Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2012, Vol. 7 Issue (5) : 404-411    https://doi.org/10.1007/s11515-012-1239-6
REVIEW
Microglia activation-induced mesencephalic dopaminergic neurodegeneration--- an in vitro model for Parkinson’s disease
Bin XING1, Guoying BING2()
1. Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536, USA; 2. Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY 40536, USA
 Download: PDF(203 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Uncontrolled and chronic microglia activation has been implicated in the process of dopaminergic neuron degeneration in sporadic Parkinson’s disease (PD). Elevated proinflammatory mediators, presumably from activated microglia (e.g., cytokines, PGE2, nitric oxide, and superoxide radical), have been observed in PD patients and are accompanied by dopaminergic neuronal loss. Preclinical studies have demonstrated the deleterious effects of proinflammatory mediators in various in vivo and in vitro models of PD. The use of in vitro studies provides a unique tool to investigate the interaction between neurons and microglia and is especially valuable when considering the role of activated microglia in neuronal death. Here we summarize findings highlighting the potential mechanisms of microglia-mediated neurodegeneration in PD.

Keywords dopaminergic neurons      microglia activation      nitric oxide      cytokines      PGE2      p38 MAPK     
Corresponding Author(s): BING Guoying,Email:gbing@uky.edu   
Issue Date: 01 October 2012
 Cite this article:   
Guoying BING,Bin XING. Microglia activation-induced mesencephalic dopaminergic neurodegeneration--- an in vitro model for Parkinson’s disease[J]. Front Biol, 2012, 7(5): 404-411.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-012-1239-6
https://academic.hep.com.cn/fib/EN/Y2012/V7/I5/404
Fig.1  Schematic summary of the key molecules and their signaling cascades in the activated microglia and dopaminergic neuron. Upon the stimuli from LPS or other extracellular molecules such as HMGB1 and ones released from injured neurons such as α-synuclein, microglia are activated and release PHOX-mediated free radicals such as superoxide, and MAPKs signaling-mediated production of nitric oxide, progstagland E2, and cytokines such as TNFα. The superoxide and nitric oxide can readily react and form highly diffusible cytoxic molecules peroxynitrite (ONOO-), which can direclty cause the nitration of the key proteins such as α-synuclein and lead to its aggregation, causing neuronal apoptosis probably via inhibiting the function of ubiqutin proteasome system. In addition, ONOO- can react with mitochondrial membrane and cause its dysfunction via inhibition of complex I, enhancing the intracellular burden of oxidative stress. Microglia-derived PGE induces neuronal death via its receptor EP1, though no downstream signaling has been studied in the neurons. Upon binding to its TNFR1 receptor, the overwhelming signaling from TNFα may initiate the activation of proinflammatory signaling such as p38 MAPK, leading to the activation of caspases signaling, ultimately leading to neuronal apoptosis.
Fig.1  Schematic summary of the key molecules and their signaling cascades in the activated microglia and dopaminergic neuron. Upon the stimuli from LPS or other extracellular molecules such as HMGB1 and ones released from injured neurons such as α-synuclein, microglia are activated and release PHOX-mediated free radicals such as superoxide, and MAPKs signaling-mediated production of nitric oxide, progstagland E2, and cytokines such as TNFα. The superoxide and nitric oxide can readily react and form highly diffusible cytoxic molecules peroxynitrite (ONOO-), which can direclty cause the nitration of the key proteins such as α-synuclein and lead to its aggregation, causing neuronal apoptosis probably via inhibiting the function of ubiqutin proteasome system. In addition, ONOO- can react with mitochondrial membrane and cause its dysfunction via inhibition of complex I, enhancing the intracellular burden of oxidative stress. Microglia-derived PGE induces neuronal death via its receptor EP1, though no downstream signaling has been studied in the neurons. Upon binding to its TNFR1 receptor, the overwhelming signaling from TNFα may initiate the activation of proinflammatory signaling such as p38 MAPK, leading to the activation of caspases signaling, ultimately leading to neuronal apoptosis.
1 Arimoto T, Bing G (2003). Up-regulation of inducible nitric oxide synthase in the substantia nigra by lipopolysaccharide causes microglial activation and neurodegeneration. Neurobiol Dis , 12(1): 35–45
doi: 10.1016/S0969-9961(02)00017-7 pmid:12609487
2 Arimoto T, Choi D Y, Lu X, Liu M, Nguyen X V, Zheng N, Stewart C A, Kim H C, Bing G (2007). Interleukin-10 protects against inflammation-mediated degeneration of dopaminergic neurons in substantia nigra. Neurobiol Aging , 28(6): 894–906
doi: 10.1016/j.neurobiolaging.2006.04.011 pmid:21887889
3 Betarbet R, Sherer T B, MacKenzie G, Garcia-Osuna M, Panov A V, Greenamyre J T (2000). Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci , 3(12): 1301–1306
doi: 10.1038/81834 pmid:11100151
4 Bing G Y, Lu N A, (1998). Microglia Mediaed Dopaminergic Cell Death in the Substantia nigra: a New Animal Model for Parkinson's Disease. Neuroscience Abstracts
5 Blandini F, Armentero M T (2012). Animal models of Parkinson’s disease. FEBS J , 279(7): 1156–1166
doi: 10.1111/j.1742-4658.2012.08491.x pmid:22251459
6 Block M L, Hong J S (2005). Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol , 76(2): 77–98
doi: 10.1016/j.pneurobio.2005.06.004 pmid:16081203
7 Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch E C (1994). Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett , 172(1–2): 151–154
doi: 10.1016/0304-3940(94)90684-X pmid:8084523
8 Brooks A I, Chadwick C A, Gelbard H A, Cory-Slechta D A, Federoff H J (1999). Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss. Brain Res , 823(1–2): 1–10
doi: 10.1016/S0006-8993(98)01192-5 pmid:10095006
9 Cannon J R, Tapias V, Na H M, Honick A S, Drolet R E, Greenamyre J T (2009). A highly reproducible rotenone model of Parkinson’s disease. Neurobiol Dis , 34(2): 279–290
doi: 10.1016/j.nbd.2009.01.016 pmid:19385059
10 Carrasco E, Casper D, Werner P (2007). PGE(2) receptor EP1 renders dopaminergic neurons selectively vulnerable to low-level oxidative stress and direct PGE(2) neurotoxicity. J Neurosci Res , 85(14): 3109–3117
doi: 10.1002/jnr.21425 pmid:17868147
11 Casta?o A, Herrera A J, Cano J, Machado A (1998). Lipopolysaccharide intranigral injection induces inflammatory reaction and damage in nigrostriatal dopaminergic system. J Neurochem , 70(4): 1584–1592
doi: 10.1046/j.1471-4159.1998.70041584.x pmid:9580157
12 Choi D Y, Liu M, Hunter R L, Cass W A, Pandya J D, Sullivan P G, Shin E J, Kim H C, Gash D M, Bing G (2009). Striatal neuroinflammation promotes Parkinsonism in rats. PLoS ONE , 4(5): e5482
doi: 10.1371/journal.pone.0005482 pmid:19424495
13 Choi W S, Eom D S, Han B S, Kim W K, Han B H, Choi E J, Oh T H, Markelonis G J, Cho J W, Oh Y J (2004). Phosphorylation of p38 MAPK induced by oxidative stress is linked to activation of both caspase-8- and-9-mediated apoptotic pathways in dopaminergic neurons. J Biol Chem , 279(19): 20451–20460
doi: 10.1074/jbc.M311164200 pmid:14993216
14 Dehmer T, Lindenau J, Haid S, Dichgans J, Schulz J B (2000). Deficiency of inducible nitric oxide synthase protects against MPTP toxicity in vivo. J Neurochem , 74(5): 2213–2216
doi: 10.1046/j.1471-4159.2000.0742213.x pmid:10800968
15 Du Y, Ma Z, Lin S, Dodel R C, Gao F, Bales K R, Triarhou L C, Chernet E, Perry K W, Nelson D L, Luecke S, Phebus L A, Bymaster F P, Paul S M (2001). Minocycline prevents nigrostriatal dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA , 98(25): 14669–14674
doi: 10.1073/pnas.251341998 pmid:11724929
16 Fontaine V, Mohand-Said S (2002). Neurodegenerative and neuroprotective effects of tumor necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. The Journal of neuroscience , 22(7): RC216
17 Gao H M, Jiang J, Wilson B, Zhang W, Hong J S, Liu B (2002). Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem , 81(6): 1285–1297
doi: 10.1046/j.1471-4159.2002.00928.x pmid:12068076
18 Gao H M, Kotzbauer P T (2008). Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. The Journal of neuroscience, 28(30): 7687–7698
19 Gao H M, Zhou H (2011). HMGB1 acts on microglia Mac1 to mediate chronic neuroinflammation that drives progressive neurodegeneration.” J Neurosci, 31(3): 1081–1092
20 Gao L, Zackert W E, Hasford J J, Danekis M E, Milne G L, Remmert C, Reese J, Yin H, Tai H H, Dey S K, Porter N A, Morrow J D (2003). Formation of prostaglandins E2 and D2 via the isoprostane pathway: a mechanism for the generation of bioactive prostaglandins independent of cyclooxygenase. J Biol Chem , 278(31): 28479–28489
doi: 10.1074/jbc.M303984200 pmid:12746435
21 Gayle D A, Ling Z, Tong C, Landers T, Lipton J W, Carvey P M (2002). Lipopolysaccharide (LPS)-induced dopamine cell loss in culture: roles of tumor necrosis factor-alpha, interleukin-1beta, and nitric oxide. Brain Res Dev Brain Res , 133(1): 27–35
doi: 10.1016/S0165-3806(01)00315-7 pmid:11850061
22 Ghatan S, Larner S, Kinoshita Y, Hetman M, Patel L, Xia Z, Youle R J, Morrison R S (2000). p38 MAP kinase mediates bax translocation in nitric oxide-induced apoptosis in neurons. J Cell Biol , 150(2): 335–347
doi: 10.1083/jcb.150.2.335 pmid:10908576
23 Gomez-Lazaro M, Galindo M F, Concannon C G, Segura M F, Fernandez-Gomez F J, Llecha N, Comella J X, Prehn J H, Jordan J (2008). 6-Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPK-mediated, p53-independent activation of Bax and PUMA. J Neurochem , 104(6): 1599–1612
doi: 10.1111/j.1471-4159.2007.05115.x pmid:17996028
24 Good P F, Hsu A, Werner P, Perl D P, Olanow C W (1998). Protein nitration in Parkinson’s disease. J Neuropathol Exp Neurol , 57(4): 338–342
doi: 10.1097/00005072-199804000-00006 pmid:9600227
25 Hald A, Lotharius J (2005). Oxidative stress and inflammation in Parkinson’s disease: is there a causal link? Exp Neurol , 193(2): 279–290
doi: 10.1016/j.expneurol.2005.01.013 pmid:15869932
26 Hartmann A, Troadec J D, Hunot S, Kikly K, Faucheux B A, Mouatt-Prigent A, Ruberg M, Agid Y, Hirsch E C (2001). Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. J Neurosci , 21(7): 2247–2255
pmid:11264300
27 He Y, Appel S, Le W (2001). Minocycline inhibits microglial activation and protects nigral cells after 6-hydroxydopamine injection into mouse striatum. Brain Res , 909(1–2): 187–193
doi: 10.1016/S0006-8993(01)02681-6 pmid:11478935
28 Herrera A J, Casta?o A, Venero J L, Cano J, Machado A (2000). The single intranigral injection of LPS as a new model for studying the selective effects of inflammatory reactions on dopaminergic system. Neurobiol Dis , 7(4): 429–447
doi: 10.1006/nbdi.2000.0289 pmid:10964613
29 Hodara R, Norris E H, Giasson B I, Mishizen-Eberz A J, Lynch D R, Lee V M, Ischiropoulos H (2004). Functional consequences of alpha-synuclein tyrosine nitration: diminished binding to lipid vesicles and increased fibril formation. J Biol Chem , 279(46): 47746–47753
doi: 10.1074/jbc.M408906200 pmid:15364911
30 Hunot S, Boissière F, Faucheux B, Brugg B, Mouatt-Prigent A, Agid Y, Hirsch E C (1996). Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience , 72(2): 355–363
doi: 10.1016/0306-4522(95)00578-1 pmid:8737406
31 Hunot S, Dugas N (1999). FcepsilonRII/CD23 is expressed in Parkinson's disease and induces, in vitro, production of nitric oxide and tumor necrosis factor-alpha in glial cells. The Journal of neuroscience , 19(9): 3440–3447
32 Hunter R L, Cheng B, Choi D Y, Liu M, Liu S, Cass W A, Bing G (2009). Intrastriatal lipopolysaccharide injection induces parkinsonism in C57/B6 mice. J Neurosci Res , 87(8): 1913–1921
doi: 10.1002/jnr.22012 pmid:19224579
33 Hunter R L, Dragicevic N, Seifert K, Choi D Y, Liu M, Kim H C, Cass W A, Sullivan P G, Bing G (2007). Inflammation induces mitochondrial dysfunction and dopaminergic neurodegeneration in the nigrostriatal system. J Neurochem , 100(5): 1375–1386
doi: 10.1111/j.1471-4159.2006.04327.x pmid:17254027
34 Iravani M M, Kashefi K, Mander P, Rose S, Jenner P (2002). Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration. Neuroscience , 110(1): 49–58
doi: 10.1016/S0306-4522(01)00562-0 pmid:11882372
35 Jenner P, Olanow C W (1996). Oxidative stress and the pathogenesis of Parkinson’s disease. Neurology , 47(6 Suppl 3): S161–S170
doi: 10.1212/WNL.47.6_Suppl_3.161S pmid:8959985
36 Kim W G, Mohney R P (2000). Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia. J Neurosci , 20(16): 6309–6316
37 Kirik D, Rosenblad C, Bj?rklund A (1998). Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol , 152(2): 259–277
doi: 10.1006/exnr.1998.6848 pmid:9710526
38 Knott C, Stern G, Wilkin G P (2000). Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and-2. Mol Cell Neurosci , 16(6): 724–739
doi: 10.1006/mcne.2000.0914 pmid:11124893
39 Langston J W, Ballard P, Tetrud J W, Irwin I (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science , 219(4587): 979–980
doi: 6823561" target="_blank">10.1126/science. pmid:6823561 pmid:6823561
40 Lapointe N, St-Hilaire M (2004). Rotenone induces non-specific central nervous system and systemic toxicity. FASEB journal , 18(6): 717–719
41 Li R, Yang L (2004). Tumor necrosis factor death receptor signaling cascade is required for amyloid-beta protein-induced neuron death. The Journal of neuroscience , 24(7): 1760–1771
42 Liberatore G T, Jackson-Lewis V, Vukosavic S, Mandir A S, Vila M, McAuliffe W G, Dawson V L, Dawson T M, Przedborski S (1999). Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med , 5(12): 1403–1409
doi: 10.1038/70978 pmid:10581083
43 Loeffler D A, DeMaggio A J, Juneau P L, Havaich M K, LeWitt P A (1994). Effects of enhanced striatal dopamine turnover in vivo on glutathione oxidation. Clin Neuropharmacol , 17(4): 370–379
doi: 10.1097/00002826-199408000-00009 pmid:9316685
44 Long-Smith C M, Collins L, Toulouse A, Sullivan A M, Nolan Y M (2010). Interleukin-1β contributes to dopaminergic neuronal death induced by lipopolysaccharide-stimulated rat glia in vitro. J Neuroimmunol , 226(1–2): 20–26
doi: 10.1016/j.jneuroim.2010.05.030 pmid:20605229
45 Lozano A M, Lang A E, Hutchison W D, Dostrovsky J O (1998). New developments in understanding the etiology of Parkinson’s disease and in its treatment. Curr Opin Neurobiol , 8(6): 783–790
doi: 10.1016/S0959-4388(98)80122-0 pmid:9914234
46 Marchetti L, Klein M, Schlett K, Pfizenmaier K, Eisel U L (2004). Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway. J Biol Chem , 279(31): 32869–32881
doi: 10.1074/jbc.M311766200 pmid:15155767
47 McCoy M K, Martinez T N (2006). Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson's disease. The Journal of neuroscience , 26(37): 9365–9375
48 McGeer P L, Itagaki S, Akiyama H, McGeer E G (1988a). Rate of cell death in parkinsonism indicates active neuropathological process. Ann Neurol , 24(4): 574–576
doi: 10.1002/ana.410240415 pmid:3239957
49 McGeer P L, Itagaki S, Boyes B E, McGeer E G (1988b). Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology , 38(8): 1285–1291
doi: 10.1212/WNL.38.8.1285 pmid:3399080
50 McGeer P L, Schwab C, Parent A, Doudet D (2003). Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol , 54(5): 599–604
doi: 10.1002/ana.10728 pmid:14595649
51 Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T (1994a). Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett , 180(2): 147–150
doi: 10.1016/0304-3940(94)90508-8 pmid:7700568
52 Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T (1994b). Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett , 165(1–2): 208–210
doi: 10.1016/0304-3940(94)90746-3 pmid:8015728
53 Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T (2000). Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain. J Neural Transm , 107(3): 335–341
doi: 10.1007/s007020050028 pmid:10821442
54 Murray J, Taylor S W, Zhang B, Ghosh S S, Capaldi R A (2003). Oxidative damage to mitochondrial complex I due to peroxynitrite: identification of reactive tyrosines by mass spectrometry. J Biol Chem , 278(39): 37223–37230
doi: 10.1074/jbc.M305694200 pmid:12857734
55 Nagatsu T, Mogi M, Ichinose H, Togari A (2000). Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm Suppl , (60): 277–290
pmid:11205147
56 Nakamura Y (2002). Regulating factors for microglial activation. Biol Pharm Bull , 25(8): 945–953
doi: 10.1248/bpb.25.945 pmid:12186424
57 Olanow C W, Tatton W G (1999). Etiology and pathogenesis of Parkinson’s disease. Annu Rev Neurosci , 22(1): 123–144
doi: 10.1146/annurev.neuro.22.1.123 pmid:10202534
58 Pawate S, Shen Q, Fan F, Bhat N R (2004). Redox regulation of glial inflammatory response to lipopolysaccharide and interferongamma. J Neurosci Res , 77(4): 540–551
doi: 10.1002/jnr.20180 pmid:15264224
59 Paxinou E, Chen Q (2001). Induction of alpha-synuclein aggregation by intracellular nitrative insult. The Journal of neuroscience , 21(20): 8053–8061
60 Perese D A, Ulman J, Viola J, Ewing S E, Bankiewicz K S (1989). A 6-hydroxydopamine-induced selective parkinsonian rat model. Brain Res , 494(2): 285–293
doi: 10.1016/0006-8993(89)90597-0 pmid:2528389
61 Przedborski S, Chen Q, Vila M, Giasson B I, Djaldatti R, Vukosavic S, Souza J M, Jackson-Lewis V, Lee V M, Ischiropoulos H (2001). Oxidative post-translational modifications of alpha-synuclein in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson’s disease. J Neurochem , 76(2): 637–640
doi: 10.1046/j.1471-4159.2001.00174.x pmid:11208927
62 Przedborski S, Levivier M, Jiang H, Ferreira M, Jackson-Lewis V, Donaldson D, Togasaki D M (1995). Dose-dependent lesions of the dopaminergic nigrostriatal pathway induced by intrastriatal injection of 6-hydroxydopamine. Neuroscience , 67(3): 631–647
doi: 10.1016/0306-4522(95)00066-R pmid:7675192
63 Qin L, Liu Y, Wang T, Wei S J, Block M L, Wilson B, Liu B, Hong J S (2004). NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem , 279(2): 1415–1421
doi: 10.1074/jbc.M307657200 pmid:14578353
64 Ransohoff R M, Perry V H (2009). Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol , 27(1): 119–145
doi: 10.1146/annurev.immunol.021908.132528 pmid:19302036
65 Shavali S, Combs C K, Ebadi M (2006). Reactive macrophages increase oxidative stress and alpha-synuclein nitration during death of dopaminergic neuronal cells in co-culture: relevance to Parkinson’s disease. Neurochem Res , 31(1): 85–94
doi: 10.1007/s11064-005-9233-x pmid:16475001
66 Sherer T B, Kim J H, Betarbet R, Greenamyre J T (2003). Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation. Exp Neurol , 179(1): 9–16
doi: 10.1006/exnr.2002.8072 pmid:12504863
67 Sherer T B, Richardson J R, Testa C M, Seo B B, Panov A V, Yagi T, Matsuno-Yagi A, Miller G W, Greenamyre J T (2007). Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson’s disease. J Neurochem , 100(6): 1469–1479
pmid:17241123
68 Tiwari M, Lopez-Cruzan M, Morgan W W, Herman B (2011). Loss of caspase-2-dependent apoptosis induces autophagy after mitochondrial oxidative stress in primary cultures of young adult cortical neurons. J Biol Chem , 286(10): 8493–8506
doi: 10.1074/jbc.M110.163824 pmid:21216964
69 Vijitruth R, Liu M, Choi D Y, Nguyen X V, Hunter R L, Bing G (2006). Cyclooxygenase-2 mediates microglial activation and secondary dopaminergic cell death in the mouse MPTP model of Parkinson’s disease. J Neuroinflammation , 3(1): 6
doi: 10.1186/1742-2094-3-6 pmid:16566823
70 Wang, T., Pei, Z., (2005). MPP+-induced COX-2 activation and subsequent dopaminergic neurodegeneration. FASEB journal , 19(9): 1134–1136
71 Wu D C, Jackson-Lewis V, Vila M, Tieu K, Teismann P, Vadseth C, Choi D K, Ischiropoulos H, Przedborski S (2002). Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci , 22(5): 1763–1771
pmid:11880505
72 Wu D C, Teismann P, Tieu K, Vila M, Jackson-Lewis V, Ischiropoulos H, Przedborski S (2003). NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA , 100(10): 6145–6150
doi: 10.1073/pnas.0937239100 pmid:12721370
73 Xing B, Liu M, Bing G (2007). Neuroprotection with pioglitazone against LPS insult on dopaminergic neurons may be associated with its inhibition of NF-kappaB and JNK activation and suppression of COX-2 activity. J Neuroimmunol , 192(1–2): 89–98
doi: 10.1016/j.jneuroim.2007.09.029 pmid:17976742
74 Xing B, Xin T, Hunter R L, Bing G (2008). Pioglitazone inhibition of lipopolysaccharide-induced nitric oxide synthase is associated with altered activity of p38 MAP kinase and PI3K/Akt. J Neuroinflammation , 5(1): 4
doi: 10.1186/1742-2094-5-4 pmid:18205920
75 Zhang F, Shi J S, Zhou H, Wilson B, Hong J S, Gao H M (2010). Resveratrol protects dopamine neurons against lipopolysaccharide-induced neurotoxicity through its anti-inflammatory actions. Mol Pharmacol , 78(3): 466–477
doi: 10.1124/mol.110.064535 pmid:20554604
76 Zhang J, Perry G, Smith M A, Robertson D, Olson S J, Graham D G, Montine T J (1999). Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol , 154(5): 1423–1429
doi: 10.1016/S0002-9440(10)65396-5 pmid:10329595
77 Zhang J, Stanton D M, Nguyen X V, Liu M, Zhang Z, Gash D, Bing G (2005). Intrapallidal lipopolysaccharide injection increases iron and ferritin levels in glia of the rat substantia nigra and induces locomotor deficits. Neuroscience , 135(3): 829–838
doi: 10.1016/j.neuroscience.2005.06.049 pmid:16165292
78 Zhang W, Wang T (2005). Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson's disease. FASEB journal , 19(6): 533–542
[1] Fakhredin Saba, Najmaldin Saki, Elahe Khodadi, Masoud Soleimani. Crosstalk between catecholamines and erythropoiesis[J]. Front. Biol., 2017, 12(2): 103-115.
[2] Afsar U. AHMED. An overview of inflammation: mechanism and consequences[J]. Front Biol, 2011, 6(4): 274-281.
[3] Yun-Bo GUO, Ya WEN, Wen-Xue GAO, Jing-Chao LI, Peng ZHOU, Zai-Ling BAI, Bo ZHANG, Shi-Qiang WANG, . The formation of Ca 2+ gradients at the cleavage furrows during cytokinesis of Zebrafish embryos[J]. Front. Biol., 2010, 5(4): 369-377.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed