Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (4) : 451-459    https://doi.org/10.1007/s11515-013-1268-9
RESEARCH ARTICLE
Development and utilization of new sequenced characterized amplified region markers specific for E genome of Thinopyrum
Wenping GONG, Ling RAN, Guangrong LI, Jianping ZHOU, Cheng LIU(), Zujun YANG
School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
 Download: PDF(286 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Species containing E genome of Thinopyrum offered potential to increase the genetic variability and desirable characters for wheat improvement. However, E genome specific marker was rare. The objective of the present report was to develop and identify sequenced characterized amplified region (SCAR) markers that can be used in detecting E chromosome in wheat background for breeding purpose. Total 280 random amplified polymorphic DNA (RAPD) primers were amplified for seeking of E genome specific fragments by using the genomic DNA of Thinopyrum elongatum and wheat controls as templates. As a result, six RAPD fragments specific for E genome were found and cloned, and then were converted to SCAR markers. The usability of these markers was validated using a number of E-genome-containing species and wheat as controls. These markers were subsequently located on E chromosomes using specific PCR and fluorescence in situ hybridization (FISH). SCAR markers developed in this research could be used in molecular marker assisted selection of wheat breeding with Thinopyrum chromatin introgressions.

Keywords Thinopyrum      Trititrigia      E genome      SCAR markers      FISH     
Corresponding Author(s): LIU Cheng,Email:liucheng@uestc.edu.cn   
Issue Date: 01 August 2013
 Cite this article:   
Wenping GONG,Ling RAN,Guangrong LI, et al. Development and utilization of new sequenced characterized amplified region markers specific for E genome of Thinopyrum[J]. Front Biol, 2013, 8(4): 451-459.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-013-1268-9
https://academic.hep.com.cn/fib/EN/Y2013/V8/I4/451
SpeciesChromosome numberGenomic compositionAccession No.ProvenanceProvider
Th. elongatumTh. elongatumTh. elongatumTh. elongatumTh. bessarabicumTh. bessarabicum2n = 142n = 142n = 142n = 142n = 142n = 14EeEeEeEeEeEeEeEeEbEb ( = JJ)EbEb ( = JJ)PI 531719PI 531717PI 531718PI 153179PI 531711W6 21890FranceFranceTunisiaTurkeyEstoniaUkraine[a][a][a][a][a][a]
Th. intermediumTh. intermediumTh. intermediumTh. intermediumTh. intermediumTh. intermediumTh. intermediumTh. intermediumTh. intermediumTh. intermedium2n = 422n = 422n = 422n = 422n = 422n = 422n = 422n = 422n = 422n = 42EeEeEbEbStStEeEeEbEbStStEeEeEbEbStStEeEeEbEbStStEeEeEbEbStStEeEeEbEbStStEeEeEbEbStStEeEeEbEbStStEeEeEbEbStStEeEeEbEbStStPI 401225PI 401178PI 401183PI 401196PI 383575PI 547332PI 547335PI 547316PI 547315PI 547319IranIranIranIranTurkeyTurkeyPolandRussian FederationRussian FederationRussian Federation[a][a][a][a][a][a][a][a][a][a]
Octoploid trititrigia2n = 562n = 562n = 562n = 542n = 562n = 562n = 562n = 562n = 562n = 56AABBDDEE40W + 8J+ 8JsAABBDDEEAABBDD+ 2St+ 4J+ 4Js + 2St-Js40W + 4St+ 2Js+ 2Js-W + 2S-Js+ 2St-Js+ 2S-J+ 2W-Js40W + 8St+ 4Js + 2J+ 2J-St40W + 6St+ 8EAABBDD+ 8St+ 4E+ 2St-E40W + 2St+ 12E+ 2St-EAABBDD+ 12Js + 2JKD20041XY6937430Zhong2Zhong5TE70447045704778784USAChinaChinaChinaChinaChinaChinaChinaChinaChina[b][c][c][d][d][e][f][f][f][g]
Th. elongatumTh. elongatumTh. elongatumTh. elongatumTh. elongatumTh. elongatumTh. elongatumTh. elongatumTh. elongatumTh. elongatum2n = 702n = 702n = 702n = 702n = 702n = 702n = 702n = 702n = 702n = 70- (!)- (!)- (!)- (!)- (!)- (!)- (!)- (!)- (!)- (!)PI 315352PI 308592PI 297871PI 283164PI 276399PI 368851PI 251443PI 401008PI 401009PI 401010Former Soviet UnionItalyArgentinaChinaGermanyUSATurkeyTurkeyTurkeyTurkey[a][a][a][a][a][a][a][a][a][a]
Wheat-Th. elongatum/Th. intermedium additions2n = 442n = 442n = 442n = 442n = 442n = 442n = 442n = 442n = 442n = 442n = 442n = 442n = 44AABBDD+ one pair 1EAABBDD+ one pair 2EAABBDD+ one pair 3EAABBDD+ one pair 4EAABBDD+ one pair 5EAABBDD+ one pair 6EAABBDD+ one pair 7EAABBDD+ one pair S-JsAABBDD+ one pair S-JsAABBDD+ one pair SAABBDD+ one pair W-JsAABBDD+ one pair W-JsAABBDD+ one pair S-JsKD20061KD20062KD20063KD20064KD20065KD20066KD20067Z1Z2Z3Z4Z5Z6USAUSAUSAUSAUSAUSAUSAChinaChinaChinaChinaChinaChina[b][b][b][b][b][b][b][a][a][a][a][a][a]
Wheat-Thinopyrum intermedium ssp. trichophorum introgressions2n = 562n = 5640W + 9St+ 4Js + 3J40W + 8St+ 6Js + 2J1908Q156Q157-Q227ChinaChinaChina[e1][e1][e]
Ps. SpicataS. cerealeS. africanumS. silvestreD. breviaristatumD. villosumH. vulgareAe.comosaAe.umbellulataAe.bicornisAe. cylindricaAg.cristatumA.retrofractumEremopyrumAe. tauschiiT. monococcumT. turgidumT. timopheeviiT .teresT. aestivumT. aestivumT. aestivumT. aestivum2n = 142n = 142n = 142n = 142n = 282n = 142n = 142n = 142n = 142n = 142n = 282n = 282n = 142n = 142n = 142n = 142n = 282n = 282n = 282n = 422n = 422n = 422n = 42StStRRRaRaRsRsVbVbVbVbVVHHMMUUSbSbCCDDPPPPWWFFDDAAAABBAAGGAuAuDDAABBDDAABBDD (1RS/1BL)AABBDD (1RS/1BL)AABBDD (1RS/1BL)PI 232131SCND1377CN41211CN41954KD19791KD19801CN41966PI 317400PI 227339CIae 70PI 374320PI 578520PI 547363PI 227343KD20042PI 427328PI 308878PI 297326KD1988CSCN12CN18CN17USAChinaSouth AfricaAustriaMoroccoMoroccoChinaAfghanistanIranUnknownYugoslaviaCanadaAustraliaIranChinaIraqSpainFormer Soviet UnionChinaChinaChinaChinaChina[a][e][h][h][a][i][i][a][a][a][a][a][a][a][e][a][a][a][j][h][i][i][i]
Tab.1  Materials used in this study
Primer nameSequence (5′-3′)Target length(bp)Annealingtemperature
Q10FQ10RTGTGCCCGAATGTAACTGACTACTGGACGCTTCCTTGTGCTTC83160
D14FD14RCTTCCCCAAGGCATGTTCCGTCAGAGGAACTAGGGCGGATGA98562
I4FI4RCCGCCTAGTCCACTAATGATTCATCTTCAGCGGTCTTGCAGC67060
E11FE11RGAGTCTCAGGACGAGGTGGATGCTCCGTCCTCTGGTCACGA34763
M4FM4RGGCGGTTGTCGACATGGAGTTCTGCTCAGAGTTAGTACACGAC81561
H11FH11RCTTCCGCAGTTTGGGCCAGCTGCCGTTGAGGTGGAGGCACCTGC85963
Tab.2  Information about the primers designed in this study
Fig.1  DNA amplification patterns of , , Hexaploid Trititrigia and controls with primers D14F and D14R. M: Marker(DL1000); Lanes 1 to 10 are PI 531719, PI 531717, PI 531711, W6 21890, PI 401178, PI 401225, PI 383575, PI 547332, PI 547335 and PI 547316, respectively; Lanes 11 to 17 are Chinese Spring, , subsp, , and wheat varieties CN18, CN12, respectively; Lane 18 is blank control. Arrow showed the target PCR bands.
Fig.2  DNA amplification patterns of , Octoploid and controls with primers D14F and D14R. M: Marker(DL4500); Lanes 1 to 12 are , Chinese spring- amphiploid, Chinese spring- amphiploid, Wheat- ssp amphiploid and Octoploid 7044, 7045, 7047, 78784, 7430, Zhong2, Zhong5 and XY693, respectively; Lanes 13 to 17 are CS, CN12, CN18 and CN17. Lane 18 is blank control. Arrow showed the target PCR bands.
Fig.3  DNA amplification patterns of wheat- additions and controls with primers D14F and D14R. M: Marker(DL4500); Lanes 1 to 7 are Chinese spring- additions CSDA1E-CSDA7E; Lanes 8 to 13 are wheat- additions Z1-Z6; Lanes 14 to 17 are CS, CN12, CN18 and CN17, respectively; Lane 18 is blank control. Arrow showed the target PCR bands.
Fig.4  Fluorescence in situ hybridization analysis using 4I (A) and genomic DNA (B-D) as probe and without blocking DNA used on mitotic metaphase chromosomes of Chinese spring- amphiploid (A) and wheat- ssp introgressions 1908 (B), Q156 (C) and Q168 (D). ? in Fig. 4D means unknown chromosome due to chromosome overlap or weak hybridization signal.
1 Brosius J (1991). Retroposons—seeds of evolution. Science , 251(4995): 753
doi: 1990437" target="_blank">10.1126/science. pmid:1990437 pmid:1990437
2 Chen G Y, Dong P, Wei Y M, He K, Li W, Zheng Y L (2007). Development of Ee-chromosome-specific RGAP markers for Lophopyrum elongatum (Host) A. Love in wheat background by using resistance gene analog polymorphism. Acta Agron Sin , 33: 1782-1787
3 Chen Q (2005). Detection of alien chromatin introgression from Thinopyrum into wheat using S genomic DNA as a probe—a landmark approach for Thinopyrum genome research. Cytogenet Genome Res , 109(1-3): 350-359
doi: 10.1159/000082419 pmid:15753596
4 Colmer T D, Flowers T J, Munns R (2006). Use of wild relatives to improve salt tolerance in wheat. J Exp Bot , 57(5): 1059-1078
doi: 10.1093/jxb/erj124 pmid:16513812
5 Dewey D R (1984). The genomic system of classification as a guide to intergeneric hybridization with the perennial Triticeae, in Gustafson JP (ed): Gene Manipulation in Plant Improvement . 16:209-279 (Plenum Press, New York)
6 Flavell R B, Bennett M D, Smith J B, Smith D B (1974). Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet , 12(4): 257-269
doi: 10.1007/BF00485947 pmid:4441361
7 Friebe B, Jiang J, Knott D R, Gill B S (1994). Compensation indices of radiation-induced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci , 34(2): 400-404
doi: 10.2135/cropsci1994.0011183X003400020018x
8 Friebe B, Jiang J, Raupp W J, McIntosh R A, Gill B S (1996). Characterization of wheat-alien translocations conferring resistance to diseases and pests: Current status. Euphytica , 91(1): 59-87
doi: 10.1007/BF00035277
9 Fu S L, Lv Z L, Qi B, Guo X, Li J, Liu B, Han F P (2012). Molecular cytogenetic characterization of wheat—Thinopyrum elongatum addition, substitution and translocation lines with a novel source of resistance to wheat Fusarium Head Blight. J Genet Genomics , 39(2): 103-110
doi: 10.1016/j.jgg.2011.11.008 pmid:22361509
10 Han F P, Fedak G (2003). Molecular characterization of partial amphiploids from Triticum durum × tetraploid Thinopyrum elongatum as novel sources of resistance to wheat Fusarium head blight. In: N.E. Pogna, M. Romano, E.A. Pogna, & G. Galterio(Eds.), Proc 10th Int Wheat Genet Symp III. Istituto Sperimentale per la Cerealicoltura, Rome, Italy , 1148-1150
11 He Z H, Xia X C, Luo J, Xin Z Y, Kong X Y, Jing R L, Wu Z L, Li X P (2006). Trend analysis of international wheat breeding. Journal of Triticeae Crops , 26: 154-156
12 Hu L J, Zeng Z X, Liu C, Yang Z J, Ren Z L (2008). Production and application of ISSR marker for St genome. Journal of Sichuan University , 45: 143-149
13 Jia J Q, Yang Z J, Li G R, Liu C, Lei M P, Zhang T, Zhou J P, Ren Z L (2009). Isolation and chromosomal distribution of a Ty1-copia like sequences from Secale allows to identify the wheat-Secale africanum introgression lines. J Appl Genet , 50: 25-28
doi: 10.1007/BF03195648 pmid:19193979
14 Ko J M, Do G S, Suh D Y, Seo B B, Shin D C, Moon H P (2002). Identification and chromosomal organization of two rye genome-specific RAPD products useful as introgression markers in wheat. Genome , 45(1): 157-164
doi: 10.1139/g01-133 pmid:11908658
15 Li X M, Lee B S, Mammadov A C, Koo B C, Mott I W, Wang R R C (2007). CAPS markers specific to Eb, Ee, and R genomes in the tribe Triticeae. Genome , 50(4): 400-411
doi: 10.1139/G07-025 pmid:17546098
16 Li Z S, Rong S, Zhong G C, Chen S Y, Mu S M (1985). Wheat wide cross. Beijing: Science Press, 52-83
17 Liu C, Li G R, Yang Z J, Feng J, Zhou J P, Ren Z L (2006). Isolation and application of specific DNA segments of rye genome. Acta Botanica Boreali-Occidentalia Sinica , 26: 2434-2438
18 Liu C, Yang Z J, Jia J Q, Li G R, Zhou J P, Ren Z L (2009). Genomic distribution of a Long Terminal Repeat (LTR) Sabrina-like retrotransposon in Triticeae species. Cereal Res Commun , 37(3): 363-372
doi: 10.1556/CRC.37.2009.3.5
19 Liu C, Yang Z J, Li G R, Zeng Z X, Zhang Y, Zhou J P, Liu Z H, Ren Z L (2008). Isolation of a new repetitive DNA sequence from Secale africanum enables targeting of Secale chromatin in wheat background. Euphytica , 159(1-2): 249-258
doi: 10.1007/s10681-007-9484-5
20 Liu C, Yang Z J, Liu C, Li G R, Ren Z L (2007). Analysis of St-chromosome-containing triticeae polyploids using specific molecular markers. Yi Chuan , 29(10): 1271-1279
doi: 10.1360/yc-007-1271 pmid:17905719
21 Liu S B, Jia J Z, Wang H G, Kong L R, Zhou R H (1998). Special chromosome markers for E genome and DNA polymorphism between Agropyron elongatum (2n=14) and common wheat detected by RAPD marker. Acta Agron Sin , 24: 687-690
22 Liu Z W, Biyashev R M, Saghai M M (1996). Development of simple sequence repeat DNA markers and their integration into a barley linkage map. Theor Appl Genet , 93(93): 869-876
doi: 10.1007/BF00224088
23 Ma J X, Zhou R H, Dong Y S, Jia J Z (2000). Control and inheritance of resistance to yellow rust in Triticum aestivum-Lophopyrum elongatum chromosome substitution lines. Euphytica , 111(1): 57-60
doi: 10.1023/A:1003716316395
24 McDonald M P, Galwey N W, Ellneskog-Staam P, Colmer T D (2001). Evaluation of Lophopyrum elongatum as a source of genetic diversity to increase the waterlogging tolerance of hexaploid wheat (Triticum aestivum). New Phytol , 151(2): 369-380
doi: 10.1046/j.1469-8137.2001.00183.x
25 McGuire G E, Dvorak J (1981). High salt tolerance potential in wheatgrasses. Crop Sci , 21(5): 702-705
doi: 10.2135/cropsci1981.0011183X002100050018x
26 Mukai Y, Nakahara Y, Yamamoto M (1993). Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome , 36(3): 489-494
doi: 10.1139/g93-067 pmid:18470003
27 Sharma D, Knott D R (1966). The transfer of leaf rust resistance from Agropyron to Triticum by irradiation. Can J Genet Cytol , 8: 137-143
28 Sharma H C, Ohm H, Lister R, Foster J E, Shukle R H (1989). Response of wheatgrasses and wheat × wheatgrass hybrids to barley yellow dwarf virus. Theor Appl Genet , 77(3): 369-374
doi: 10.1007/BF00305830
29 Shen X R, Kong L R, Ohm H (2004). Fusarium head blight resistance in hexaploid wheat (Triticum aestivum)-Lophopyrum genetic lines and tagging of the alien chromatin by PCR markers. Theor Appl Genet , 108(5): 808-813
doi: 10.1007/s00122-003-1492-9 pmid:14628111
30 Shukle R H, Lampe D J, Lister R M, Foster J E (1987). Aphid feeding behavior: relationship to barley yellow dwarf virus resistance in Agropyron species. Phytopathology , 77(5): 725-729
doi: 10.1094/Phyto-77-725
31 Sun S C (1981). The approach and methods of breeding new varieties and new species from Agrotriticum hybrids. Acta Agron Sin , 7: 51-58
32 Taeb M, Koebner R M D, Forster B P (1993). Genetic variation for waterlogging tolerance in the Triticeae and the chromosomal location of genes conferring waterlogging tolerance in Thinopyrum elongatum. Genome , 36(5): 825-830
doi: 10.1139/g93-110 pmid:18470030
33 Wang R R C, Zhang X Y (1989). Geneome relationship between Thinopyrum bessarabicum and Th. elongatum: revisited. Genome , 32(5): 802-809
doi: 10.1139/g89-514
34 Xu G H, Su W Y, Shu Y J, Cong W W, Wu L, Guo C H (2012). RAPD and ISSR-assisted identification and development of three new SCAR markers specific for the Thinopyrum elongatum E (Poaceae) genome. Genet Mol Res , 11(2): 1741-1751
doi: 10.4238/2012.June.29.7 pmid:22843051
35 Yang Z J, Li G R, Chang Z J, Zhou J P, Ren Z L (2006a). Characterization of a partial amphiploid between Triticum aestivum cv. Chinese Spring and Thinopyrum intermedium ssp. trichophorum. Euphytica , 149(1-2): 11-17
doi: 10.1007/s10681-005-9010-6
36 Yang Z J, Liu C, Feng J, Li G R, Zhou J P, Deng K J, Ren Z L (2006b). Studies on genome relationship and species-specific PCR marker for Dasypyrum breviaristatum in Triticeae. Hereditas , 143(2006): 47-54
doi: 10.1111/j.2006.0018-0661.01930.x pmid:17362333
37 Yang Z J, Ren Z L (2001). Chromosomal distribution and genetic expression of Lophopyrum elongatum (Host) A. Love genes for adult plant resistance to stripe rust in wheat background. Genet Resour Crop Evol , 48(2): 183-187
doi: 10.1023/A:1011282231466
38 You M S, Li B Y, Tang Z H, Liu S B, Liu G T (2003). Development of specific SSR markers for Ee-genome of Thinopyrum ssp. by using wheat microsatellites. J Agric Biotechnol , 11: 577-581
39 You M S, Li B Y, Tang Z H, Liu S B, Song J M, Mao S F, Liu G T (2002). Establishment of E-genome-specific RAPD and SCAR markers for Thinopyrum ssp. Journal of China Agricultural University , 7: 1-6
doi: 10.1007/s11802-008-0001-9
40 Zhang W J, Lukaszewski A J, Kolmer J, Soria M A, Goyal S, Dubcovsky J (2005). Molecular characterization of durum and common wheat recombinant lines carrying leaf rust resistance (Lr19) and yellow pigment (Y) genes from Lophopyrum ponticum. Theor Appl Genet , 111(3): 573-582
doi: 10.1007/s00122-005-2048-y pmid:15912342
[1] Shipeng Shao, Lei Chang, Yingping Hou, Yujie Sun. Illuminating the structure and dynamics of chromatin by fluorescence labeling[J]. Front. Biol., 2017, 12(4): 241-257.
[2] Yun-Bo GUO, Ya WEN, Wen-Xue GAO, Jing-Chao LI, Peng ZHOU, Zai-Ling BAI, Bo ZHANG, Shi-Qiang WANG, . The formation of Ca 2+ gradients at the cleavage furrows during cytokinesis of Zebrafish embryos[J]. Front. Biol., 2010, 5(4): 369-377.
[3] Juqing JIA, Guangrong LI, Cheng LIU, Jianping ZHOU, Zujun YANG, . New PCR based markers allowed to identify Secale chromatin in wheat- Secale africanum introgression lines[J]. Front. Biol., 2010, 5(2): 187-192.
[4] Jianshe ZHANG, Wuying CHU, Guihong FU. DNA microarray technology and its application in fish biology and aquaculture[J]. Front Biol Chin, 2009, 4(3): 305-313.
[5] TAO Yongsheng, ZHANG Zuxin, CHEN Yonglin, LI Lijia, ZHENG Yonglian. Technological exploration of BAC-FISH on mitotic chromosomes of maize[J]. Front. Biol., 2008, 3(4): 414-418.
[6] LIU Kai, WANG Yan, TAN Hongwei, CHEN Guangju, TONG Zhenhe. Computational simulations on the fish-type-II antifreeze protein-ice-solvent system[J]. Front. Biol., 2007, 2(2): 180-183.
[7] LIU Bo, CHEN Chengbin, LI Xiulan, QI Liwang, HAN Suying. Karyotype analysis and physical mapping of 45S rDNA in eight species of Sophora, Robinia, and Amorpha[J]. Front. Biol., 2006, 1(3): 290-294.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed