|
|
Crosstalk between catecholamines and erythropoiesis |
Fakhredin Saba1, Najmaldin Saki3, Elahe Khodadi3, Masoud Soleimani2( ) |
1. Department of Laboratory Science, Kermanshah University of Medical Sciences, Kermanshah, Iran 2. Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran 3. Health Research Institute, Research Center of Thalassemia & Hemoglobinopathy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran |
|
|
Abstract BACKGROUND: Erythropoiesis is regulated by a range of intrinsic and extrinsic factors, including different cytokines. Recently, the role of catecholamines has been highlighted in the development of erythroid cell lineages. OBJECTIVE: This study focuses on the biological links interconnecting erythroid development and the sympathetic nervous system. The emerging evidence that underscores the role of catecholamines in the regulation of erythropoietin and other erythropoiesis cytokines are thoroughly reviewed, in addition to elements such as iron and the leptin hormone that are involved in erythropoiesis. METHODS: Relevant English-language studies were identified and retrieved from the PubMed search engine (1981–2017) using the following keywords: “Erythropoiesis”, “Catecholamines”, “Nervous system”, and “Cytokines.” RESULTS: Chronic social stress alters and suppresses erythroid development. However, the physiological release of catecholamines is an additional stimulator of erythropoiesis in the setting of anemia. Therefore, the severity and timing of catecholamine secretion might distinctly regulate erythroid homeostasis. CONCLUSION: Understanding the relationship of catecholamines with different elements of the erythroid islands will be essential to find the tightly regulated production of red blood cells (RBCs) in both chronic and physiological catecholamine activation.
|
Keywords
erythropoiesis
cytokines
catecholamines
chronic social stress
nervous system
|
Corresponding Author(s):
Masoud Soleimani
|
Online First Date: 24 March 2017
Issue Date: 14 April 2017
|
|
1 |
An X, Mohandas N (2011). Erythroblastic islands, terminal erythroid differentiation and reticulocyte maturation. Int J Hematol, 93(2): 139–143
https://doi.org/10.1007/s12185-011-0779-x
pmid: 21293952
|
2 |
Antonijević N , Nesović M , Trbojević B , Milosević R (1999). Anemia in hypothyroidism. Med Pregl, 52(3-5): 136–140
pmid: 10518398
|
3 |
Arranz L, Méndez-Ferrer S(2013). Network anatomy and in vivo physiology of mesenchymal stem and stromal cells. Inflamm Regen, 33:038-04
|
4 |
Artico M, Bosco S, Cavallotti C , Agostinelli E , Giuliani-Piccari G , Sciorio S , Cocco L , Vitale M (2002). Noradrenergic and cholinergic innervation of the bone marrow. Int J Mol Med, 10(1): 77–80
pmid: 12060854
|
5 |
Baron M H, Vacaru A, Nieves J (2013). Erythroid development in the mammalian embryo. Blood Cells Mol Dis, 51(4): 213–219
https://doi.org/10.1016/j.bcmd.2013.07.006
pmid: 23932234
|
6 |
Bauer A, Tronche F, Wessely O , Kellendonk C , Reichardt H M , Steinlein P , Schütz G , Beug H (1999). The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev, 13(22): 2996–3002
https://doi.org/10.1101/gad.13.22.2996
pmid: 10580006
|
7 |
Beguin Y, Jaspers A (2014). Iron sucrose- characteristics, efficacy and regulatory aspects of an established treatment of iron deficiency and iron-deficiency anemia in a broad range of therapeutic areas. Expert Opin Pharmacother, 15(14): 2087–2103
https://doi.org/10.1517/14656566.2014.953928
pmid: 25186219
|
8 |
Boer A K, Drayer A L, Rui H, Vellenga E (2002). Prostaglandin-E2 enhances EPO-mediated STAT5 transcriptional activity by serine phosphorylation of CREB. Blood, 100(2): 467–473
https://doi.org/10.1182/blood.V100.2.467
pmid: 12091337
|
9 |
Boer A K, Drayer A L, Vellenga E (2003). cAMP/PKA-mediated regulation of erythropoiesis. Leuk Lymphoma, 44(11): 1893–1901
https://doi.org/10.1080/1042819031000116715
pmid: 14738140
|
10 |
Böhmer R M (2004). IL-3-dependent early erythropoiesis is stimulated by autocrine transforming growth factor beta. Stem Cells, 22(2): 216–224
https://doi.org/10.1634/stemcells.22-2-216
pmid: 14990860
|
11 |
Brown S W, Meyers R T, Brennan K M, Rumble J M, Narasimhachari N, Perozzi E F , Ryan J J , Stewart J K , Fischer-Stenger K (2003). Catecholamines in a macrophage cell line. J Neuroimmunol, 135(1-2): 47–55
https://doi.org/10.1016/S0165-5728(02)00435-6
pmid: 12576223
|
12 |
Burdach S E, Levitt L J (1987). Receptor-specific inhibition of bone marrow erythropoiesis by recombinant DNA-derived interleukin-2. Blood, 69(5): 1368–1375
pmid: 3105620
|
13 |
Chasis J A, Mohandas N (2008). Erythroblastic islands: niches for erythropoiesis. Blood, 112(3): 470–478
https://doi.org/10.1182/blood-2008-03-077883
pmid: 18650462
|
14 |
Chen D, Zhang G (2001). Enforced expression of the GATA-3 transcription factor affects cell fate decisions in hematopoiesis. Exp Hematol, 29(8): 971–980
https://doi.org/10.1016/S0301-472X(01)00670-1
pmid: 11495703
|
15 |
Cheung J Y, Miller B A (2001). Molecular mechanisms of erythropoietin signaling. Nephron, 87(3): 215–222
https://doi.org/10.1159/000045918
pmid: 11287756
|
16 |
Choobineh H, Dehghani S, Alizadeh S , Dana V G , Saiepour N , Meshkani R , Einollahi N (2009). Evaluation of Leptin Levels in Major beta-Thalassemic Patients. Int J Hematol Oncol Stem Cell Res, 3(4): 1–4
|
17 |
Chuang T T, Sallese M, Ambrosini G , Parruti G , De Blasi A (1992). High expression of beta-adrenergic receptor kinase in human peripheral blood leukocytes. Isoproterenol and platelet activating factor can induce kinase translocation. J Biol Chem, 267(10): 6886–6892
pmid: 1339451
|
18 |
Claycombe K, King L E, Fraker P J (2008). A role for leptin in sustaining lymphopoiesis and myelopoiesis. Proc Natl Acad Sci U S A, 105(6): 2017–2021
https://doi.org/10.1073/pnas.0712053105
pmid: 18250302
|
19 |
Cole S W, Sood A K (2012). Molecular pathways: beta-adrenergic signaling in cancer. Clin Cancer Res, 18(5): 1201–1206
https://doi.org/10.1158/1078-0432.CCR-11-0641
pmid: 22186256
|
20 |
Cosentino M, Bombelli R, Ferrari M , Marino F , Rasini E , Maestroni G J M , Conti A , Boveri M , Lecchini S , Frigo G (2000). HPLC-ED measurement of endogenous catecholamines in human immune cells and hematopoietic cell lines. Life Sci, 68(3): 283–295
https://doi.org/10.1016/S0024-3205(00)00937-1
pmid: 11191644
|
21 |
Cremaschi G A , Gorelik G , Klecha A J , Lysionek A E , Genaro A M (2000). Chronic stress influences the immune system through the thyroid axis. Life Sci, 67(26): 3171–3179
https://doi.org/10.1016/S0024-3205(00)00909-7
pmid: 11191624
|
22 |
Dart A M, Du X J, Kingwell, B A (2002). Gender, sex hormones and autonomic nervous control of the cardiovascular system. Cardiovasc Res, 53(3):678–687
|
23 |
Donahue R E, Yang Y C, Clark S C (1990). Human P40 T-cell growth factor (interleukin-9) supports erythroid colony formation. Blood, 75(12): 2271–2275
pmid: 1693525
|
24 |
Elenkov I J, Chrousos G P (1999). Stress hormones, Th1/Th2 patterns, pro/anti-inflammatory cytokines and susceptibility to disease. Trends Endocrinol Metab, 10(9): 359–368
https://doi.org/10.1016/S1043-2760(99)00188-5
pmid: 10511695
|
25 |
Elenkov I J, Chrousos G P (2002). Stress hormones, proinflammatory and antiinflammatory cytokines, and autoimmunity. Ann N Y Acad Sci, 966(1): 290–303
https://doi.org/10.1111/j.1749-6632.2002.tb04229.x
pmid: 12114286
|
26 |
Elhassan I O, Hannoush E J, Sifri Z C, Jones E, Alzate W D , Rameshwar P , Livingston D H , Mohr A M (2011). Beta-blockade prevents hematopoietic progenitor cell suppression after hemorrhagic shock. Surg Infect (Larchmt), 12(4): 273–278
https://doi.org/10.1089/sur.2010.043
pmid: 21790478
|
27 |
Farmer P, Pugin J (2000). b-adrenergic agonists exert their “anti-inflammatory” effects in monocytic cells through the IkappaB/NF-kappaB pathway. Am J Physiol Lung Cell Mol Physiol, 279(4): L675–L682
pmid: 11000127
|
28 |
Fink G D, Paulo L G, Fisher J W (1975). Effects of beta adrenergic blocking agents on erythropoietin production in rabbits exposed to hypoxia. J Pharmacol Exp Ther, 193(1): 176–181
pmid: 237111
|
29 |
Fitch S R, Kimber G M, Wilson N K, Parker A, Mirshekar-Syahkal B, Göttgens B , Medvinsky A , Dzierzak E , Ottersbach K (2012). Signaling from the sympathetic nervous system regulates hematopoietic stem cell emergence during embryogenesis. Cell Stem Cell, 11(4): 554–566
https://doi.org/10.1016/j.stem.2012.07.002
pmid: 23040481
|
30 |
Flierl M A, Rittirsch D, Nadeau B A , Sarma J V , Day D E , Lentsch A B , Huber-Lang M S , Ward P A (2009). Upregulation of phagocyte-derived catecholamines augments the acute inflammatory response. PLoS One, 4(2): e4414
https://doi.org/10.1371/journal.pone.0004414
pmid: 19212441
|
31 |
Fonseca R B, Mohr A M, Wang L, Sifri Z C , Rameshwar P , Livingston D H (2005). The impact of a hypercatecholamine state on erythropoiesis following severe injury and the role of IL-6. J Trauma, 59(4): 884–889, discussion 889–890
https://doi.org/10.1097/01.ta.0000187653.64300.f5
pmid: 16374277
|
32 |
Francis K T (1981). The relationship between high and low trait psychological stress, serum testosterone, and serum cortisol. Experientia, 37(12): 1296–1297
https://doi.org/10.1007/BF01948370
pmid: 7327232
|
33 |
Freudenthaler S M , Schenck T , Lucht I , Gleiter C H (1999). Fenoterol stimulates human erythropoietin production via activation of the renin angiotensin system. Br J Clin Pharmacol, 48(4): 631–634
https://doi.org/10.1046/j.1365-2125.1999.00059.x
pmid: 10583037
|
34 |
Furmanski P, Johnson C S (1990). Macrophage control of normal and leukemic erythropoiesis: identification of the macrophage-derived erythroid suppressing activity as interleukin-1 and the mediator of its in vivo action as tumor necrosis factor. Blood, 75(12): 2328–2334
pmid: 2350578
|
35 |
Ge X H, Zhu G J, Geng D Q, Zhang Z J, Liu C F (2012). Erythropoietin attenuates 6-hydroxydopamine-induced apoptosis via glycogen synthase kinase 3 b-mediated mitochondrial translocation of Bax in PC12 cells. Neurol Sci, 33(6): 1249–1256
https://doi.org/10.1007/s10072-012-0959-3
pmid: 22294054
|
36 |
Gebhard C, Petroktistis F, Zhang H , Kammerer D , Köhle C , Klingel K , Albinus M , Gleiter C H , Osswald H , Grenz A (2006). Role of renal nerves and salt intake on erythropoietin secretion in rats following carbon monoxide exposure. J Pharmacol Exp Ther, 319(1): 111–116
https://doi.org/10.1124/jpet.106.105973
pmid: 16815869
|
37 |
Glass N E, Kaltenbach L A, Fleming S B, Arbogast P G, Cotton B A (2012). The impact of beta-blocker therapy on anemia after traumatic brain injury. Transfusion, 52(10): 2155–2160
https://doi.org/10.1111/j.1537-2995.2012.03609.x
pmid: 22420303
|
38 |
Guo W, Bachman E, Li M , Roy C N , Blusztajn J , Wong S, Chan S Y, Serra C, Jasuja R , Travison T G , Muckenthaler M U , Nemeth E , Bhasin S (2013). Testosterone administration inhibits hepcidin transcription and is associated with increased iron incorporation into red blood cells. Aging Cell, 12(2): 280–291
https://doi.org/10.1111/acel.12052
pmid: 23399021
|
39 |
Hajifathali A, Saba F, Atashi A , Soleimani M , Mortaz E , Rasekhi M (2014). The role of catecholamines in mesenchymal stem cell fate. Cell Tissue Res, 358(3): 651–665
pmid: 25173883
|
40 |
Hamill R W, Schroeder B (1990). Hormonal regulation of adult sympathetic neurons: the effects of castration on neuropeptide Y, norepinephrine, and tyrosine hydroxylase activity. J Neurobiol, 21(5): 731–742
https://doi.org/10.1002/neu.480210507
pmid: 1975617
|
41 |
Hattangadi S M , Wong P, Zhang L, Flygare J , Lodish H F (2011). From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood, 118(24):6258–6268
|
42 |
Hetier E, Ayala J 1, Bousseau A , Prochiantz A 1 (1991). Modulation of interleukin-1 and tumor necrosis factor expression by b-adrenergic agonists in mouse ameboid microglial cells. Exp Brain Res, 86(2): 407–413
https://doi.org/10.1007/BF00228965
pmid: 1684549
|
43 |
Huntgeburth M, Tiemann K, Shahverdyan R , Schlüter K D , Schreckenberg R , Gross M L , Mödersheim S , Caglayan E , Müller-Ehmsen J , Ghanem A , Vantler M , Zimmermann W H , Böhm M , Rosenkranz S (2011). Transforming growth factor b1 oppositely regulates the hypertrophic and contractile response to b-adrenergic stimulation in the heart. PLoS One, 6(11): e26628
https://doi.org/10.1371/journal.pone.0026628
pmid: 22125598
|
44 |
Ikuyama S (2005). Effects of thyroid hormone on hematopoiesis. Nihon Rinsho, 63(Suppl 10): 84–87
pmid: 16279608
|
45 |
Isern J, Méndez-Ferrer S (2011). Stem cell interactions in a bone marrow niche. Curr Osteoporos Rep, 9(4): 210–218
https://doi.org/10.1007/s11914-011-0075-y
pmid: 21932020
|
46 |
Jewell M, Breyer R M, Currie K P (2012). Bidirectional regulation of adrenal catecholamine release by prostaglandin E2. FASEB J, 26(1): 879.876
|
47 |
Kahn B B, Minokoshi Y (2013). Leptin, GABA, and glucose control. Cell Metab, 18(3): 304–306
https://doi.org/10.1016/j.cmet.2013.08.015
pmid: 24011066
|
48 |
Kalinkovich A, Spiegel A, Shivtiel S , Kollet O , Jordaney N , Piacibello W , Lapidot T (2009). Blood-forming stem cells are nervous: direct and indirect regulation of immature human CD34+ cells by the nervous system. Brain Behav Immun, 23(8): 1059–1065
https://doi.org/10.1016/j.bbi.2009.03.008
pmid: 19341792
|
49 |
Kaneko K, Furuyama K, Aburatani H , Shibahara S (2009). Hypoxia induces erythroid-specific 5-aminolevulinate synthase expression in human erythroid cells through transforming growth factor- b signaling. FEBS J, 276(5): 1370–1382
https://doi.org/10.1111/j.1742-4658.2009.06878.x
pmid: 19187226
|
50 |
Katayama Y, Battista M, Kao W M , Hidalgo A , Peired A J , Thomas S A , Frenette P S (2006). Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell, 124(2): 407–421
|
51 |
Kefaloyianni E, Gaitanaki C, Beis I (2006). ERK1/2 and p38-MAPK signalling pathways, through MSK1, are involved in NF-kappaB transactivation during oxidative stress in skeletal myoblasts. Cell Signal, 18(12): 2238–2251
https://doi.org/10.1016/j.cellsig.2006.05.004
pmid: 16806820
|
52 |
Kelesidis T, Kelesidis I, Chou S , Mantzoros C S (2010). Narrative review: the role of leptin in human physiology: emerging clinical applications. Ann Intern Med, 152(2): 93–100
https://doi.org/10.7326/0003-4819-152-2-201001190-00008
pmid: 20083828
|
53 |
Kilroy G E, Foster S J, Wu X, Ruiz J , Sherwood S , Heifetz A , Ludlow J W , Stricker D M , Potiny S , Green P , Halvorsen Y D C , Cheatham B , Storms R W , Gimble J M (2007). Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol, 212(3): 702–709
https://doi.org/10.1002/jcp.21068
pmid: 17477371
|
54 |
Kim Y J, Hur E M, Park T J, Kim K T (2000). Nongenomic inhibition of catecholamine secretion by 17beta-estradiol in PC12 cells. J Neurochem, 74(6): 2490–2496
https://doi.org/10.1046/j.1471-4159.2000.0742490.x
pmid: 10820210
|
55 |
Knutson K L, Spiegel K, Penev P , Van Cauter E (2007). The metabolic consequences of sleep deprivation. Sleep Med Rev, 11(3): 163–178
https://doi.org/10.1016/j.smrv.2007.01.002
pmid: 17442599
|
56 |
Kuçi Z, Seitz G, Kuçi S , Kreyenberg H , Schumm M , Lang P, Niethammer D, Handgretinger R , Bruchelt G (2006). Pitfalls in detection of contaminating neuroblastoma cells by tyrosine hydroxylase RT-PCR due to catecholamine-producing hematopoietic cells. Anticancer Res, 26(3A): 2075–2080
pmid: 16827147
|
57 |
Laharrague P, Larrouy D, Fontanilles A M , Truel N , Campfield A , Tenenbaum R , Galitzky J , Corberand J X , Pénicaud L , Casteilla L (1998). High expression of leptin by human bone marrow adipocytes in primary culture. FASEB J, 12(9): 747–752
pmid: 9619453
|
58 |
Lambert L A, Perri H, Halbrooks P J , Mason A B (2005). Evolution of the transferrin family: conservation of residues associated with iron and anion binding. Comp Biochem Physiol B Biochem Mol Biol, 142(2): 129–141
https://doi.org/10.1016/j.cbpb.2005.07.007
pmid: 16111909
|
59 |
Leng H M J , Kidson S H , Keraan M M , Randall G W , Folb P I (1996). Cytokine-mediated inhibition of erythropoietin synthesis by dexamethasone. J Pharm Pharmacol, 48(9): 971–974
https://doi.org/10.1111/j.2042-7158.1996.tb06015.x
pmid: 8910866
|
60 |
Leung P, Gidari A S, and the LEUNG (1981). Glucocorticoids inhibit erythroid colony formation by murine fetal liver erythroid progenitor cells in vitro. Endocrinology, 108(5): 1787–1794
https://doi.org/10.1210/endo-108-5-1787
pmid: 7215300
|
61 |
Maestroni G J , Cosentino M , Marino F , Togni M , Conti A , Lecchini S , Frigo G (1998). Neural and endogenous catecholamines in the bone marrow. Circadian association of norepinephrine with hematopoiesis? Exp Hematol, 26(12): 1172–1177
pmid: 9808057
|
62 |
Magiakou M A, Smyrnaki P, Chrousos G P (2006). Hypertension in Cushing’s syndrome. Best Pract Res Clin Endocrinol Metab, 20(3): 467–482
https://doi.org/10.1016/j.beem.2006.07.006
pmid: 16980206
|
63 |
Masuda S, Nagao M, Takahata K , Konishi Y , Gallyas F Jr, Tabira T , Sasaki R (1993). Functional erythropoietin receptor of the cells with neural characteristics. Comparison with receptor properties of erythroid cells. J Biol Chem, 268(15): 11208–11216
pmid: 7684373
|
64 |
McCranor B J, Kim M J, Cruz N M, Xue Q L, Berger A E, Walston J D, Civin C I, Roy C N (2014). Interleukin-6 directly impairs the erythroid development of human TF-1 erythroleukemic cells. Blood Cells Mol Dis, 52(2-3): 126–133
https://doi.org/10.1016/j.bcmd.2013.09.004
pmid: 24119518
|
65 |
Mei Y, Yin N, Jin X , He J, Yin Z (2013). The regulatory role of the adrenergic agonists phenylephrine and isoproterenol on fetal hemoglobin expression and erythroid differentiation. Endocrinology, 154(12): 4640–4649
https://doi.org/10.1210/en.2013-1535
pmid: 24080366
|
66 |
Méndez-Ferrer S , Battista M , Frenette P S (2010). Cooperation of beta(2)- and beta(3)-adrenergic receptors in hematopoietic progenitor cell mobilization. Ann N Y Acad Sci, 1192(1): 139–144
https://doi.org/10.1111/j.1749-6632.2010.05390.x
pmid: 20392229
|
67 |
Méndez-Ferrer S , Michurina T V , Ferraro F , Mazloom A R , Macarthur B D , Lira S A , Scadden D T , Ma’ayan A , Enikolopov G N , Frenette P S (2010). Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature, 466(7308): 829–834
https://doi.org/10.1038/nature09262
pmid: 20703299
|
68 |
Mikhail A A, Beck E X, Shafer A, Barut B , Smith Gbur J , Zupancic T J , Snodgrass H R (1997). Leptin stimulates fetal and adult erythroid and myeloid development. Blood, 89(5):1507–1512
|
69 |
Miller A H, Maletic V, Raison C L (2009). Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry, 65(9): 732–741
https://doi.org/10.1016/j.biopsych.2008.11.029
pmid: 19150053
|
70 |
Mladenovic J, Adamson J W (1984). Adrenergic modulation of erythropoiesis: in vitro studies of colony-forming cells in normal and polycythaemic man. Br J Haematol, 56(2): 323–332
https://doi.org/10.1111/j.1365-2141.1984.tb03959.x
pmid: 6691924
|
71 |
Moura I C, Hermine O, Lacombe C , Mayeux P (2015). Erythropoiesis and transferrin receptors. Curr Opin Hematol, 22(3): 193–198
https://doi.org/10.1097/MOH.0000000000000133
pmid: 25767952
|
72 |
Muta K, Krantz S, Bondurant M , Dai C (1995). Stem cell factor retards differentiation of normal human erythroid progenitor cells while stimulating proliferation. Blood, 86(2):572–580
|
73 |
Nardelli J, Thiesson D, Fujiwara Y , Tsai F Y , Orkin S H (1999). Expression and genetic interaction of transcription factors GATA-2 and GATA-3 during development of the mouse central nervous system. Dev Biol, 210(2): 305–321
https://doi.org/10.1006/dbio.1999.9278
pmid: 10357893
|
74 |
Nemeth E, Valore E V, Territo M, Schiller G , Lichtenstein A , Ganz T (2003). Hepcidin, a putative mediator of anemia of inflammation, is a type II acute-phase protein. Blood, 101(7): 2461–2463
https://doi.org/10.1182/blood-2002-10-3235
pmid: 12433676
|
75 |
Nezu M, Souma T, Yamamoto M (2014). Renal erythropoietin-producing cells and kidney disease. Nihon Rinsho, 72(9): 1691–1700 (Renal erythropoietin-producing cells and kidney disease)
pmid: 25518424
|
76 |
Obayashi K, Ando Y, Terazaki H , Yamashita T , Nakamura M , Suga M, Uchino M, Ando M (2000). Mechanism of anemia associated with autonomic dysfunction in rats. Auton Neurosci, 82(3): 123–129
https://doi.org/10.1016/S0165-1838(00)00099-0
pmid: 11023618
|
77 |
Oddo M, Levine J M, Kumar M, Iglesias K , Frangos S , Maloney-Wilensky E , Le Roux P D (2012). Anemia and brain oxygen after severe traumatic brain injury. Intensive Care Med, 38(9): 1497–1504
https://doi.org/10.1007/s00134-012-2593-1
pmid: 22584800
|
78 |
Oehler L, Kollars M, Bohle B , Berer A , Reiter E , Lechner K , Geissler K (1999). Interleukin-10 inhibits burst-forming unit-erythroid growth by suppression of endogenous granulocyte-macrophage colony-stimulating factor production from T cells. Exp Hematol, 27(2): 217–223
https://doi.org/10.1016/S0301-472X(98)00049-6
pmid: 10029159
|
79 |
Otero M, Lago R, Lago F , Casanueva F F , Dieguez C , Gómez-Reino J J , Gualillo O (2005). Leptin, from fat to inflammation: old questions and new insights. FEBS Lett, 579(2): 295–301
https://doi.org/10.1016/j.febslet.2004.11.024
pmid: 15642335
|
80 |
Pandolfi P P, Roth M E, Karis A, Leonard M W , Dzierzak E , Grosveld F G , Engel J D , Lindenbaum M H (1995). Targeted disruption of the GATA3 gene causes severe abnormalities in the nervous system and in fetal liver haematopoiesis. Nat Genet, 11(1): 40–44
https://doi.org/10.1038/ng0995-40
pmid: 7550312
|
81 |
Pasupuleti L V , Cook K M , Sifri Z C , Alzate W D , Livingston D H , Mohr A M (2014). Do all b-blockers attenuate the excess hematopoietic progenitor cell mobilization from the bone marrow following trauma/hemorrhagic shock? J Trauma Acute Care Surg, 76(4): 970–975
https://doi.org/10.1097/TA.0000000000000181
pmid: 24662859
|
82 |
Peeling P, Dawson B, Goodman C , Landers G , Trinder D (2008). Athletic induced iron deficiency: new insights into the role of inflammation, cytokines and hormones. Eur J Appl Physiol, 103(4): 381–391
https://doi.org/10.1007/s00421-008-0726-6
pmid: 18365240
|
83 |
Penn A, Mohr A M, Shah S G, Sifri Z C, Kaiser V L, Rameshwar P, Livingston D H (2010). Dose-response relationship between norepinephrine and erythropoiesis: evidence for a critical threshold. J Surg Res, 163(2): e85–e90
https://doi.org/10.1016/j.jss.2010.03.051
pmid: 20605580
|
84 |
Peruzzo D C, Benatti B B, Antunes I B, Andersen M L, Sallum E A, Casati M Z, Nociti F H Jr, Nogueira-Filho G R (2008). Chronic stress may modulate periodontal disease: a study in rats. J Periodontol, 79(4): 697–704
https://doi.org/10.1902/jop.2008.070369
pmid: 18380564
|
85 |
Popovic W J, Brown J E, Adamson J W (1977). The influence of thyroid hormones on in vitro erythropoiesis. Mediation by a receptor with beta adrenergic properties. J Clin Invest, 60(4): 907–913
https://doi.org/10.1172/JCI108845
pmid: 19501
|
86 |
Provalova N V , Skurikhin E G , Pershina O V , Minakova M Y , Suslov N I , Dygai A M (2003). Possible mechanisms underlying the effect of natural preparations on erythropoiesis under conditions of conflict situation. Bull Exp Biol Med, 136(2): 165–169
https://doi.org/10.1023/A:1026371007993
pmid: 14631500
|
87 |
Provalova N V , Skurikhin E G , Pershina O V , Suslov N I , Minakova M Y , Dygai A M , Gol’dberg E D (2002). Mechanisms underling the effects of adaptogens on erythropoiesis during paradoxical sleep deprivation. Bull Exp Biol Med, 133(5): 428–432
https://doi.org/10.1023/A:1019837015668
pmid: 12420051
|
88 |
Quesniaux V F , Clark S C , Turner K , Fagg B (1992). Interleukin-11 stimulates multiple phases of erythropoiesis in vitro. Blood, 80(5): 1218–1223
pmid: 1381240
|
89 |
Ricci M R, Lee M J, Russell C D, Wang Y, Sullivan S , Schneider S H , Fried S K (2005). Isoproterenol decreases leptin release from rat and human adipose tissue through posttranscriptional mechanisms. Am J Physiol Endocrinol Metab. 288(4): E798–804
|
90 |
Rivier C, Vale W, Brown M (1989). In the rat, interleukin-1 a and- b stimulate adrenocorticotropin and catecholamine release. Endocrinology, 125(6): 3096–3102
https://doi.org/10.1210/endo-125-6-3096
pmid: 2573510
|
91 |
Rosenbaum D M , Rasmussen S G , Kobilka B K (2009). The structure and function of G-protein-coupled receptors. Nature, 459(7245): 356–363
https://doi.org/10.1038/nature08144
pmid: 19458711
|
92 |
Rubio-Perez J M , Morillas-Ruiz J M (2012). A review: inflammatory process in Alzheimer’s disease, role of cytokines. ScientificWorldJournal, 2012: 756357
pmid: 22566778
|
93 |
Rusten L S, Jacobsen S E (1995). Tumor necrosis factor (TNF)-alpha directly inhibits human erythropoiesis in vitro: role of p55 and p75 TNF receptors. Blood, 85(4): 989–996
pmid: 7849320
|
94 |
Saba F, Soleimani M, Atashi A , Mortaz E , Shahjahani M , Roshandel E , Jaseb K , Saki N (2013). The role of the nervous system in hematopoietic stem cell mobilization. Lab Hematol, 19(3): 8–16
https://doi.org/10.1532/LH96.12013
pmid: 24165704
|
95 |
Sánchez-Aguilera A , Arranz L , Martín-Pérez D , García-García A , Stavropoulou V , Kubovcakova L , Isern J , Martín-Salamanca S , Langa X , Skoda R C , Schwaller J , Méndez-Ferrer S (2014). Estrogen signaling selectively induces apoptosis of hematopoietic progenitors and myeloid neoplasms without harming steady-state hematopoiesis. Cell Stem Cell, 15(6): 791–804
https://doi.org/10.1016/j.stem.2014.11.002
pmid: 25479752
|
96 |
Sandrini S M, Shergill R, Woodward J , Muralikuttan R , Haigh R D , Lyte M, Freestone P P (2010). Elucidation of the mechanism by which catecholamine stress hormones liberate iron from the innate immune defense proteins transferrin and lactoferrin. J Bacteriol, 192(2): 587–594
https://doi.org/10.1128/JB.01028-09
pmid: 19820086
|
97 |
Schneider H, Chaovapong W, Matthews DJ , Karkaria C , Cass R T , Zhan H, Boyle M, Lorenzini T , Elliott S G , Giebel L B .(1997). Homodimerization of erythropoietin receptor by a bivalent monoclonal antibody triggers cell proliferation and differentiation of erythroid precursors. Blood, 89(2):473–482
|
98 |
Scholz H, Schurek H J, Eckardt K U, Kurtz A, Bauer C (1991). Oxygen-dependent erythropoietin production by the isolated perfused rat kidney. Pflugers Arch, 418(3): 228–233
https://doi.org/10.1007/BF00370520
pmid: 1649989
|
99 |
Schraml E, Fuchs R, Kotzbeck P , Grillari J , Schauenstein K (2009). Acute adrenergic stress inhibits proliferation of murine hematopoietic progenitor cells via p38/MAPK signaling. Stem Cells Dev, 18(2): 215–227
https://doi.org/10.1089/scd.2008.0072
pmid: 18444787
|
100 |
Schulte H M, Bamberger C M, Elsen H, Herrmann G , Bamberger A M , Barth J (1994). Systemic interleukin-1 a and interleukin-2 secretion in response to acute stress and to corticotropin-releasing hormone in humans. Eur J Clin Invest, 24(11): 773–777
https://doi.org/10.1111/j.1365-2362.1994.tb01075.x
pmid: 7890016
|
101 |
Silva J E, Bianco S D (2008). Thyroid-adrenergic interactions: physiological and clinical implications. Thyroid, 18(2): 157–165
https://doi.org/10.1089/thy.2007.0252
pmid: 18279016
|
102 |
Silverboard H, Aisiku I, Martin G S , Adams M , Rozycki G , Moss M (2005). The role of acute blood transfusion in the development of acute respiratory distress syndrome in patients with severe trauma. J Trauma, 59(3): 717–723
pmid: 16361918
|
103 |
Skurikhin E G , Dygai A M , Provalova N V , Minakova M Y , Suslov N I (2005). Mechanisms of regulation of erythropoiesis during experimental neuroses. Bull Exp Biol Med, 139(5): 543–549
https://doi.org/10.1007/s10517-005-0341-z
pmid: 16224545
|
104 |
Skurikhin E G , Pershina O V , Minakova M Y , Ermakova N N , Firsova T V , Dygai A M , Gol’dberg E D (2008). Adrenergic regulation of erythropoiesis during cytostatic-induced myelosuppressions. Bull Exp Biol Med, 146(4): 405–410
https://doi.org/10.1007/s10517-009-0310-z
pmid: 19489307
|
105 |
Spiegel A, Shivtiel S, Kalinkovich A , Ludin A , Netzer N , Goichberg P , Azaria Y , Resnick I , Hardan I , Ben-Hur H , Nagler A , Rubinstein M , Lapidot T (2007). Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat Immunol, 8(10): 1123–1131
https://doi.org/10.1038/ni1509
pmid: 17828268
|
106 |
Stark J L, Avitsur R, Padgett D A , Campbell K A , Beck F M , Sheridan J F (2001). Social stress induces glucocorticoid resistance in macrophages. Am J Physiol Regul Integr Comp Physiol, 280(6): R1799–R1805
pmid: 11353685
|
107 |
Stellacci E, Di Noia A, Di Baldassarre A, Migliaccio G , Battistini A , Migliaccio A R (2009). Interaction between the glucocorticoid and erythropoietin receptors in human erythroid cells. Exp Hematol, 37(5): 559–572 PMID:19375647
https://doi.org/10.1016/j.exphem.2009.02.005
|
108 |
Tan K S, Nackley A G, Satterfield K, Maixner W , Diatchenko L , Flood P M (2007). b2 adrenergic receptor activation stimulates pro-inflammatory cytokine production in macrophages via PKA- and NF-kappaB-independent mechanisms. Cell Signal, 19(2): 251–260
https://doi.org/10.1016/j.cellsig.2006.06.007
pmid: 16996249
|
109 |
Togo M, Tsukamoto K, Satoh H , Hara M, Futamura A, Nakarai H , Nakahara K , Hashimoto Y (1999). Relationship between levels of leptin and hemoglobin in Japanese men. Blood, 93(12): 4444–4445
|
110 |
Tsarovina K, Pattyn A, Stubbusch J , Müller F , van der Wees J , Schneider C , Brunet J F , Rohrer H (2004). Essential role of Gata transcription factors in sympathetic neuron development. Development, 131(19): 4775–4786
https://doi.org/10.1242/dev.01370
pmid: 15329349
|
111 |
Tsiftsoglou A S , Gusella J F , Volloch V , Housman D E (1979). Inhibition by dexamethasone of commitment to erythroid differentiation in murine erythroleukemia cells. Cancer Res, 39(10): 3849–3855
pmid: 289436
|
112 |
Tsigos C, Chrousos G P (2002). Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J Psychosom Res, 53(4): 865–871
https://doi.org/10.1016/S0022-3999(02)00429-4
pmid: 12377295
|
113 |
Unlap T, Jope R S (1995). Inhibition of NFkB DNA binding activity by glucocorticoids in rat brain. Neurosci Lett, 198(1): 41–44
https://doi.org/10.1016/0304-3940(95)11963-W
pmid: 8570092
|
114 |
Vanasse G J, Jeong J Y, Tate J, Bathulapalli H , Anderson D , Steen H , Fleming M , Mattocks K , Telenti A , Fellay J , Justice A C , Berliner N (2011). A polymorphism in the leptin gene promoter is associated with anemia in patients with HIV disease. Blood, 118(20): 5401–5408
|
115 |
Villanueva E C , Myers M G Jr (2008). Leptin receptor signaling and the regulation of mammalian physiology. Int J Obes (Lond), 32(Suppl 7): S8–S12
https://doi.org/10.1038/ijo.2008.232
pmid: 19136996
|
116 |
von Lindern M , Zauner W , Mellitzer G , Steinlein P , Fritsch G , Huber K , Löwenberg B , Beug H(1999). The glucocorticoid receptor cooperates with the erythropoietin receptor and c-Kit to enhance and sustain proliferation of erythroid progenitors in vitro. Blood, 94(2):550–559
|
117 |
von Wussow U, Klaus J, Pagel H (2005). Is the renal production of erythropoietin controlled by the brain stem? Am J Physiol Endocrinol Metab, 289(1): E82–E86
https://doi.org/10.1152/ajpendo.00182.2004
pmid: 15727951
|
118 |
Voorhees J L, Powell N D, Moldovan L, Mo X , Eubank T D , Marsh C B (2013). Chronic restraint stress upregulates erythropoiesis through glucocorticoid stimulation. PLoS One, 8(10): e77935
https://doi.org/10.1371/journal.pone.0077935
pmid: 24205034
|
119 |
Walters M R, Sharma R (2003). Cross-talk between beta-adrenergic stimulation and estrogen receptors: isoproterenol inhibits 17beta-estradiol-induced gene transcription in A7r5 cells. J Cardiovasc Pharmacol, 42(2): 266–274
https://doi.org/10.1097/00005344-200308000-00017
pmid: 12883332
|
120 |
Wei C, Zhou J, Huang X , Li M (2008). Effects of psychological stress on serum iron and erythropoiesis. Int J Hematol, 88(1): 52–56
https://doi.org/10.1007/s12185-008-0105-4
pmid: 18543064
|
121 |
White L D, Lawson E E (1997). Effects of chronic prenatal hypoxia on tyrosine hydroxylase and phenylethanolamine N-methyltransferase messenger RNA and protein levels in medulla oblongata of postnatal rat. Pediatr Res, 42(4): 455–462
https://doi.org/10.1203/00006450-199710000-00006
pmid: 9380436
|
122 |
Wohleb E S, Hanke M L, Corona A W, Powell N D, Stiner L M, Bailey M T, Nelson R J, Godbout J P, Sheridan J F (2011). b-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J Neurosci, 31(17): 6277–6288
https://doi.org/10.1523/JNEUROSCI.0450-11.2011
pmid: 21525267
|
123 |
Woiciechowsky C, Schöning B, Lanksch W R , Volk H D , Döcke W D (1999). Catecholamine-induced interleukin-10 release: a key mechanism in systemic immunodepression after brain injury. Crit Care, 3(6): R107
https://doi.org/10.1186/cc375
|
124 |
Yanagihara N, Toyohira Y, Ueno S , Tsutsui M , Utsunomiya K , Liu M, Tanaka K (2005). Stimulation of catecholamine synthesis by environmental estrogenic pollutants. Endocrinology, 146(1): 265–272
https://doi.org/10.1210/en.2004-0556
pmid: 15486222
|
125 |
Yang Q, Jian J, Katz S , Abramson S B , Huang X (2012). 17 b-Estradiol inhibits iron hormone hepcidin through an estrogen responsive element half-site. Endocrinology, 153(7): 3170–3178
https://doi.org/10.1210/en.2011-2045
pmid: 22535765
|
126 |
Yasuda Y, Masuda S, Chikuma M , Inoue K , Nagao M , Sasaki R (1998). Estrogen-dependent production of erythropoietin in uterus and its implication in uterine angiogenesis. J Biol Chem, 273(39): 25381–25387
https://doi.org/10.1074/jbc.273.39.25381
pmid: 9738005
|
127 |
Yokoyama T, Etoh T, Kitagawa H , Tsukahara S , Kannan Y (2003). Migration of erythroblastic islands toward the sinusoid as erythroid maturation proceeds in rat bone marrow. J Vet Med Sci, 65(4): 449–452
https://doi.org/10.1292/jvms.65.449
pmid: 12736425
|
128 |
Zhao M, Chen J, Wang W , Wang L, Ma L, Shen H , Li M (2008). Psychological stress induces hypoferremia through the IL-6-hepcidin axis in rats. Biochem Biophys Res Commun, 373(1): 90–93
https://doi.org/10.1016/j.bbrc.2008.05.166
pmid: 18541141
|
129 |
Zouhal H, Lemoine-Morel S, Mathieu M E , Casazza G A , Jabbour G (2013). Catecholamines and obesity: effects of exercise and training. Sports Med, 43(7): 591–600
https://doi.org/10.1007/s40279-013-0039-8
pmid: 23613311
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|