taxon IDEnzymesKEGGCOGPfamTIGRfamSignalpTransMbInterProTIGRfamIMGMetaCycSwissProtSEED
4564425786491780184573931963418377391974101722449
6344984995481469155064444654280864417036900
4202474835361267129458322339313345831923591851347
5730644765151313132259725228713235979034204
57306344950612481265571256274127157113332700
2432324825051427141360912433165260920734617491209
644281480524143014416333333981467633130355016
5791374795181349136160331436113836038734506
30437163270120622121761758813220076119443510
3511606476912081214778443385422567842074481761810
2595645936511799182975029557417737502194182461968
4196655075491277126860111728012796011843802211110
4028805315631416147664515219612366451993752591820
4441585215511388142662816611614356281093692271825
4263685175581414145262817237814546281873662621553
2673775095511417143363013940314536302013632888
4063275315731398141563812219014026381973792651364
4563204745201301133658929033312885897433900
4103585075661358138658820436811175881973641621283
3684076066691832187471935259516097192344391812488
54755856962915951629721396433072120641200
679926576670193920007684928860768041200
190192440459125012235121622897905121863271211683
3493075065621367138561623330713966161933731731694
1889377979883197332710536201191214110532695451642783
2697977428862703278496954395719559692575123253631
1929527098082430253989533621517518952374751462261
339860458509116611785501342168645501953372111153
5210116006942013204478536358520047851914351121828
3232596347632314245687844176224158782294362052151
187420525557145814726281571888996282153811881106
Tab.2  Comparative genomic statistics of gene entries in public domain databases for methanogens
Fig.1  Geneome scale based phylogentic tree of methanogens.
Genome nameGenesAAMDXPKSMCMEMGBLMCoMOAANM
M. smithii ATCC 3506136421.395.391.432.6913.78.084.914.2816.482.069.83
M. jannaschii DSM 266110133.102.760.003.457.596.900.002.7619.312.0713.1
M. burtonii DSM 624221526.994.291.233.3713.811.00.611.2314.112.4512.2
M. aeolicus Nankai-321224.766.751.292.2513.812.50.321.6115.761.6110.9
M. maripaludis C520923.135.631.253.1315.011.50.310.9414.381.8812.5
M. maripaludis C720926.016.080.001.0114.112.50.000.6816.552.0311.4
M. maripaludis S236321.007.001.171.5012.611.12.671.8315.833.0010.8
M. vannielii SB21626.775.810.320.9713.814.10.000.6516.132.2610.6
M. labreanum Z10627.954.970.002.489.948.070.002.4816.151.8612.4
M. marisnigri JR121824.643.480.873.1915.611.01.451.1611.882.0312.1
M. kandleri AV197636.452.800.001.878.415.610.001.8717.761.8714.9
M. thermophila PT18827.244.831.034.1413.411.30.690.6913.791.7212.4
M. acetivorans C2A13326.135.862.254.5011.713.00.002.2513.064.058.56
M. mazei Go154317.807.723.633.8112.26.275.456.3611.443.818.45
M. stadtmanae DSM 309127825.587.131.472.949.647.341.052.7316.562.9411.9
M. hungatei JF-121823.214.461.493.5715.713.30.301.7911.901.799.82
M. thermautotrophicus Delta H10127.704.052.034.0513.58.780.001.3518.240.6810.1
Candidatus Methanoregula boonei 6A822023.997.511.163.1811.515.30.871.4510.692.609.83
Tab.3  Comparative genomic statistics of gene entries in KEGG database for metabolism of methanogens
Fig.2  Abundance of protein/functional families of some methanogens as a heat map over all families of a specific type (COG) with red corresponding to the most abundant families. Each column on the map corresponds to a genome, while each row corresponds to a family. (A) DSM 6242, (B) Fusaro DSM 804, (C) DSM 3091 1. DSM 6242, 2. Fusaro DSM 804, 3. DSM 3091, 4. JF-1, 5. DSM 2661, 6. S2, 7. AV19, 8. C2A, 9. Go1, DSM 3647, 10. Delta H, 11. PT, 12. C5, 13. Z, 14. JR1, DSM 1498, 15. PS, ATCC 35061, 16. sp. RC-I, 17. 6A8, 18. Nankai-3, 19. C7, 20. SB, 21. C6, 22. V24S, DSM 2088, 23. SEBR 4847, DSM 11571.
Fig.3  
Fig.4  
Genome nameGenesAA MCMLM
C M boonei 6A817807.083.621.45
M. smithii ATCC 3506112678.342.731.70
M. jannaschii DSM 266114277.003.370.92
M. burtonii DSM 624217997.303.161.12
M. aeolicus Nankai-312807.893.871.02
M. maripaludis C514168.273.480.98
M. maripaludis C714158.443.271.11
M. maripaludis S214178.223.291.05
M. vannielii SB13987.853.391.00
M. labreanum Z13588.833.671.63
M. marisnigri JR118327.013.881.51
M. kandleri AV1912508.082.521.30
M. thermophila PT13677.773.821.50
M. acetivorans C2A31977.683.031.11
M. barkeri Fusaro27037.803.291.08
M. mazei Go124307.383.181.25
M. stadtmanae DSM 309111669.053.181.35
M. hungatei JF-123146.632.781.23
M. thermautotrophicus Delta H14586.722.971.55
Tab.4  Comparative genomic statistics of gene entries in COG database for metabolism of methanogens
1 Aguilar D, Aviles F X, Querol E, Sternberg M J (2004). Analysis of phenetic trees based on metabolic capabilites across the three domains of life. J Mol Biol , 340(3): 491–512
doi: 10.1016/j.jmb.2004.04.059 pmid:15210350
2 Apic G, Gough J, Teichmann S A (2001). Domain combinations in archaeal, eubacterial and eukaryotic proteomes. J Mol Biol , 310(2): 311–325
doi: 10.1006/jmbi.2001.4776 pmid:11428892
3 Bansal A K (1999). An automated comparative analysis of 17 complete microbial genomes. Bioinformatics , 15(11): 900–908
doi: 10.1093/bioinformatics/15.11.900 pmid:10743556
4 Bapteste E, Brochier C, Boucher Y (2005). Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea , 1(5): 353–363
doi: 10.1155/2005/859728 pmid:15876569
5 Beja O, Aravind L, Koonin E V, Suzuki M T, Hadd A, Nguyen L P, Jovanovich S B, Gates C M, Feldman R A, Spudich J L, Spudich E N, DeLong E F (2000). Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science , 289(5486): 1902–1906
doi: 10.1126/science.289.5486.1902 pmid:10988064
6 Briones C, Manrubia S C, Lázaro E, Lazcano A, Amils R (2005). Reconstructing evolutionary relationships from functional data: a consistent classification of organisms based on translation inhibition response. Mol Evol Phylogenet , 34(2): 371–381
doi: 10.1016/j.ympev.2004.10.020 pmid:15619448
7 Brochier C, Forterre P, Gribaldo S (2004). Archaeal phylogeny based on proteins of the transcription and translation machineries: tackling the Methanopyrus kandleri paradox. Genome Biol , 5(3): R17
doi: 10.1186/gb-2004-5-3-r17 pmid:15003120
8 Brochier C, Forterre P, Gribaldo S (2005). An emerging phylogenetic core of Archaea: phylogenies of transcription and translation machineries converge following addition of new genome sequences. BMC Evol Biol , 5(1): 36
doi: 10.1186/1471-2148-5-36 pmid:15932645
9 Brown J R, Doolittle W F (1997). Archaea and the prokaryote-to-eukaryote transition. Microbiol Mol Biol Rev , 61(4): 456–502
pmid:9409149
10 Brown J R, Douady C J, Italia M J, Marshall W E, Stanhope M J (2001). Universal trees based on large combined protein sequence data sets. Nat Genet , 28(3): 281–285
doi: 10.1038/90129 pmid:11431701
11 Bult C J, White O, Olsen G J, Zhou L, Fleischmann R D, Sutton G G, Blake J A, FitzGerald L M, Clayton R A, Gocayne J D, Kerlavage A R, Dougherty B A, Tomb J F, Adams M D, Reich C I, Overbeek R, Kirkness E F, Weinstock K G, Merrick J M, Glodek A, Scott J L, Geoghagen N S M, Venter J C, Fuhrmann J L, Nguyen D, Utterback T R, Kelley J M, Peterson J D, Sadow P W, Hanna M C, Cotton M D, Roberts K M, Hurst M A, Kaine B P, Borodovsky M, Klenk H P, Fraser C M, Smith H O, Woese C R, Venter C J (1996). Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science , 273(5278): 1058–1073
doi: 10.1126/science.273.5278.1058 pmid:8688087
12 Chellapandi P (2004). Enzymes and microbiological pretreatments of oil industry wastes for biogas production in batch digesters. In: Pathade G R, Goel P K, ed. Biotechnology in Environmental Management , India: ABD Publishers
13 Chellapandi P (2011). A molecular conception for protein engineering algorithms. Adv Biotech , 10(7): 41–46
14 Chellapandi P, Dhivya C (2010). Overview of microbial metabolomics: A special insight to cyanobacterial methylotrophy. J Adv Develop Res , 1: 59–73
15 Chellapandi P, Kalaimathy S (2010). Molecular aspects of β-galactosidase production system in Aspergillus genomes. J Adv Develop Res , 1: 81–89
16 Chellapandi P, Karthigeyan C, Sivaramakrishnan S (2009). Evolutionary implication of protein secondary structure among archaea and bacteria. Internet J Genomics Proteomics , 4(2)
17 Chellapandi P, Prabaharan D, Uma L (2008). A preliminary study on co-digestion of ossein factory waste for methane production. EurAsian J Biosci , 2: 110–114
18 Chellapandi P, Prabaharan D, Uma L (2010a). Evaluation of methanogenic activity of biogas plant slurry for monitoring codigestion of ossein factory wastes and cyanobacterial biomass. Appl Biochem Biotechnol , 162(2): 524–535
doi: 10.1007/s12010-009-8834-2 pmid:19911119
19 Chellapandi P, Ranjani J (2011). Molecular machinery of CRISPR-CAS system – RNA mediated defense pathway in Prokaryotes. Asian J Biotechnol , 3(4): 329–336
doi: 10.3923/ajbkr.2011
20 Chellapandi P, Sivaramakrishnan S, Viswanathan M B (2010b). Systems biotechnology: An emerging trend in metabolic engineering of industrial microorganisms. J Comput Sci Syst Biol , 3(2): 43–49
21 Chellapandi P, Sivaramakrishnan S (2011). In: Baginski S J, ed. Protein superfamilies based phylogenomic analysis of archaeal domain. Biochemistry Research Updates , USA: Nova Science Publications, Inc.
22 Chellapandi P, Suman L S, Sivaramakrishnan S (2007). Biomethanation of fungal predigested caster seed cake in acclimatized seed. Biotechnol: An Indian Journal , 1: 19–24
23 Chistoserdova L, Vorholt J A, Thauer R K, Lidstrom M E (1998). C1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea. Science , 281(5373): 99–102
doi: 10.1126/science.281.5373.99 pmid:9651254
24 Corbett K D, Berger J M (2003). Structure of the topoisomerase VI-B subunit: implications for type II topoisomerase mechanism and evolution. EMBO J , 22(1): 151–163
doi: 10.1093/emboj/cdg008 pmid:12505993
25 Daiyasu H, Kuma K, Yokoi T, Morii H, Koga Y, Toh H (2005). A study of archaeal enzymes involved in polar lipid synthesis linking amino acid sequence information, genomic contexts and lipid composition. Archaea , 1(6): 399–410
doi: 10.1155/2005/452563 pmid:16243780
26 Daubin V, Gouy M, Perrière G (2002). A phylogenomic approach to bacterial phylogeny: evidence of a core of genes sharing a common history. Genome Res , 12(7): 1080–1090
doi: 10.1101/gr.187002 pmid:12097345
27 Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz R A, Martinez-Arias R, Henne A, Wiezer A, B?umer S, Jacobi C, Brüggemann H, Lienard T, Christmann A, B?meke M, Steckel S, Bhattacharyya A, Lykidis A, Overbeek R, Klenk H P, Gunsalus R P, Fritz H J, Gottschalk G (2002). The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol , 4(4): 453–461
pmid:12125824
28 Doolittle R F, Feng D F, Tsang S, Cho G, Little E (1996). Determining divergence times of the major kingdoms of living organisms with a protein clock. Science , 271(5248): 470–477
doi: 10.1126/science.271.5248.470 pmid:8560259
29 Downs D M (2006). Understanding microbial metabolism. Annu Rev Microbiol , 60(1): 533–559
doi: 10.1146/annurev.micro.60.080805.142308 pmid:16771650
30 Dvornyk V, Vinogradova O, Nevo E (2003). Origin and evolution of circadian clock genes in prokaryotes. Proc Natl Acad Sci U S A , 100(5): 2495–2500
doi: 10.1073/pnas.0130099100 pmid:12604787
31 Edgell D R, Doolittle W F (1997). Archaea and the origin(s) of DNA replication proteins. Cell , 89(7): 995–998
doi: 10.1016/S0092-8674(00)80285-8 pmid:9215620
32 Eisen J A (1998). Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Res , 8(3): 163–167
pmid:9521918
33 Feng D F, Cho G, Doolittle R F (1997). Determining divergence times with a protein clock: update and reevaluation. Proc Natl Acad Sci U S A , 94(24): 13028–13033
doi: 10.1073/pnas.94.24.13028 pmid:9371794
34 Fitz-Gibbon S T, House C H (1999). Whole genome-based phylogenetic analysis of free-living microorganisms. Nucleic Acids Res , 27(21): 4218–4222
doi: 10.1093/nar/27.21.4218 pmid:10518613
35 Forst C V, Schulten K (1999). Evolution of metabolisms: a new method for the comparison of metabolic pathways using genomics information. J Comput Biol , 6(3–4): 343–360
doi: 10.1089/106652799318319 pmid:10582571
36 Forst C V, Schulten K (2001). Phylogenetic analysis of metabolic pathways. J Mol Evol , 52(6): 471–489
pmid:11443351
37 Fournier G P, Gogarten J P (2008). Evolution of acetoclastic methanogenesis in Methanosarcina via horizontal gene transfer from cellulolytic Clostridia. J Bacteriol , 190(3): 1124–1127
doi: 10.1128/JB.01382-07 pmid:18055595
38 Friedrich M W (2005). Methyl-coenzyme M reductase genes: unique functional markers for methanogenic and anaerobic methane-oxidizing Archaea. Methods Enzymol , 397: 428–442
doi: 10.1016/S0076-6879(05)97026-2 pmid:16260307
39 Frigaard N U, Martinez A, Mincer T J, DeLong E F (2006). Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature , 439(7078): 847–850
doi: 10.1038/nature04435 pmid:16482157
40 Gaasterland T, Ragan M A (1998). Constructing multigenome views of whole microbial genomes. Microb Comp Genomics , 3(3): 177–192
doi: 10.1089/omi.1.1998.3.177 pmid:9775388
41 Gadelle D, Filée J, Buhler C, Forterre P (2003). Phylogenomics of type II DNA topoisomerases. Bioessays , 25(3): 232–242
doi: 10.1002/bies.10245 pmid:12596227
42 Galagan J E C, Nusbaum C, Roy A, Endrizzi M G, Macdonald P, FitzHugh W, Calvo S, Engels R, Smirnov S, Atnoor D, Brown A, Allen N, Naylor J, Stange-Thomann N, DeArellano K, Johnson R, Linton L, McEwan P, McKernan K, Talamas J, Tirrell A, Ye W, Zimmer A, Barber R D, Cann I, Graham D E, Grahame D A, Guss A M, Hedderich R, Ingram-Smith C, Kuettner H C, Krzycki J A, Leigh J A, Li W, Liu J, Mukhopadhyay B, Reeve J N, Smith K, Springer T A, Umayam L A, White O, White R H, Conway de Macario E, Ferry J G, Jarrell K F, Jing H, Macario A J, Paulsen I, Pritchett M, Sowers K R, Swanson R V, Zinder S H, Lander E, Metcalf W W, Birren B (2002). The genome of M. acetivorans reveals extensive metabolic and physiological diversity. Genome Res , 12(4): 532–542
doi: 10.1101/gr.223902 pmid:11932238
43 Graham D E, Overbeek R, Olsen G J, Woese C R (2000). An archaeal genomic signature. Proc Natl Acad Sci U S A , 97(7): 3304–3308
doi: 10.1073/pnas.050564797 pmid:10716711
44 Hallam S J, Girguis P R, Preston C M, Richardson P M, DeLong E F (2003). Identification of methyl coenzyme M reductase A (mcrA) genes associated with methane-oxidizing archaea. Appl Environ Microbiol , 69(9): 5483–5491
doi: 10.1128/AEM.69.9.5483-5491.2003 pmid:12957937
45 Hallam S J, Putnam N, Preston C M, Detter J C, Rokhsar D, Richardson P M, DeLong E F (2004). Reverse methanogenesis: testing the hypothesis with environmental genomics. Science , 305(5689): 1457–1462
doi: 10.1126/science.1100025 pmid:15353801
46 Hartzell P L, Zvilius G, Escalante-Semerena J C, Donnelly M I (1985). Coenzyme F420 dependence of the methylenetetrahydromethanopterin dehydrogenase of Methanobacterium thermoautotrophicum. Biochem Biophys Res Commun , 133(3): 884–890
doi: 10.1016/0006-291X(85)91218-5 pmid:4084309
47 Hedges S B (2002). The origin and evolution of model organisms. Nat Rev Genet , 3(11): 838–849
pmid:12415314
48 Hedges S B, Kumar S (2004). Precision of molecular time estimates. Trends Genet , 20(5): 242–247
doi: 10.1016/j.tig.2004.03.004 pmid:15109778
49 Heymans M, Singh A K (2003). Deriving phylogenetic trees from the similarity analysis of metabolic pathways. Bioinformatics , 19(Suppl 1): i138–i146
doi: 10.1093/bioinformatics/btg1018 pmid:12855450
50 Hong S H, Kim T Y, Lee S Y (2004). Phylogenetic analysis based on genome-scale metabolic pathway reaction content. Appl Microbiol Biotechnol , 65(2): 203–210
doi: 10.1007/s00253-004-1641-3 pmid:15197509
51 Huynen M A, Bork P (1998). Measuring genome evolution. Proc Natl Acad Sci U S A , 95(11): 5849–5856
doi: 10.1073/pnas.95.11.5849 pmid:9600883
52 John U, Fensome R A, Medlin L K (2003). The application of a molecular clock based on molecular sequences and the fossil record to explain biogeographic distributions within the Alexandrium tamarense “species complex” (Dinophyceae). Mol Biol Evol , 20(7): 1015–1027
doi: 10.1093/molbev/msg105 pmid:12716990
53 Johnson E F, Mukhopadhyay B (2005). A new type of sulfite reductase, a novel coenzyme F420-dependent enzyme, from the methanarchaeon Methanocaldococcus jannaschii. J Biol Chem , 280(46): 38776–38786
doi: 10.1074/jbc.M503492200 pmid:16048999
54 Johnson E F, Mukhopadhyay B (2007). A novel coenzyme F420 dependent sulfite reductase and a small sulfite reductase in methanogenic archaea. In: Dahl C, Friedrich C G, eds. Microbial Sulfur Metabolism , Berlin: Springer, 202–216
55 Kalyuzhnaya M G, Bowerman S, Nercessian O, Lidstrom M E, Chistoserdova L (2005). Highly divergent genes for methanopterin-linked C1 transfer reactions in Lake Washington, assessed via metagenomic analysis and mRNA detection. Appl Environ Microbiol , 71(12): 8846–8854
doi: 10.1128/AEM.71.12.8846-8854.2005 pmid:16332881
56 Karthigeyan C, Sivaramakrishnan S, Chellapandi P (2007). Phylogenomic analysis of archaeal domain. Bioinformatics Trends , 2(1): 37–55
57 Kato N, Yurimoto H, Thauer R K (2006). The physiological role of the ribulose monophosphate pathway in bacteria and archaea. Biosci Biotechnol Biochem , 70(1): 10–21
doi: 10.1271/bbb.70.10 pmid:16428816
58 Klein M, Friedrich M, Roger A J, Hugenholtz P, Fishbain S, Abicht H, Blackall L L, Stahl D A, Wagner M (2001). Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J Bacteriol , 183(20): 6028–6035
doi: 10.1128/JB.183.20.6028-6035.2001 pmid:11567003
59 Klenk H P, Clayton R A, Tomb J F, White O, Nelson K E, Ketchum K A, Dodson R J, Gwinn M, Hickey E K, Peterson J D, Richardson D L, Kerlavage A R, Graham D E, Kyrpides N C, Fleischmann R D, Quackenbush J, Lee N H, Sutton G G, Gill S, Kirkness E F, Dougherty B A, McKenney K, Adams M D, Loftus B, Peterson S, Reich C I, McNeil L K, Badger J H, Glodek A, Zhou L, Overbeek R, Gocayne J D, Weidman J F, McDonald L, Utterback T, Cotton M D, Spriggs T, Artiach P, Kaine B P, Sykes S M, Sadow P W, D’Andrea K P, Bowman C, Fujii C, Garland S A, Mason T M, Olsen G J, Fraser C M, Smith H O, Woese C R, Venter J C (1997). The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature , 390(6658): 364–370
doi: 10.1038/37052 pmid:9389475
60 Koonin E V (2005). Orthologs, paralogs, and evolutionary genomics. Annu Rev Genet , 39(1): 309–338
doi: 10.1146/annurev.genet.39.073003.114725 pmid:16285863
61 Koonin E V, Mushegian A R, Galperin M Y, Walker D R (1997). Comparison of archaeal and bacterial genomes: computer analysis of protein sequences predicts novel functions and suggests a chimeric origin for the archaea. Mol Microbiol , 25(4): 619–637
doi: 10.1046/j.1365-2958.1997.4821861.x pmid:9379893
62 Koonin E V, Wolf Y I (2008). Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world. Nucleic Acids Res , 36(21): 6688–6719
doi: 10.1093/nar/gkn668 pmid:18948295
63 Koonin E V, Wolf Y I, Kondrashov A S, Aravind L (2000). Bacterial homologs of the small subunit of eukaryotic DNA primase. J Mol Microbiol Biotechnol , 2(4): 509–512
pmid:11075926
64 Kyrpides N C, Olsen G J, Klenk H P, White O, Woese C R (1996). Methanococcus jannaschii genome: revisited. Microb Comp Genomics , 1(4): 329–338
pmid:9689216
65 Lake J A, Clark M W, Henderson E, Fay S P, Oakes M, Scheinman A, Thornber J P, Mah R A (1985). Eubacteria, halobacteria, and the origin of photosynthesis: the photocytes. Proc Natl Acad Sci U S A , 82(11): 3716–3720
doi: 10.1073/pnas.82.11.3716 pmid:3858845
66 Ma H W, Zeng A P (2004). Phylogenetic comparison of metabolic capacities of organisms at genome level. Mol Phylogenet Evol , 31(1): 204–213
doi: 10.1016/j.ympev.2003.08.011 pmid:15019620
67 Macario A J, Lange M, Ahring B K, Conway de Macario E (1999). Stress genes and proteins in the archaea. Microbiol Mol Biol Rev , 63(4): 923–967
pmid:10585970
68 Makarova K S, Koonin E V (2003). Comparative genomics of Archaea: how much have we learned in six years, and what’s next? Genome Biol , 4(8): 115
doi: 10.1186/gb-2003-4-8-115 pmid:12914651
69 Makarova K S, Koonin E V (2007). Evolutionary genomics of lactic acid bacteria. J Bacteriol , 189(4): 1199–1208
doi: 10.1128/JB.01351-06 pmid:17085562
70 Masinovsky Z, Lozovaya G I, Sivash A A (1992). Some aspects of the early evolution of photosynthesis. Adv Space Res , 12(4): 199–205
doi: 10.1016/0273-1177(92)90173-U pmid:11538139
71 Min H, Zinder S H (1989). Kinetics of acetate utilization by two thermophilic acetotrophic methanogens: Methanosarcina sp. strain CALS-1 and Methanothrix sp. strain CALS-1. Appl Environ Microbiol , 55(2): 488–491
pmid:16347856
72 Morii H, Kiyonari S, Ishino Y, Koga Y (2009). A novel biosynthetic pathway of archaetidyl-myo-inositol via archaetidyl-myo-inositol phosphate from CDP-archaeol and D-glucose 6-phosphate in methanoarchaeon Methanothermobacter thermautotrophicus cells. J Biol Chem , 284(45): 30766–30774
doi: 10.1074/jbc.M109.034652 pmid:19740749
73 Müller V, Spanheimer R, Santos H (2005). Stress response by solute accumulation in archaea. Curr Opin Microbiol , 8(6): 729–736
doi: 10.1016/j.mib.2005.10.011 pmid:16256422
74 Nielsen J, Oliver S (2005). The next wave in metabolome analysis. Trends Biotechnol , 23(11): 544–546
doi: 10.1016/j.tibtech.2005.08.005 pmid:16154652
75 Nolling J, Elfner A, Palmer J R, Steigerwald V J, Pihl T D, Lake J A, Reeve J N (1996). Phylogeny of Methanopyrus kandleri based on methyl coenzyme M reductase operons. Int J Syst Bacteriol , 46(4): 1170–1173
doi: 10.1099/00207713-46-4-1170 pmid:8863453
76 Olsen G J, Woese C R (1997). Archaeal genomics: an overview. Cell , 89(7): 991–994
doi: 10.1016/S0092-8674(00)80284-6 pmid:9215619
77 Pagel M (1999). Inferring the historical patterns of biological evolution. Nature , 401(6756): 877–884
doi: 10.1038/44766 pmid:10553904
78 Patel C N, Chellapandi P (2008). Anaerobic digestion of cotton seed cake using developed mixed consortia. Electronic J Environ Agri Food Chem , 7: 3035–3046
79 Ponomarev V A, Makarova K S, Aravind L, Koonin E V (2003). Gene duplication with displacement and rearrangement: origin of the bacterial replication protein PriB from the single-stranded DNA-binding protein Ssb. J Mol Microbiol Biotechnol , 5(4): 225–229
doi: 10.1159/000071074 pmid:12867746
80 Razia M, Karthik Raja R, Padmanaban K, Sivaramakrishnan S, Chellapandi P (2010). Phylogenetic approach for assigning function of hypothetical proteins in Photorhabdus luminescens subsp. laumondii T101 genome. J Comput Sci Syst Biol , 3(1): 21–29
doi: 10.4172/jcsb.1000051
81 Razia M, Padmanaban K, Karthick Raja R, Chellapandi P, Sivaramakrishnan S (2011). 16S rDNA-based phylogeny of non-symbiotic bacteria associating entomopathogenic nematode from infected insect cadavers. Genomics Proteomics Bioinformatics (In press)
82 Schmidt S, Christen P, Kiefer P, Vorholt J A (2010). Functional investigation of methanol dehydrogenase-like protein XoxF in Methylobacterium extorquens AM1. Microbiology , 156(Pt 8): 2575–2586
doi: 10.1099/mic.0.038570-0 pmid:20447995
83 Schopf J W (2006). Fossil evidence of Archaean life. Philos Trans R Soc Lond B Biol Sci , 361(1470): 869–885
doi: 10.1098/rstb.2006.1834 pmid:16754604
84 Snel B, Bork P, Huynen M A (1999). Genome phylogeny based on gene content. Nat Genet , 21(1): 108–110
doi: 10.1038/5052 pmid:9916801
85 Snel B, Bork P, Huynen M A (2002). Genomes in flux: the evolution of archaeal and proteobacterial gene content. Genome Res , 12(1): 17–25
doi: 10.1101/gr.176501 pmid:11779827
86 Tatusov R L, Koonin E V, Lipman D J (1997). A genomic perspective on protein families. Science , 278(5338): 631–637
doi: 10.1126/science.278.5338.631 pmid:9381173
87 Tekaia F, Lazcano A, Dujon B (1999). The genomic tree as revealed from whole proteome comparisons. Genome Res , 9(6): 550–557
pmid:10400922
88 Thauer R K (1998). Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture. Microbiology , 144(Pt 9): 2377–2406
doi: 10.1099/00221287-144-9-2377 pmid:9782487
89 Thauer R K, Bonacker L G (1994). Biosynthesis of coenzyme F430, a nickel porphinoid involved in methanogenesis. Ciba Found Symp , 180: 210–222
pmid:7842854
90 Thauer R K, Kaster A K, Seedorf H, Buckel W, Hedderich R (2008). Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol , 6(8): 579–591
doi: 10.1038/nrmicro1931 pmid:18587410
91 van Hoek A H A M, van Alen T A, Sprakel V S I, Leunissen J A, Brigge T, Vogels G D, Hackstein J H P (2000). Multiple acquisition of methanogenic archaeal symbionts by anaerobic ciliates. Mol Biol Evol , 17(2): 251–258
pmid:10677847
92 Vedhagiri K, Natarajaseenivasan K, Chellapandi P, Prabhakaran S G, Selvin J, Sharma S, Vijayachari P (2009). Evolutionary implication of outer membrane lipoprotein-encoding genes ompL1, UpL32 and lipL41 of pathogenic Leptospira species. Genomics Proteomics Bioinformatics , 7(3): 96–106
doi: 10.1016/S1672-0229(08)60038-8 pmid:19944382
93 Verhees C H, Kengen S W, Tuininga J E, Schut G J, Adams M W W, de VOS W M, van der Oost J (2003). The unique features of glycolytic pathways in Archaea. Biochem J , 375(Pt 2): 231–246
doi: 10.1042/BJ20021472 pmid:12921536
94 Vorholt J A, Marx C J, Lidstrom M E, Thauer R K (2000). Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol , 182(23): 6645–6650
doi: 10.1128/JB.182.23.6645-6650.2000 pmid:11073907
95 Vothknecht U C, Tumbula D L (1999). Archaea: from genomics to physiology and the origin of life. Trends Cell Biol , 9(4): 159–161
doi: 10.1016/S0962-8924(99)01522-6 pmid:10203795
96 Waters E, Hohn M J, Ahel I, Graham D E, Adams M D, Barnstead M, Beeson K Y, Bibbs L, Bolanos R, Keller M, Kretz K, Lin X, Mathur E, Ni J, Podar M, Richardson T, Sutton G G, Simon M, S?ll D, Stetter K O, Short J M, Noordewier M (2003). The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc Natl Acad Sci U S A , 100(22): 12984–12988
doi: 10.1073/pnas.1735403100 pmid:14566062
97 Wilson R C, Bohlen C J, Foster M P, Bell C E (2006). Structure of Pfu Pop5, an archaeal RNase P protein. Proc Natl Acad Sci U S A , 103(4): 873–878
doi: 10.1073/pnas.0508004103 pmid:16418270
98 Woese C R, Kandler O, Wheelis M L (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A , 87(12): 4576–4579
doi: 10.1073/pnas.87.12.4576 pmid:2112744
99 Woese C R, Magrum L J, Fox G E (1978). Archaebacteria. J Mol Evol , 11(3): 245–251
doi: 10.1007/BF01734485 pmid:69107
[1] David T. Harris. Biobanking and omics[J]. Front. Biol., 2018, 13(4): 287-292.
[2] Xin-Min Qin,Xiao-Wen Yang,Li-Xia Hou,Hui-Min Li. Complete mitochondrial genome of Ampittia dioscorides (Lepidoptera: Hesperiidae) and its phylogenetic analysis[J]. Front. Biol., 2017, 12(1): 71-81.
[3] Xin-Min Qin,Qing-Xin Guan,Hui-Min Li,Yu Zhang,Yu-Ji Liu,Dan-Ni Guo. The complete mitogenome of Lamproptera curia (Lepidoptera: Papilionidae) and phylogenetic analyses of Lepidoptera[J]. Front. Biol., 2015, 10(5): 458-472.
[4] Qichao WANG, Xianmin ZHU, Yun FENG, Zhigang XUE, Guoping FAN. Single-cell genomics: An overview[J]. Front Biol, 2013, 8(6): 569-576.
[5] Lingli HE, Jing ZHAO, Man ZHAO, Chaoying HE. Current development and application of soybean genomics[J]. Front Biol, 2011, 6(4): 337-348.
[6] XU Xiaohong, WU Min, ZHANG Huibin, LIU Zhihu. Genetic analysis of the gene in halophilic archaea isolated from Xinjiang region, China[J]. Front. Biol., 2008, 3(4): 392-396.
[7] ZHU Min, GAI Zhikun. Phylogenetic relationships of Galeaspids (Agnatha)[J]. Front. Biol., 2007, 2(2): 151-169.
[8] MU Linchun, WANG Li, YAO Li, HAO Bingqing, LUO Qin. Application of pet G-trn P sequence to systematic study of Chinese Cupressus species[J]. Front. Biol., 2006, 1(4): 349-352.
[9] Xu Xiaohong, Wu Min, Cao Yi, Wu Yuehong, Zhang Ting. Isolation and Phylogenetic Analysis of Halophilic Archaeon AJ6[J]. Front. Biol., 2006, 1(1): 29-34.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed