|
|
Microglia activation-induced mesencephalic dopaminergic neurodegeneration--- an in vitro model for Parkinson’s disease |
Bin XING1, Guoying BING2( ) |
1. Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA; 2. Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA |
|
|
Abstract Uncontrolled and chronic microglia activation has been implicated in the process of dopaminergic neuron degeneration in sporadic Parkinson’s disease (PD). Elevated proinflammatory mediators, presumably from activated microglia (e.g., cytokines, PGE2, nitric oxide, and superoxide radical), have been observed in PD patients and are accompanied by dopaminergic neuronal loss. Preclinical studies have demonstrated the deleterious effects of proinflammatory mediators in various in vivo and in vitro models of PD. The use of in vitro studies provides a unique tool to investigate the interaction between neurons and microglia and is especially valuable when considering the role of activated microglia in neuronal death. Here we summarize findings highlighting the potential mechanisms of microglia-mediated neurodegeneration in PD.
|
Keywords
dopaminergic neurons
microglia activation
nitric oxide
cytokines
PGE2
p38 MAPK
|
Corresponding Author(s):
BING Guoying,Email:gbing@uky.edu
|
Issue Date: 01 October 2012
|
|
1 |
Arimoto T, Bing G (2003). Up-regulation of inducible nitric oxide synthase in the substantia nigra by lipopolysaccharide causes microglial activation and neurodegeneration. Neurobiol Dis , 12(1): 35–45 doi: 10.1016/S0969-9961(02)00017-7 pmid:12609487
|
2 |
Arimoto T, Choi D Y, Lu X, Liu M, Nguyen X V, Zheng N, Stewart C A, Kim H C, Bing G (2007). Interleukin-10 protects against inflammation-mediated degeneration of dopaminergic neurons in substantia nigra. Neurobiol Aging , 28(6): 894–906 doi: 10.1016/j.neurobiolaging.2006.04.011 pmid:21887889
|
3 |
Betarbet R, Sherer T B, MacKenzie G, Garcia-Osuna M, Panov A V, Greenamyre J T (2000). Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci , 3(12): 1301–1306 doi: 10.1038/81834 pmid:11100151
|
4 |
Bing G Y, Lu N A, (1998). Microglia Mediaed Dopaminergic Cell Death in the Substantia nigra: a New Animal Model for Parkinson's Disease. Neuroscience Abstracts
|
5 |
Blandini F, Armentero M T (2012). Animal models of Parkinson’s disease. FEBS J , 279(7): 1156–1166 doi: 10.1111/j.1742-4658.2012.08491.x pmid:22251459
|
6 |
Block M L, Hong J S (2005). Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol , 76(2): 77–98 doi: 10.1016/j.pneurobio.2005.06.004 pmid:16081203
|
7 |
Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch E C (1994). Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett , 172(1–2): 151–154 doi: 10.1016/0304-3940(94)90684-X pmid:8084523
|
8 |
Brooks A I, Chadwick C A, Gelbard H A, Cory-Slechta D A, Federoff H J (1999). Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res , 823(1–2): 1–10 doi: 10.1016/S0006-8993(98)01192-5 pmid:10095006
|
9 |
Cannon J R, Tapias V, Na H M, Honick A S, Drolet R E, Greenamyre J T (2009). A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis , 34(2): 279–290 doi: 10.1016/j.nbd.2009.01.016 pmid:19385059
|
10 |
Carrasco E, Casper D, Werner P (2007). PGE(2) receptor EP1 renders dopaminergic neurons selectively vulnerable to low-level oxidative stress and direct PGE(2) neurotoxicity. J Neurosci Res , 85(14): 3109–3117 doi: 10.1002/jnr.21425 pmid:17868147
|
11 |
Casta?o A, Herrera A J, Cano J, Machado A (1998). Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem , 70(4): 1584–1592 doi: 10.1046/j.1471-4159.1998.70041584.x pmid:9580157
|
12 |
Choi D Y, Liu M, Hunter R L, Cass W A, Pandya J D, Sullivan P G, Shin E J, Kim H C, Gash D M, Bing G (2009). Striatal neuroinflammation promotes Parkinsonism in rats. PLoS ONE , 4(5): e5482 doi: 10.1371/journal.pone.0005482 pmid:19424495
|
13 |
Choi W S, Eom D S, Han B S, Kim W K, Han B H, Choi E J, Oh T H, Markelonis G J, Cho J W, Oh Y J (2004). Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase-8- and-9-mediated apoptotic pathways in dopaminergic neurons. J Biol Chem , 279(19): 20451–20460 doi: 10.1074/jbc.M311164200 pmid:14993216
|
14 |
Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz J B (2000). Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem , 74(5): 2213–2216 doi: 10.1046/j.1471-4159.2000.0742213.x pmid:10800968
|
15 |
Du Y, Ma Z, Lin S, Dodel R C, Gao F, Bales K R, Triarhou L C, Chernet E, Perry K W, Nelson D L, Luecke S, Phebus L A, Bymaster F P, Paul S M (2001). Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA , 98(25): 14669–14674 doi: 10.1073/pnas.251341998 pmid:11724929
|
16 |
Fontaine V, Mohand-Said S (2002). Neurodegenerative and neuroprotective effects of tumor necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. The Journal of neuroscience , 22(7): RC216
|
17 |
Gao H M, Jiang J, Wilson B, Zhang W, Hong J S, Liu B (2002). Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem , 81(6): 1285–1297 doi: 10.1046/j.1471-4159.2002.00928.x pmid:12068076
|
18 |
Gao H M, Kotzbauer P T (2008). Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. The Journal of neuroscience, 28(30): 7687–7698
|
19 |
Gao H M, Zhou H (2011). HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration.” J Neurosci, 31(3): 1081–1092
|
20 |
Gao L, Zackert W E, Hasford J J, Danekis M E, Milne G L, Remmert C, Reese J, Yin H, Tai H H, Dey S K, Porter N A, Morrow J D (2003). Formation of prostaglandins E2 and D2 via the isoprostane pathway: a mechanism for the generation of bioactive prostaglandins independent of cyclooxygenase. J Biol Chem , 278(31): 28479–28489 doi: 10.1074/jbc.M303984200 pmid:12746435
|
21 |
Gayle D A, Ling Z, Tong C, Landers T, Lipton J W, Carvey P M (2002). Lipopolysaccharide (LPS)-induced dopamine cell loss in culture: roles of tumor necrosis factor-alpha, interleukin-1beta, and nitric oxide. Brain Res Dev Brain Res , 133(1): 27–35 doi: 10.1016/S0165-3806(01)00315-7 pmid:11850061
|
22 |
Ghatan S, Larner S, Kinoshita Y, Hetman M, Patel L, Xia Z, Youle R J, Morrison R S (2000). p38 MAP kinase mediates bax translocation in nitric oxide-induced apoptosis in neurons. J Cell Biol , 150(2): 335–347 doi: 10.1083/jcb.150.2.335 pmid:10908576
|
23 |
Gomez-Lazaro M, Galindo M F, Concannon C G, Segura M F, Fernandez-Gomez F J, Llecha N, Comella J X, Prehn J H, Jordan J (2008). 6-Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPK-mediated, p53-independent activation of Bax and PUMA. J Neurochem , 104(6): 1599–1612 doi: 10.1111/j.1471-4159.2007.05115.x pmid:17996028
|
24 |
Good P F, Hsu A, Werner P, Perl D P, Olanow C W (1998). Protein nitration in Parkinson’s disease. J Neuropathol Exp Neurol , 57(4): 338–342 doi: 10.1097/00005072-199804000-00006 pmid:9600227
|
25 |
Hald A, Lotharius J (2005). Oxidative stress and inflammation in Parkinson’s disease: is there a causal link? Exp Neurol , 193(2): 279–290 doi: 10.1016/j.expneurol.2005.01.013 pmid:15869932
|
26 |
Hartmann A, Troadec J D, Hunot S, Kikly K, Faucheux B A, Mouatt-Prigent A, Ruberg M, Agid Y, Hirsch E C (2001). Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. J Neurosci , 21(7): 2247–2255 pmid:11264300
|
27 |
He Y, Appel S, Le W (2001). Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res , 909(1–2): 187–193 doi: 10.1016/S0006-8993(01)02681-6 pmid:11478935
|
28 |
Herrera A J, Casta?o A, Venero J L, Cano J, Machado A (2000). The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis , 7(4): 429–447 doi: 10.1006/nbdi.2000.0289 pmid:10964613
|
29 |
Hodara R, Norris E H, Giasson B I, Mishizen-Eberz A J, Lynch D R, Lee V M, Ischiropoulos H (2004). Functional consequences of alpha-synuclein tyrosine nitration: diminished binding to lipid vesicles and increased fibril formation. J Biol Chem , 279(46): 47746–47753 doi: 10.1074/jbc.M408906200 pmid:15364911
|
30 |
Hunot S, Boissière F, Faucheux B, Brugg B, Mouatt-Prigent A, Agid Y, Hirsch E C (1996). Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience , 72(2): 355–363 doi: 10.1016/0306-4522(95)00578-1 pmid:8737406
|
31 |
Hunot S, Dugas N (1999). FcepsilonRII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. The Journal of neuroscience , 19(9): 3440–3447
|
32 |
Hunter R L, Cheng B, Choi D Y, Liu M, Liu S, Cass W A, Bing G (2009). Intrastriatal lipopolysaccharide injection induces parkinsonism in C57/B6 mice. J Neurosci Res , 87(8): 1913–1921 doi: 10.1002/jnr.22012 pmid:19224579
|
33 |
Hunter R L, Dragicevic N, Seifert K, Choi D Y, Liu M, Kim H C, Cass W A, Sullivan P G, Bing G (2007). Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J Neurochem , 100(5): 1375–1386 doi: 10.1111/j.1471-4159.2006.04327.x pmid:17254027
|
34 |
Iravani M M, Kashefi K, Mander P, Rose S, Jenner P (2002). Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration. Neuroscience , 110(1): 49–58 doi: 10.1016/S0306-4522(01)00562-0 pmid:11882372
|
35 |
Jenner P, Olanow C W (1996). Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology , 47(6 Suppl 3): S161–S170 doi: 10.1212/WNL.47.6_Suppl_3.161S pmid:8959985
|
36 |
Kim W G, Mohney R P (2000). Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci , 20(16): 6309–6316
|
37 |
Kirik D, Rosenblad C, Bj?rklund A (1998). Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol , 152(2): 259–277 doi: 10.1006/exnr.1998.6848 pmid:9710526
|
38 |
Knott C, Stern G, Wilkin G P (2000). Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and-2. Mol Cell Neurosci , 16(6): 724–739 doi: 10.1006/mcne.2000.0914 pmid:11124893
|
39 |
Langston J W, Ballard P, Tetrud J W, Irwin I (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science , 219(4587): 979–980 doi: 6823561" target="_blank">10.1126/science. pmid:6823561 pmid:6823561
|
40 |
Lapointe N, St-Hilaire M (2004). Rotenone induces non-specific central nervous system and systemic toxicity. FASEB journal , 18(6): 717–719
|
41 |
Li R, Yang L (2004). Tumor necrosis factor death receptor signaling cascade is required for amyloid-beta protein-induced neuron death. The Journal of neuroscience , 24(7): 1760–1771
|
42 |
Liberatore G T, Jackson-Lewis V, Vukosavic S, Mandir A S, Vila M, McAuliffe W G, Dawson V L, Dawson T M, Przedborski S (1999). Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med , 5(12): 1403–1409 doi: 10.1038/70978 pmid:10581083
|
43 |
Loeffler D A, DeMaggio A J, Juneau P L, Havaich M K, LeWitt P A (1994). Effects of enhanced striatal dopamine turnover in vivo on glutathione oxidation. Clin Neuropharmacol , 17(4): 370–379 doi: 10.1097/00002826-199408000-00009 pmid:9316685
|
44 |
Long-Smith C M, Collins L, Toulouse A, Sullivan A M, Nolan Y M (2010). Interleukin-1β contributes to dopaminergic neuronal death induced by lipopolysaccharide-stimulated rat glia in vitro. J Neuroimmunol , 226(1–2): 20–26 doi: 10.1016/j.jneuroim.2010.05.030 pmid:20605229
|
45 |
Lozano A M, Lang A E, Hutchison W D, Dostrovsky J O (1998). New developments in understanding the etiology of Parkinson’s disease and in its treatment. Curr Opin Neurobiol , 8(6): 783–790 doi: 10.1016/S0959-4388(98)80122-0 pmid:9914234
|
46 |
Marchetti L, Klein M, Schlett K, Pfizenmaier K, Eisel U L (2004). Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway. J Biol Chem , 279(31): 32869–32881 doi: 10.1074/jbc.M311766200 pmid:15155767
|
47 |
McCoy M K, Martinez T N (2006). Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson's disease. The Journal of neuroscience , 26(37): 9365–9375
|
48 |
McGeer P L, Itagaki S, Akiyama H, McGeer E G (1988a). Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol , 24(4): 574–576 doi: 10.1002/ana.410240415 pmid:3239957
|
49 |
McGeer P L, Itagaki S, Boyes B E, McGeer E G (1988b). Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology , 38(8): 1285–1291 doi: 10.1212/WNL.38.8.1285 pmid:3399080
|
50 |
McGeer P L, Schwab C, Parent A, Doudet D (2003). Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol , 54(5): 599–604 doi: 10.1002/ana.10728 pmid:14595649
|
51 |
Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T (1994a). Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett , 180(2): 147–150 doi: 10.1016/0304-3940(94)90508-8 pmid:7700568
|
52 |
Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994b). Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett , 165(1–2): 208–210 doi: 10.1016/0304-3940(94)90746-3 pmid:8015728
|
53 |
Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T (2000). Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm , 107(3): 335–341 doi: 10.1007/s007020050028 pmid:10821442
|
54 |
Murray J, Taylor S W, Zhang B, Ghosh S S, Capaldi R A (2003). Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry. J Biol Chem , 278(39): 37223–37230 doi: 10.1074/jbc.M305694200 pmid:12857734
|
55 |
Nagatsu T, Mogi M, Ichinose H, Togari A (2000). Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm Suppl , (60): 277–290 pmid:11205147
|
56 |
Nakamura Y (2002). Regulating factors for microglial activation. Biol Pharm Bull , 25(8): 945–953 doi: 10.1248/bpb.25.945 pmid:12186424
|
57 |
Olanow C W, Tatton W G (1999). Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci , 22(1): 123–144 doi: 10.1146/annurev.neuro.22.1.123 pmid:10202534
|
58 |
Pawate S, Shen Q, Fan F, Bhat N R (2004). Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res , 77(4): 540–551 doi: 10.1002/jnr.20180 pmid:15264224
|
59 |
Paxinou E, Chen Q (2001). Induction of alpha-synuclein aggregation by intracellular nitrative insult. The Journal of neuroscience , 21(20): 8053–8061
|
60 |
Perese D A, Ulman J, Viola J, Ewing S E, Bankiewicz K S (1989). A 6-hydroxydopamine-induced selective parkinsonian rat model. Brain Res , 494(2): 285–293 doi: 10.1016/0006-8993(89)90597-0 pmid:2528389
|
61 |
Przedborski S, Chen Q, Vila M, Giasson B I, Djaldatti R, Vukosavic S, Souza J M, Jackson-Lewis V, Lee V M, Ischiropoulos H (2001). Oxidative post-translational modifications of alpha-synuclein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. J Neurochem , 76(2): 637–640 doi: 10.1046/j.1471-4159.2001.00174.x pmid:11208927
|
62 |
Przedborski S, Levivier M, Jiang H, Ferreira M, Jackson-Lewis V, Donaldson D, Togasaki D M (1995). Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience , 67(3): 631–647 doi: 10.1016/0306-4522(95)00066-R pmid:7675192
|
63 |
Qin L, Liu Y, Wang T, Wei S J, Block M L, Wilson B, Liu B, Hong J S (2004). NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem , 279(2): 1415–1421 doi: 10.1074/jbc.M307657200 pmid:14578353
|
64 |
Ransohoff R M, Perry V H (2009). Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol , 27(1): 119–145 doi: 10.1146/annurev.immunol.021908.132528 pmid:19302036
|
65 |
Shavali S, Combs C K, Ebadi M (2006). Reactive macrophages increase oxidative stress and alpha-synuclein nitration during death of dopaminergic neuronal cells in co-culture: relevance to Parkinson’s disease. Neurochem Res , 31(1): 85–94 doi: 10.1007/s11064-005-9233-x pmid:16475001
|
66 |
Sherer T B, Kim J H, Betarbet R, Greenamyre J T (2003). Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol , 179(1): 9–16 doi: 10.1006/exnr.2002.8072 pmid:12504863
|
67 |
Sherer T B, Richardson J R, Testa C M, Seo B B, Panov A V, Yagi T, Matsuno-Yagi A, Miller G W, Greenamyre J T (2007). Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease. J Neurochem , 100(6): 1469–1479 pmid:17241123
|
68 |
Tiwari M, Lopez-Cruzan M, Morgan W W, Herman B (2011). Loss of caspase-2-dependent apoptosis induces autophagy after mitochondrial oxidative stress in primary cultures of young adult cortical neurons. J Biol Chem , 286(10): 8493–8506 doi: 10.1074/jbc.M110.163824 pmid:21216964
|
69 |
Vijitruth R, Liu M, Choi D Y, Nguyen X V, Hunter R L, Bing G (2006). Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson’s disease. J Neuroinflammation , 3(1): 6 doi: 10.1186/1742-2094-3-6 pmid:16566823
|
70 |
Wang, T., Pei, Z., (2005). MPP+-induced COX-2 activation and subsequent dopaminergic neurodegeneration. FASEB journal , 19(9): 1134–1136
|
71 |
Wu D C, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi D K, Ischiropoulos H, Przedborski S (2002). Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci , 22(5): 1763–1771 pmid:11880505
|
72 |
Wu D C, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S (2003). NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA , 100(10): 6145–6150 doi: 10.1073/pnas.0937239100 pmid:12721370
|
73 |
Xing B, Liu M, Bing G (2007). Neuroprotection with pioglitazone against LPS insult on dopaminergic neurons may be associated with its inhibition of NF-kappaB and JNK activation and suppression of COX-2 activity. J Neuroimmunol , 192(1–2): 89–98 doi: 10.1016/j.jneuroim.2007.09.029 pmid:17976742
|
74 |
Xing B, Xin T, Hunter R L, Bing G (2008). Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt. J Neuroinflammation , 5(1): 4 doi: 10.1186/1742-2094-5-4 pmid:18205920
|
75 |
Zhang F, Shi J S, Zhou H, Wilson B, Hong J S, Gao H M (2010). Resveratrol protects dopamine neurons against lipopolysaccharide-induced neurotoxicity through its anti-inflammatory actions. Mol Pharmacol , 78(3): 466–477 doi: 10.1124/mol.110.064535 pmid:20554604
|
76 |
Zhang J, Perry G, Smith M A, Robertson D, Olson S J, Graham D G, Montine T J (1999). Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol , 154(5): 1423–1429 doi: 10.1016/S0002-9440(10)65396-5 pmid:10329595
|
77 |
Zhang J, Stanton D M, Nguyen X V, Liu M, Zhang Z, Gash D, Bing G (2005). Intrapallidal lipopolysaccharide injection increases iron and ferritin levels in glia of the rat substantia nigra and induces locomotor deficits. Neuroscience , 135(3): 829–838 doi: 10.1016/j.neuroscience.2005.06.049 pmid:16165292
|
78 |
Zhang W, Wang T (2005). Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson's disease. FASEB journal , 19(6): 533–542
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|