Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (4) : 421-433    https://doi.org/10.1007/s11515-013-1255-1
REVIEW
PTEN/PI3K and MAPK signaling in protection and pathology following CNS injuries
Chandler L. WALKER1,2,3,4, Nai-Kui LIU1,3,4, Xiao-Ming XU1,2,3,4()
1. Spinal Cord and Brain Injury Research Group, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; 2. Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; 3. Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA; 4. Goodman Campbell Brain and Spine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
 Download: PDF(595 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Brain and spinal cord injuries initiate widespread temporal and spatial neurodegeneration, through both necrotic and programmed cell death mechanisms. Inflammation, reactive oxidation, excitotoxicity and cell-specific dysregulation of metabolic processes are instigated by traumatic insult and are main contributors to this cumulative damage. Successful treatments rely on prevention or reduction of the magnitude of disruption, and interfering with injurious cellular responses through modulation of signaling cascades is an effective approach. Two intracellular signaling pathways, the phosphatase and tensin homolog (PTEN)/phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) signaling cascades play various cellular roles under normal and pathological conditions. Activation of both pathways can influence anatomical and functional outcomes in multiple CNS disorders. However, some mechanisms involve inhibiting or enhancing one pathway or the other, or both, in propagating specific downstream effects. Though many intracellular mechanisms contribute to cell responses to insult, this review examines the evidence exploring PTEN/PI3K and MAPK signaling influence on pathology, neuroprotection, and repair and how these pathways may be targeted for advancing knowledge and improving neurological outcome after injury to the brain and spinal cord.

Keywords spinal cord injury      traumatic brain injury      PTEN      MAPK      neuroprotection      axon regeneration     
Corresponding Author(s): XU Xiao-Ming,Email:xu26@iupui.edu   
Issue Date: 01 August 2013
 Cite this article:   
Chandler L. WALKER,Nai-Kui LIU,Xiao-Ming XU. PTEN/PI3K and MAPK signaling in protection and pathology following CNS injuries[J]. Front Biol, 2013, 8(4): 421-433.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-013-1255-1
https://academic.hep.com.cn/fib/EN/Y2013/V8/I4/421
Fig.1  PTEN reduces PI3K/Akt signaling benefits on cell survival and regeneration. PI3K can be stimulated through RTK or GPCR-mediated signaling, promoting Akt inhibition of several apoptosis-associated proteins such as Bad and FOXO1, and promotion of pro-survival mediators such as mTOR. PTEN antagonizes PI3K, and the resulting reduction in downstream Akt and mTOR signaling promotes programmed cell death i.e. apoptosis and autophagy. PI3K= Phosphatidylinositol 3-kinase; PTEN= Phosphatase and tensin homolog; mTOR= mammalian target of rapamycin; BAD= Bcl-2-associated death promoter; FOXO1= Forkhead box protein O1; LC3 II= Microtubule-associated protein light chain 3 II
Fig.2  MAPK signaling influences cell survival and injury. p38 and JNK MAPKs are most commonly associated with pathology following CNS injury. Erk signaling is most often viewed as a positive influence on cell fate, though it can contribute to cell death as well. JNK= Jun N-terminal kinase; MAPK= Mitogen activated protein kinase; Erk= Extracellular signal-regulated kinases.
Fig.3  Potential injury-mediated alterations of PI3K-Akt vs. MEK-Erk signaling. (A) Under normal conditions, these two pathways exhibit a steady-state balance of activity and inhibition. (B) After CNS injury however, Erk activity may increase while Akt signaling decreases, reducing its downstream inhibition of cell death progression, with p-Erk playing a role in these events.
PI3K pathway inhibitorTargetActionReference
Bisperoxovanadium (bpV)PTENInhibits PTEN phosphatase activity; Upregulates PI3K/Akt signalingSchmid et al., 2004
LY294002PI3 kinaseBlocks PI3K activity; Reduces phosphorylation of Akt at serine 473Vlahos et al., 1994
WortmanninPI3 kinaseBlocks PI3K activity; Reduces phosphorylation of Akt at serine 473Arcaro and Wymann, 1993
Akt inhibitor IVAktATP-competitive inhibitor of a kinase upstream of Akt but downstream of PI3KWang et al., 2006
RapamycinmTOR C1Inhibits mTOR’s ability to phosphorylate p70S6 kinase or 4E binding protein IKunz et al., 1993; Brown et al., 1994
MAPK pathway inhibitorsTargetActionReference
U0126MEK 1 and 2Blocks MEK phosphorylation and activation of Erk 1/2Favata et al., 1998
PD098059MEK 1 and 2Blocks MEK phosphorylation and activation of Erk 1/2Dudley et al., 1995
Tab.1  PI3K and MAPK pathway inhibitors, their targets and actions.
Fig.4  Overall PI3K and MAPK-Erk signaling is complex, but can highly influence the balance between cell survival and death. Multiple pathway inhibitors exist to further research cell signaling mechanisms. Though normal or pathological conditions can stimulate apoptotic cell death directly through death receptor and caspase activation, numerous signaling activities and interactions within a cell can indirectly influence cell fate. PI3K and MAPK pathways may individually, or through crosstalk, impact cell survival. For example, Akt may activate Erk to inhibit apoptosis. A variety of compounds targeting proteins within these cascades can help deepen our understanding of the complexities of PI3K and MAPK signaling in CNS pathology and protection. FasL= Fas ligand; TNFα = Tumor necrosis factor alpha; MAPKK kinase= Mitogen activated protein kinase kinase kinase; MEK= Mitogen activated protein kinase kinase; Erk= Extracellular signal-regulated kinases; PI3K= Phosphatidylinositol 3-kinase; PTEN= Phosphatase and tensin homolog; mTOR= mammalian target of rapamycin; BAD= Bcl-2-associated death promoter.
Fig.5  Neuroprotective and functional benefits of bpV(pic) treatment following SCI. (A) bpV(pic) reduced overall lesion volume following contusive cervical SCI. Cavitation common to both rat and human SCI is also reduced following bpV treatment in rats. Scale bar= 1 mm. (B) Sensorimotor functional outcome is also improved by bpV(pic) therapy, as determined by a treateating assessment. (C) Reduction of LC3-positive punctate autophagosomes are reduced in motor neurons following bpV(pic) treatment. Scale bar= 50 Ym. (D) Western blot analysis suggests bpV(pic) promotes Akt activity through inhibition of PTEN activity rather than expression. Also, reduction of autophagosome formation through diminished LC3 II/LC3I protein ratio after bpV treatment correlates with functional recovery and anatomical preservation, suggesting a potential mechanism of bpV-mediated neuroprotection. bpV(pic) = Dipotassium bisperoxo (picolinato) oxovanadate; LC3 II/I= microtubule associated protein light chain 3 II/I. LC3 I is the cytoplasmic form, while LC3 II is the lipidated form and classic autophagosome marker. * = <0.05; ** = <0.01 compared with Vehicle. [Modified from Walker et al. () ].
1 Acosta-Rua A J, Cannon R L, Yezierski R P, Vierck C J (2011). Sex differences in effects of excitotoxic spinal injury on below-level pain sensitivity. Brain Res , 1419: 85–96
doi: 10.1016/j.brainres.2011.08.072 pmid:21943508
2 Alessandrini A, Namura S, Moskowitz M A, Bonventre J V (1999). MEK1 protein kinase inhibition protects against damage resulting from focal cerebral ischemia. Proc Natl Acad Sci USA , 96(22): 12866–12869
doi: 10.1073/pnas.96.22.12866 pmid:10536014
3 Alessi D R, James S R, Downes C P, Holmes A B, Gaffney P R, Reese C B, Cohen P (1997). Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr Biol , 7(4): 261–269
doi: 10.1016/S0960-9822(06)00122-9 pmid:9094314
4 Alter B J, Zhao C, Karim F, Landreth G E, Gereau R W 4th (2010). Genetic targeting of ERK1 suggests a predominant role for ERK2 in murine pain models. J Neurosci , 30(34): 11537–11547
doi: 10.1523/JNEUROSCI.6103-09.2010 pmid:20739576
5 Arcaro A, Wymann M P (1993). Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem J , 296(Pt 2): 297–301
pmid:8257416
6 Baehrecke E H (2005). Autophagy: dual roles in life and death? Nat Rev Mol Cell Biol , 6(6): 505–510
doi: 10.1038/nrm1666 pmid:15928714
7 Brewer K L, Hardin J S (2004). Neuroprotective effects of nicotinamide after experimental spinal cord injury. Acad Emerg Med , 11(2): 125–130
doi: 10.1111/j.1553-2712.2004.tb01421.x pmid:14759952
8 Brewer K L, Yezierski R P (1998). Effects of adrenal medullary transplants on pain-related behaviors following excitotoxic spinal cord injury. Brain Res , 798(1-2): 83–92
doi: 10.1016/S0006-8993(98)00398-9 pmid:9666085
9 Cadelli D S, Schwab M E (1991). Myelin-associated inhibitors of neurite outgrowth and their role in CNS regeneration. Ann N Y Acad Sci , 633(1 Glial-Neurona): 234–240
doi: 10.1111/j.1749-6632.1991.tb15615.x pmid:1789551
10 Cai Q Y, Chen X S, Zhong S C, Luo X, Yao Z X (2009). Differential expression of PTEN in normal adult rat brain and upregulation of PTEN and p-Akt in the ischemic cerebral cortex. Anat Rec (Hoboken) , 292(4): 498–512
doi: 10.1002/ar.20834 pmid:19142997
11 Cantley L C (2002). The phosphoinositide 3-kinase pathway. Science , 296(5573): 1655–1657
doi: 10.1126/science.296.5573.1655 pmid:12040186
12 Chang L, Karin M (2001). Mammalian MAP kinase signalling cascades. Nature , 410(6824): 37–40
doi: 10.1038/35065000 pmid:11242034
13 Chauhan A, Sharma U, Jagannathan N R, Reeta K H, Gupta Y K (2011). Rapamycin protects against middle cerebral artery occlusion induced focal cerebral ischemia in rats. Behav Brain Res , 225(2): 603–609
doi: 10.1016/j.bbr.2011.08.035 pmid:21903138
14 Chen J, Xie C, Tian L, Hong L, Wu X, Han J (2010). Participation of the p38 pathway in Drosophila host defense against pathogenic bacteria and fungi. Proc Natl Acad Sci USA , 107(48): 20774–20779
doi: 10.1073/pnas.1009223107 pmid:21076039
15 Chen L, Xu D, Gao Y, Cui X, Du Z, Ding Q, Wang X (2012b). Effect of donor JNK signal transduction inhibition on transplant outcome in brain dead rat model. Inflammation , 35(1): 122–129
doi: 10.1007/s10753-011-9296-6 pmid:21274743
16 Chen X L, Li X Y, Qian S B, Wang Y C, Zhang P Z, Zhou X J, Wang Y X (2012a). Down-regulation of spinal D-amino acid oxidase expression blocks formalin-induced tonic pain. Biochem Biophys Res Commun , 421(3): 501–507
doi: 10.1016/j.bbrc.2012.04.030 pmid:22521889
17 Dahia P L (2000). PTEN, a unique tumor suppressor gene. Endocr Relat Cancer , 7(2): 115–129
doi: 10.1677/erc.0.0070115 pmid:10903528
18 Dow K E, Guo M, Kisilevsky R, Riopelle R J (1993). Regenerative neurite growth modulation associated with astrocyte proteoglycans. Brain Res Bull , 30(3-4): 461–467
doi: 10.1016/0361-9230(93)90279-K pmid:8457895
19 Dudley D T, Pang L, Decker S J, Bridges A J, Saltiel A R (1995). A synthetic inhibitor of the mitogen-activated protein kinase cascade. Proc Natl Acad Sci USA , 92(17): 7686–7689
doi: 10.1073/pnas.92.17.7686 pmid:7644477
20 Endo H, Nito C, Kamada H, Nishi T, Chan P H (2006). Activation of the Akt/GSK3β signaling pathway mediates survival of vulnerable hippocampal neurons after transient global cerebral ischemia in rats. J Cereb Blood Flow Metab , 26(12): 1479–1489
doi: 10.1038/sj.jcbfm.9600303 pmid:16538228
21 Engelman J A, Luo J, Cantley L C (2006). The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet , 7(8): 606–619
doi: 10.1038/nrg1879 pmid:16847462
22 Favata M F, Horiuchi K Y, Manos E J, Daulerio A J, Stradley D A, Feeser W S, Van Dyk D E, Pitts W J, Earl R A, Hobbs F, Copeland R A, Magolda R L, Scherle P A, Trzaskos J M (1998). Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem , 273(29): 18623–18632
doi: 10.1074/jbc.273.29.18623 pmid:9660836
23 Ferrer I, Friguls B, Dalfó E, Planas A M (2003). Early modifications in the expression of mitogen-activated protein kinase (MAPK/ERK), stress-activated kinases SAPK/JNK and p38, and their phosphorylated substrates following focal cerebral ischemia. Acta Neuropathol , 105(5): 425–437
pmid:12677442
24 Gao Y J, Ji R R (2010). Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther , 126(1): 56–68
doi: 10.1016/j.pharmthera.2010.01.002 pmid:20117131
25 Geyer M, Herrmann C, Wohlgemuth S, Wittinghofer A, Kalbitzer H R (1997). Structure of the Ras-binding domain of RalGEF and implications for Ras binding and signalling. Nat Struct Biol , 4(9): 694–699
doi: 10.1038/nsb0997-694 pmid:9302994
26 Ghasemlou N, Lopez-Vales R, Lachance C, Thuraisingam T, Gaestel M, Radzioch D, David S (2010). Mitogen-activated protein kinase-activated protein kinase 2 (MK2) contributes to secondary damage after spinal cord injury. J Neurosci , 30(41): 13750–13759
doi: 10.1523/JNEUROSCI.2998-10.2010 pmid:20943915
27 GrandPré T, Nakamura F, Vartanian T, Strittmatter S M (2000). Identification of the Nogo inhibitor of axon regeneration as a Reticulon protein. Nature , 403(6768): 439–444
doi: 10.1038/35000226 pmid:10667797
28 Grishchuk Y, Ginet V, Truttmann A C, Clarke P G, Puyal J (2011). Beclin 1-independent autophagy contributes to apoptosis in cortical neurons. Autophagy , 7(10): 1115–1131
doi: 10.4161/auto.7.10.16608 pmid:21646862
29 Howitt J, Lackovic J, Low L H, Naguib A, Macintyre A, Goh C P, Callaway J K, Hammond V, Thomas T, Dixon M, Putz U, Silke J, Bartlett P, Yang B, Kumar S, Trotman L C, Tan S S (2012). Ndfip1 regulates nuclear Pten import in vivo to promote neuronal survival following cerebral ischemia. J Cell Biol , 196(1): 29–36
doi: 10.1083/jcb.201105009 pmid:22213801
30 Inoki K, Li Y, Zhu T, Wu J, Guan K L (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat Cell Biol , 4(9): 648–657
doi: 10.1038/ncb839 pmid:12172553
31 Irving E A, Barone F C, Reith A D, Hadingham S J, Parsons A A (2000). Differential activation of MAPK/ERK and p38/SAPK in neurones and glia following focal cerebral ischaemia in the rat. Brain Res Mol Brain Res , 77(1): 65–75
doi: 10.1016/S0169-328X(00)00043-7 pmid:10814833
32 Jaeschke A, Hartkamp J, Saitoh M, Roworth W, Nobukuni T, Hodges A, Sampson J, Thomas G, Lamb R (2002). Tuberous sclerosis complex tumor suppressor-mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent. J Cell Biol , 159(2): 217–224
doi: 10.1083/jcb.jcb.200206108 pmid:12403809
33 Ji R R, Gereau R W 4th, Malcangio M, Strichartz G R (2009). MAP kinase and pain. Brain Res Brain Res Rev , 60(1): 135–148
doi: 10.1016/j.brainresrev.2008.12.011 pmid:19150373
34 Johnson G L, Lapadat R (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science , 298(5600): 1911–1912
doi: 10.1126/science.1072682 pmid:12471242
35 Kau T R, Schroeder F, Ramaswamy S, Wojciechowski C L, Zhao J J, Roberts T M, Clardy J, Sellers W R, Silver P A (2003). A chemical genetic screen identifies inhibitors of regulated nuclear export of a Forkhead transcription factor in PTEN-deficient tumor cells. Cancer Cell , 4(6): 463–476
doi: 10.1016/S1535-6108(03)00303-9 pmid:14706338
36 Kesherwani V, Agrawal S K (2012). Upregulation of RyR2 in hypoxic/reperfusion injury. J Neurotrauma , 29(6): 1255–1265
doi: 10.1089/neu.2011.1780 pmid:21612318
37 Kobayashi K, Yamanaka H, Fukuoka T, Dai Y, Obata K, Noguchi K (2008). P2Y12 receptor upregulation in activated microglia is a gateway of p38 signaling and neuropathic pain. J Neurosci , 28(11): 2892–2902
doi: 10.1523/JNEUROSCI.5589-07.2008 pmid:18337420
38 Koelsch A, Feng Y, Fink D J, Mata M (2010). Transgene-mediated GDNF expression enhances synaptic connectivity and GABA transmission to improve functional outcome after spinal cord contusion. J Neurochem , 113(1): 143–152
doi: 10.1111/j.1471-4159.2010.06593.x pmid:20132484
39 Krens S F, Spaink H P, Snaar-Jagalska B E (2006). Functions of the MAPK family in vertebrate-development. FEBS Lett , 580(21): 4984–4990
doi: 10.1016/j.febslet.2006.08.025 pmid:16949582
40 Kwon C H, Zhu X, Zhang J, Knoop L L, Tharp R, Smeyne R J, Eberhart C G, Burger P C, Baker S J (2001). Pten regulates neuronal soma size: a mouse model of Lhermitte-Duclos disease. Nat Genet , 29(4): 404–411
doi: 10.1038/ng781 pmid:11726927
41 Lee J O, Yang H, Georgescu M M, Di Cristofano A, Maehama T, Shi Y, Dixon J E, Pandolfi P, Pavletich N P (1999). Crystal structure of the PTEN tumor suppressor: implications for its phosphoinositide phosphatase activity and membrane association. Cell , 99(3): 323–334
doi: 10.1016/S0092-8674(00)81663-3 pmid:10555148
42 Lee J Y, Chung H, Yoo Y S, Oh Y J, Oh T H, Park S, Yune T Y (2010). Inhibition of apoptotic cell death by ghrelin improves functional recovery after spinal cord injury. Endocrinology , 151(8): 3815–3826
doi: 10.1210/en.2009-1416 pmid:20444938
43 Levine B, Yuan J (2005). Autophagy in cell death: an innocent convict? J Clin Invest , 115(10): 2679–2688
doi: 10.1172/JCI26390 pmid:16200202
44 Li J, Yen C, Liaw D, Podsypanina K, Bose S, Wang S I, Puc J, Miliaresis C, Rodgers L, McCombie R, Bigner S H, Giovanella B C, Ittmann M, Tycko B, Hibshoosh H, Wigler M H, Parsons R (1997). PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science , 275(5308): 1943–1947
doi: 10.1126/science.275.5308.1943 pmid:9072974
45 Liu C, Wu J, Xu K, Cai F, Gu J, Ma L, Chen J (2010a). Neuroprotection by baicalein in ischemic brain injury involves PTEN/AKT pathway. J Neurochem , 112(6): 1500–1512
doi: 10.1111/j.1471-4159.2009.06561.x pmid:20050973
46 Liu G, Detloff M R, Miller K N, Santi L, Houlé J D (2012b). Exercise modulates microRNAs that affect the PTEN/mTOR pathway in rats after spinal cord injury. Exp Neurol , 233(1): 447–456
doi: 10.1016/j.expneurol.2011.11.018 pmid:22123082
47 Liu K, Lu Y, Lee J K, Samara R, Willenberg R, Sears-Kraxberger I, Tedeschi A, Park K K, Jin D, Cai B, Xu B, Connolly L, Steward O, Zheng B, He Z (2010b). PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci , 13(9): 1075–1081
doi: 10.1038/nn.2603 pmid:20694004
48 Liu N K, Zhang Y P, Titsworth W L, Jiang X, Han S, Lu P H, Shields C B, Xu X M (2006). A novel role of phospholipase A2 in mediating spinal cord secondary injury. Ann Neurol , 59(4): 606–619
doi: 10.1002/ana.20798 pmid:16498630
49 Liu Y, Wang H, Zhu Y, Chen L, Qu Y, Zhu Y (2012a). The protective effect of nordihydroguaiaretic acid on cerebral ischemia/reperfusion injury is mediated by the JNK pathway. Brain Res , 1445: 73–81
doi: 10.1016/j.brainres.2012.01.031 pmid:22325100
50 Loane D J, Faden A I (2010). Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci , 31(12): 596–604
doi: 10.1016/j.tips.2010.09.005 pmid:21035878
51 Manning B D, Cantley L C (2007). AKT/PKB signaling: navigating downstream. Cell , 129(7): 1261–1274
doi: 10.1016/j.cell.2007.06.009 pmid:17604717
52 McKerracher L, David S, Jackson D L, Kottis V, Dunn R J, Braun P E (1994). Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron , 13(4): 805–811
doi: 10.1016/0896-6273(94)90247-X pmid:7524558
53 Mearow K M, Dodge M E, Rahimtula M, Yegappan C (2002). Stress-mediated signaling in PC12 cells- the role of the small heat shock protein, Hsp27, and Akt in protecting cells from heat stress and nerve growth factor withdrawal. J Neurochem , 83(2): 452–462
doi: 10.1046/j.1471-4159.2002.01151.x pmid:12423255
54 Mielke K, Herdegen T (2000). JNK and p38 stresskinases—degenerative effectors of signal-transduction-cascades in the nervous system. Prog Neurobiol , 61(1): 45–60
doi: 10.1016/S0301-0082(99)00042-8 pmid:10759064
55 Nakashima S, Arnold S A, Mahoney E T, Sithu S D, Zhang Y P, D’Souza S E, Shields C B, Hagg T (2008). Small-molecule protein tyrosine phosphatase inhibition as a neuroprotective treatment after spinal cord injury in adult rats. J Neurosci , 28(29): 7293–7303
doi: 10.1523/JNEUROSCI.1826-08.2008 pmid:18632933
56 National Spinal Cord Injury Statistical Center (NSCISC), University of Alabama at Birmingham (2011). Facts and figures at a glance. www.nscisc.uab.edu.
57 Noshita N, Lewén A, Sugawara T, Chan P H (2001). Evidence of phosphorylation of Akt and neuronal survival after transient focal cerebral ischemia in mice. J Cereb Blood Flow Metab , 21(12): 1442–1450
doi: 10.1097/00004647-200112000-00009 pmid:11740206
58 Ohsawa M, Mutoh J, Yamamoto S, Ono H, Hisa H (2012). Effect of spinally administered simvastatin on the formalin-induced nociceptive response in mice. J Pharmacol Sci , 119(1): 102–106
doi: 10.1254/jphs.12007SC pmid:22510521
59 Park K K, Liu K, Hu Y, Smith P D, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M, He Z (2008). Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science , 322(5903): 963–966
doi: 10.1126/science.1161566 pmid:18988856
60 Pearson L L, Castle B E, Kehry M R (2001). CD40-mediated signaling in monocytic cells: up-regulation of tumor necrosis factor receptor-associated factor mRNAs and activation of mitogen-activated protein kinase signaling pathways. Int Immunol , 13(3): 273–283
doi: 10.1093/intimm/13.3.273 pmid:11222496
61 Pouysségur J, Volmat V, Lenormand P (2002). Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochem Pharmacol , 64(5-6): 755–763
doi: 10.1016/S0006-2952(02)01135-8 pmid:12213567
62 Proud C G (2002). Regulation of mammalian translation factors by nutrients. Eur J Biochem , 269(22): 5338–5349
doi: 10.1046/j.1432-1033.2002.03292.x pmid:12423332
63 Proud C G (2004). The multifaceted role of mTOR in cellular stress responses. DNA Repair (Amst) , 3(8-9): 927–934
doi: 10.1016/j.dnarep.2004.03.012 pmid:15279778
64 Roux P P, Blenis J (2004). ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev , 68(2): 320–344
doi: 10.1128/MMBR.68.2.320-344.2004 pmid:15187187
65 Rubinfeld H, Seger R (2005). The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol , 31(2): 151–174
doi: 10.1385/MB:31:2:151 pmid:16170216
66 Saklatvala J (2004). The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr Opin Pharmacol , 4(4): 372–377
doi: 10.1016/j.coph.2004.03.009 pmid:15251131
67 Samuels I S, Saitta S C, Landreth G E (2009). MAP’ing CNS development and cognition: an ERKsome process. Neuron , 61(2): 160–167
doi: 10.1016/j.neuron.2009.01.001 pmid:19186160
68 Sawe N, Steinberg G, Zhao H (2008). Dual roles of the MAPK/ERK1/2 cell signaling pathway after stroke. J Neurosci Res , 86(8): 1659–1669
doi: 10.1002/jnr.21604 pmid:18189318
69 Schmid A C, Byrne R D, Vilar R, Woscholski R (2004). Bisperoxovanadium compounds are potent PTEN inhibitors. FEBS Lett , 566(1-3): 35–38
doi: 10.1016/j.febslet.2004.03.102 pmid:15147864
70 Schwab M E, Bartholdi D (1996). Degeneration and regeneration of axons in the lesioned spinal cord. Physiol Rev , 76(2): 319–370
pmid:8618960
71 Segal R A, Greenberg M E (1996). Intracellular signaling pathways activated by neurotrophic factors. Annu Rev Neurosci , 19(1): 463–489
doi: 10.1146/annurev.ne.19.030196.002335 pmid:8833451
72 Seglen P O, Gordon P B (1982). 3-Methyladenine: specific inhibitor of autophagic/lysosomal protein degradation in isolated rat hepatocytes. Proc Natl Acad Sci USA , 79(6): 1889–1892
doi: 10.1073/pnas.79.6.1889 pmid:6952238
73 Sekiguchi A, Kanno H, Ozawa H, Yamaya S, Itoi E (2012). Rapamycin promotes autophagy and reduces neural tissue damage and locomotor impairment after spinal cord injury in mice. J Neurotrauma , 29(5): 946–956
doi: 10.1089/neu.2011.1919 pmid:21806471
74 Shang J, Deguchi K, Yamashita T, Ohta Y, Zhang H, Morimoto N, Liu N, Zhang X, Tian F, Matsuura T, Funakoshi H, Nakamura T, Abe K (2010). Antiapoptotic and antiautophagic effects of glial cell line-derived neurotrophic factor and hepatocyte growth factor after transient middle cerebral artery occlusion in rats. J Neurosci Res , 88(10): 2197–2206
doi: 10.1002/jnr.22373 pmid:20175208
75 Shi G D, OuYang Y P, Shi J G, Liu Y, Yuan W, Jia L S (2011). PTEN deletion prevents ischemic brain injury by activating the mTOR signaling pathway. Biochem Biophys Res Commun , 404(4): 941–945
doi: 10.1016/j.bbrc.2010.12.085 pmid:21185267
76 Shi T J, Huang P, Mulder J, Ceccatelli S, Hokfelt T (2009). Expression of p-Akt in sensory neurons and spinal cord after peripheral nerve injury. Neurosignals , 17(3): 203–212
doi: 10.1159/000210400 pmid:19346757
77 Sury M D, Vorlet-Fawer L, Agarinis C, Yousefi S, Grandgirard D, Leib S L, Christen S (2011). Restoration of Akt activity by the bisperoxovanadium compound bpV(pic) attenuates hippocampal apoptosis in experimental neonatal pneumococcal meningitis. Neurobiol Dis , 41(1): 201–208
doi: 10.1016/j.nbd.2010.09.007 pmid:20875857
78 Tee A R, Fingar D C, Manning B D, Kwiatkowski D J, Cantley L C, Blenis J (2002). Tuberous sclerosis complex-1 and-2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci USA , 99(21): 13571–13576
doi: 10.1073/pnas.202476899 pmid:12271141
79 Titsworth W L, Onifer S M, Liu N K, Xu X M (2007). Focal phospholipases A2 group III injections induce cervical white matter injury and functional deficits with delayed recovery concomitant with Schwann cell remyelination. Exp Neurol , 207(1): 150–162
doi: 10.1016/j.expneurol.2007.06.010 pmid:17678647
80 Tran H T, Sanchez L, Brody D L (2012). Inhibition of JNK by a peptide inhibitor reduces traumatic brain injury-induced tauopathy in transgenic mice. J Neuropathol Exp Neurol , 71(2): 116–129
doi: 10.1097/NEN.0b013e3182456aed pmid:22249463
81 Treisman R (1996). Regulation of transcription by MAP kinase cascades. Curr Opin Cell Biol , 8(2): 205–215
doi: 10.1016/S0955-0674(96)80067-6 pmid:8791420
82 Vlahos C J, Matter W F, Hui K Y, Brown R F (1994). A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem , 269(7): 5241–5248
pmid:8106507
83 Walker C L, Liu N K, Xu X M (2012b). Bisperoxovanadium differentially affects cellular Akt and Erk activity and promotes oligodendrocyte and myelin sparing after hemi-contusive cervical spinal cord injury. J Neurotrauma , 29(10): A-30
84 Walker C L, Walker M J, Liu N K, Risberg E C, Gao X, Chen J, Xu X M (2012a). Systemic bisperoxovanadium activates Akt/mTOR, reduces autophagy, and enhances recovery following cervical spinal cord injury. PLoS ONE , 7(1): e30012
doi: 10.1371/journal.pone.0030012 pmid:22253859
85 Wang G, Barrett J W, Stanford M, Werden S J, Johnston J B, Gao X, Sun M, Cheng J Q, McFadden G(2006). Infection of human cancer cells with myxoma virus requires Akt activation via interaction with a viral ankyrin-repeat host range factor. Proc Natl Acad Sci U S A , 103: 4640–4645
86 Wang H Y, Crupi D, Liu J, Stucky A, Cruciata G, Di Rocco A, Friedman E, Quartarone A, Ghilardi M F (2011). Repetitive transcranial magnetic stimulation enhances BDNF-TrkB signaling in both brain and lymphocyte. J Neurosci , 31(30): 11044–11054
doi: 10.1523/JNEUROSCI.2125-11.2011 pmid:21795553
87 Wang K C, Koprivica V, Kim J A, Sivasankaran R, Guo Y, Neve R L, He Z (2002). Oligodendrocyte-myelin glycoprotein is a Nogo receptor ligand that inhibits neurite outgrowth. Nature , 417(6892): 941–944
doi: 10.1038/nature00867 pmid:12068310
88 White A, Pargellis C A, Studts J M, Werneburg B G, Farmer B T 2nd (2007). Molecular basis of MAPK-activated protein kinase 2:p38 assembly. Proc Natl Acad Sci USA , 104(15): 6353–6358
doi: 10.1073/pnas.0701679104 pmid:17395714
89 Wiley R G, Lemons L L, Kline R H 4th (2009). Neuropeptide Y receptor-expressing dorsal horn neurons: role in nocifensive reflex responses to heat and formalin. Neuroscience , 161(1): 139–147
doi: 10.1016/j.neuroscience.2008.12.017 pmid:19138726
90 Xu L, Chen S, Bergan R C (2006). MAPKAPK2 and HSP27 are downstream effectors of p38 MAP kinase-mediated matrix metalloproteinase type 2 activation and cell invasion in human prostate cancer. Oncogene , 25(21): 2987–2998
doi: 10.1038/sj.onc.1209337 pmid:16407830
91 Yan W, Zhang H, Bai X, Lu Y, Dong H, Xiong L (2011). Autophagy activation is involved in neuroprotection induced by hyperbaric oxygen preconditioning against focal cerebral ischemia in rats. Brain Res , 1402: 109–121
doi: 10.1016/j.brainres.2011.05.049 pmid:21684529
92 Yang P, Dankowski A, Hagg T (2007). Protein tyrosine phosphatase inhibition reduces degeneration of dopaminergic substantia nigra neurons and projections in 6-OHDA treated adult rats. Eur J Neurosci , 25(5): 1332–1340
doi: 10.1111/j.1460-9568.2007.05384.x pmid:17425559
93 Yezierski R P, Liu S, Ruenes G L, Kajander K J, Brewer K L (1998). Excitotoxic spinal cord injury: behavioral and morphological characteristics of a central pain model. Pain , 75(1): 141–155
doi: 10.1016/S0304-3959(97)00216-9 pmid:9539683
94 Yezierski R P, Santana M, Park S H, Madsen P W (1993). Neuronal degeneration and spinal cavitation following intraspinal injections of quisqualic acid in the rat. J Neurotrauma , 10(4): 445–456
doi: 10.1089/neu.1993.10.445 pmid:8145267
95 Yoshimura K, Ueno M, Lee S, Nakamura Y, Sato A, Yoshimura K, Kishima H, Yoshimine T, Yamashita T (2011). c-Jun N-terminal kinase induces axonal degeneration and limits motor recovery after spinal cord injury in mice. Neurosci Res , 71(3): 266–277
doi: 10.1016/j.neures.2011.07.1830 pmid:21824499
96 Yu C G, Yezierski R P (2005b). Activation of the ERK1/2 signaling cascade by excitotoxic spinal cord injury. Brain Res Mol Brain Res , 138(2): 244–255
doi: 10.1016/j.molbrainres.2005.04.013 pmid:15922485
97 Yu C G, Yezierski R P, Joshi A, Raza K, Li Y, Geddes J W (2010). Involvement of ERK2 in traumatic spinal cord injury. J Neurochem , 113(1): 131–142
doi: 10.1111/j.1471-4159.2010.06579.x pmid:20067580
98 Yu F, Narasimhan P, Saito A, Liu J, Chan P H (2008). Increased expression of a proline-rich Akt substrate (PRAS40) in human copper/zinc-superoxide dismutase transgenic rats protects motor neurons from death after spinal cord injury. J Cereb Blood Flow Metab , 28(1): 44–52
doi: 10.1038/sj.jcbfm.9600501 pmid:17457363
99 Yu F, Sugawara T, Maier C M, Hsieh L B, Chan P H (2005a). Akt/Bad signaling and motor neuron survival after spinal cord injury. Neurobiol Dis , 20(2): 491–499
doi: 10.1016/j.nbd.2005.04.004 pmid:15896972
100 Yune T Y, Park H G, Lee J Y, Oh T H (2008). Estrogen-induced Bcl-2 expression after spinal cord injury is mediated through phosphoinositide-3-kinase/Akt-dependent CREB activation. J Neurotrauma , 25(9): 1121–1131
doi: 10.1089/neu.2008.0544 pmid:18785877
101 Zhang L, Ma Z, Smith G M, Wen X, Pressman Y, Wood P M, Xu X M (2009). GDNF-enhanced axonal regeneration and myelination following spinal cord injury is mediated by primary effects on neurons. Glia , 57(11): 1178–1191
doi: 10.1002/glia.20840 pmid:19170182
102 Zhang Q G, Wu D N, Han D, Zhang G Y (2007). Critical role of PTEN in the coupling between PI3K/Akt and JNK1/2 signaling in ischemic brain injury. FEBS Lett , 581(3): 495–505
doi: 10.1016/j.febslet.2006.12.055 pmid:17239858
103 Zhang S, Xia Y Y, Lim H C, Tang F R, Feng Z W (2010). NCAM-mediated locomotor recovery from spinal cord contusion injury involves neuroprotection, axon regeneration, and synaptogenesis. Neurochem Int , 56(8): 919–929
doi: 10.1016/j.neuint.2010.03.023 pmid:20381564
104 Zhao Y, Luo P, Guo Q, Li S, Zhang L, Zhao M, Xu H, Yang Y, Poon W, Fei Z (2012). Interactions between SIRT1 and MAPK/ERK regulate neuronal apoptosis induced by traumatic brain injury in vitro and in vivo. Exp Neurol , 237(2): 489–498
doi: 10.1016/j.expneurol.2012.07.004 pmid:22828134
105 Zhao Z, Liu N, Huang J, Lu P H, Xu X M (2011). Inhibition of cPLA2 activation by Ginkgo biloba extract protects spinal cord neurons from glutamate excitotoxicity and oxidative stress-induced cell death. J Neurochem , 116(6): 1057–1065
doi: 10.1111/j.1471-4159.2010.07160.x pmid:21182525
106 Zheng C, Lin Z, Zhao Z J, Yang Y, Niu H, Shen X (2006). MAPK-activated protein kinase-2 (MK2)-mediated formation and phosphorylation-regulated dissociation of the signal complex consisting of p38, MK2, Akt, and Hsp27. J Biol Chem , 281(48): 37215–37226
doi: 10.1074/jbc.M603622200 pmid:17015449
107 Zhong H, Bowen J P (2011). Recent advances in small molecule inhibitors of VEGFR and EGFR signaling pathways. Curr Top Med Chem , 11(12): 1571–1590
doi: 10.2174/156802611795860924 pmid:21510831
108 Zhong L M, Zong Y, Sun L, Guo J Z, Zhang W, He Y, Song R, Wang W M, Xiao C J, Lu D (2012). Resveratrol inhibits inflammatory responses via the mammalian target of rapamycin signaling pathway in cultured LPS-stimulated microglial cells. PLoS ONE , 7(2): e32195
doi: 10.1371/journal.pone.0032195 pmid:22363816
[1] Bharti Chaudhary, Sonam Agarwal, Renu Bist. Invulnerability of bromelain against oxidative degeneration and cholinergic deficits imposed by dichlorvos in mice brains[J]. Front. Biol., 2018, 13(1): 56-62.
[2] Mohammad Jodeiri Farshbaf. Succinate dehydrogenase in Parkinson’s disease[J]. Front. Biol., 2017, 12(3): 175-182.
[3] Andrew Brandmaier, Sheng-Qi Hou, Sandra Demaria, Silvia C. Formenti, Wen H. Shen. PTEN at the interface of immune tolerance and tumor suppression[J]. Front. Biol., 2017, 12(3): 163-174.
[4] Xin Xin Yu,Vimala Bondada,Colin Rogers,Carolyn A. Meyer,Chen Guang Yu. Targeting ERK1/2-calpain 1-NF-κB signal transduction in secondary tissue damage and astrogliosis after spinal cord injury[J]. Front. Biol., 2015, 10(5): 427-438.
[5] Jamie K. WONG,Hongyan ZOU. Reshaping the chromatin landscape after spinal cord injury[J]. Front. Biol., 2014, 9(5): 356-366.
[6] Yiping LI,Chandler L. WALKER,Yi Ping ZHANG,Christopher B. SHIELDS,Xiao-Ming XU. Surgical decompression in acute spinal cord injury: A review of clinical evidence, animal model studies, and potential future directions of investigation[J]. Front. Biol., 2014, 9(2): 127-136.
[7] Kundan KUMAR, Dhammaprakash Pandhari WANKHEDE, Alok Krishna SINHA. Signal convergence through the lenses of MAP kinases: paradigms of stress and hormone signaling in plants[J]. Front Biol, 2013, 8(1): 109-118.
[8] Bin XING, Guoying BING. Microglia activation-induced mesencephalic dopaminergic neurodegeneration--- an in vitro model for Parkinson’s disease[J]. Front Biol, 2012, 7(5): 404-411.
[9] Chen Guang YU. Distinct roles for ERK1 and ERK2 in pathophysiology of CNS[J]. Front Biol, 2012, 7(3): 267-276.
[10] Tong LUO, Wei-Hua WU, Bo-Shiun CHEN. NMDA receptor signaling: death or survival?[J]. Front Biol, 2011, 6(6): 468-476.
[11] Hedong LI, Wei SHI. Neural progenitor diversity and their therapeutic potential for spinal cord repair[J]. Front Biol, 2010, 5(5): 386-395.
[12] YUAN Wuzhou, HUANG Xinqiong, ZHU Chuanbing, WANG Yuequn, LI Yongqing, WU Xiushan. Role of the domains of human gene ZNF569 in MAPK pathway[J]. Front. Biol., 2006, 1(4): 357-361.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed