Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (1) : 5-17    https://doi.org/10.1007/s11515-014-1290-6
REVIEW
Cytoskeletal changes in diseases of the nervous system
Alexandra K. SUCHOWERSKA,Thomas FATH()
Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, Randwick, New South Wales 2052, Australia
 Download: PDF(353 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The neuronal cytoskeleton not only provides the structural backbone of neurons, but also plays a fundamental role in maintaining neuronal functions. Dysregulation of neuronal architecture is evident in both injury and diseases of the central nervous system. These changes often result in the disruption of protein trafficking, loss of synapses and the death of neurons, ultimately impacting on signal transmission and manifesting in the disease phenotype. Furthermore, mutations in cytoskeletal proteins have been implicated in numerous diseases and, in some cases, identified as the cause of the disease, highlighting the critical role of the cytoskeleton in disease pathology. This review focuses on the role of cytoskeletal proteins in the pathology of mental disorders, neurodegenerative diseases and motor function deficits. In particular, we illustrate how cytoskeletal proteins can be directly linked to disease pathology and progression.

Keywords nervous system      disease      cytoskeleton      actin      microtubules      intermediate filaments     
Corresponding Author(s): Thomas FATH   
Issue Date: 13 May 2014
 Cite this article:   
Alexandra K. SUCHOWERSKA,Thomas FATH. Cytoskeletal changes in diseases of the nervous system[J]. Front. Biol., 2014, 9(1): 5-17.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1290-6
https://academic.hep.com.cn/fib/EN/Y2014/V9/I1/5
Fig.1  Cellular architectural changes due to disease or after injury in developing neurons (A), mature neurons in the central nervous system (B) and motor neurons (C). Post mortem studies in schizophrenia patients reveal upregulation of microtubule associated protein (MAP) 2 and 6 in the prefrontal cortex (Anderson et al., 1996 [2], Cotter et al., 2000 [3], Shimizu et al., 2006 [4]). Schizophrenia patients are also associated with up regulation of two isoforms of neurofilaments (NFs), NF-L and NF-M, which is suggested to impact on NMDA receptor localisation to the post synaptic density (Clinton et al., 2003[13], Clinton et al., 2004[14], Ehlers et al., 1995[15], Ehlers et al., 1998[16]). Reductions in phosphorylated cofilin and filamentous actin are shown in dendritic spines in mouse models of schizophrenia (Asrar et al., 2009[17]). Epileptic patients have reduced levels of phosphorylated MAP2 associated with decreased cytoskeletal stability (Sanchez et al., 2001[10]). Increase activation of cofilin, and subsequent reduction in actin stabilisation is observed in epilepsy (Chai et al., 2009[6]). Mutations in the Parkinson’s disease associated protein alpha-synuclein, have been associated with increases in the rate of actin polymerisation (Sousa et al., 2009[5]). Accumulation of filamentous actin and actin-associated proteins into rod shaped inclusions termed Hirano bodies are observed in Alzheimer’s disease (Galloway et al., 1987[1]). The MAP tau is known to aggregate into neurofibrillary tangles and neuropil threads within neurons in Alzheimer’s Disease (Goedert et al., 1988[9]). The accumulation of tau also inhibits kinesin-driven anterograde transport, impacting on neurodegeneration (Dixit et al., 2008[8]). Mutations in the parkin protein, which is known to bind microtubules, have been linked to autosomal recessive and sporadic forms of Parkinson’s disease (Lucking et al., 2000 [11], Scott et al., 2001 [12]). Mutations in the actin associated protein PFN1 have been identified in familial amyotrophic lateral sclerosis (ALS), with cell culture studies indicating that mutant PFN1 causes decreased bound actin levels, axon outgrowth and growth cone size (Wu et al., 2012[7]). Mouse models of ALS show NF-L only inclusions in the spinal cord of pre-symptomatic mice (Morrison et al., 2000[18]). ALS patients also exhibit aggregation of phosphorylated NFs in the perikarya and proximal axons (Manetto et al., 1988[19], Munoz et al., 1988[20]). Alterations to the normal functioning of NFs in ALS may lead to alterations in microtubule stability due to inhibition of normal NF-MT binding (Bocquet et al., 2009[21]).
DisorderLead symptomsFilament system affectedReference
Alzheimer’s DiseaseDementiaMT, AFGrundke-Iqbal et al., 1986a;Grundke-Iqbal et al., 1986b; Iqbal et al., 1986; Maciver and Harrington, 1995; Li et al., 2007
Frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17)Behavioral deficitsParkinsonismMTHutton et al., 1998; Rovelet-Lecrux and Campion, 2012
Parkinson’s DiseaseBradykinesiaMuscle rigidityResting TremorPostural instabilityIF, MTHill et al., 1991; Yang et al., 2005; Ren et al., 2009
Amyotrophic lateral sclerosisMuscle dystrophyIF, AFSternberger and Sternberger, 1983; Tortelli et al., 2012
Charcot-Marie-Tooth DiseaseMuscle dystrophyIFYoshihara et al., 2002; Jordanova et al., 2003; Pérez-Ollé et al., 2005
Huntington’s DiseaseDementiaDisordered movementIF, MTDom et al., 1976; DiProspero et al., 2004
EpilepsySeizuresAFScheibel et al., 1974; Ouyang et al., 2007
SchizophreniaChronic psychosis Cognitive impairmentAFGlantz and Lewis, 2000, 2001; Rubio et al., 2012
Giant axonal neuropathyReduced strengthReduced reflexesIF, MTAsbury et al., 1972; Prineas et al., 1976; Mahammad et al., 2013
Spinal muscular atrophyAreflexiaSpinal cord and muscle atrophyAF, IFRossoll et al., 2003; Torres-Benito et al., 2012
Tab.1  Diseases involving the cytoskeleton
1 Al-ChalabiA, AndersenP M, NilssonP, ChiozaB, AnderssonJ L, RussC, ShawC E, PowellJ F, LeighP N (1999). Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum Mol Genet, 8(2): 157–164
doi: 10.1093/hmg/8.2.157 pmid: 9931323
2 AndersonS A, VolkD W, LewisD A (1996). Increased density of microtubule associated protein 2-immunoreactive neurons in the prefrontal white matter of schizophrenic subjects. Schizophr Res, 19(2–3): 111–119
doi: 10.1016/0920-9964(96)88521-5 pmid: 8789909
3 AndrianantoandroE, PollardT D (2006). Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell, 24(1): 13–23
doi: 10.1016/j.molcel.2006.08.006 pmid: 17018289
4 AndrieuxA, SalinP A, VernetM, KujalaP, BaratierJ, Gory-FauréS, BoscC, PointuH, ProiettoD, SchweitzerA, DenarierE, KlumpermanJ, JobD (2002). The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders. Genes Dev, 16(18): 2350–2364
doi: 10.1101/gad.223302 pmid: 12231625
5 ArberS, BarbayannisF A, HanserH, SchneiderC, StanyonC A, BernardO, CaroniP (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature, 393(6687): 805–809
doi: 10.1038/31729 pmid: 9655397
6 ArmstrongR A, CairnsN J (2012). Different molecular pathologies result in similar spatial patterns of cellular inclusions in neurodegenerative disease: a comparative study of eight disorders. J Neural Transm, 119(12): 1551–1560
doi: 10.1007/s00702-012-0838-3 pmid: 22678700
7 ArmstrongR A, KertyE, SkullerudK, CairnsN J (2006). Neuropathological changes in ten cases of neuronal intermediate filament inclusion disease (NIFID): a study using alpha-internexin immunohistochemistry and principal components analysis (PCA). J Neural Transm, 113(9): 1207–1215
doi: 10.1007/s00702-005-0387-0 pmid: 16362634
8 AsburyA K, GaleM K, CoxS C, BaringerJ R, BergB O (1972). Giant axonal neuropathy—a unique case with segmental neurofilamentous masses. Acta Neuropathol, 20(3): 237–247
doi: 10.1007/BF00686905 pmid: 5044004
9 AsrarS, MengY, ZhouZ, TodorovskiZ, HuangW W, JiaZ (2009). Regulation of hippocampal long-term potentiation by p21-activated protein kinase 1 (PAK1). Neuropharmacology, 56(1): 73–80
doi: 10.1016/j.neuropharm.2008.06.055 pmid: 18644395
10 BaasP W, AhmadF J (2013). Beyond taxol: microtubule-based treatment of disease and injury of the nervous system. Brain, 136(Pt 10): 2937–2951
doi: 10.1093/brain/awt153 pmid: 23811322
11 BallatoreC, LeeV M, TrojanowskiJ Q (2007). Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci, 8(9): 663–672
doi: 10.1038/nrn2194 pmid: 17684513
12 BégouM, BrunP, BertrandJ B, JobD, SchweitzerA, D’AmatoT, SaoudM, AndrieuxA, Suaud-ChagnyM F (2007). Post-pubertal emergence of alterations in locomotor activity in stop null mice. Synapse, 61(9): 689–697
doi: 10.1002/syn.20409 pmid: 17559095
13 BégouM, VolleJ, BertrandJ B, BrunP, JobD, SchweitzerA, SaoudM, D’AmatoT, AndrieuxA, Suaud-ChagnyM F (2008). The stop null mice model for schizophrenia displays [corrected] cognitive and social deficits partly alleviated by neuroleptics. Neuroscience, 157(1): 29–39
doi: 10.1016/j.neuroscience.2008.07.080 pmid: 18804150
14 BelichenkoP V, DahlströmA (1995). Studies on the 3-dimensional architecture of dendritic spines and varicosities in human cortex by confocal laser scanning microscopy and Lucifer yellow microinjections. J Neurosci Methods, 57(1): 55–61
doi: 10.1016/0165-0270(94)00125-Z pmid: 7791365
15 Bento-AbreuA, Van DammeP, Van Den BoschL, RobberechtW (2010). The neurobiology of amyotrophic lateral sclerosis. Eur J Neurosci, 31(12): 2247–2265
doi: 10.1111/j.1460-9568.2010.07260.x pmid: 20529130
16 BergeronC, Beric-MaskarelK, MuntasserS, WeyerL, SomervilleM J, PercyM E (1994). Neurofilament light and polyadenylated mRNA levels are decreased in amyotrophic lateral sclerosis motor neurons. J Neuropathol Exp Neurol, 53(3): 221–230
doi: 10.1097/00005072-199405000-00002 pmid: 7909836
17 BernhardtR, MatusA (1984). Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons. J Comp Neurol, 226(2): 203–221
doi: 10.1002/cne.902260205 pmid: 6736300
18 BishopA L, HallA (2000). Rho GTPases and their effector proteins. Biochem J, 348(Pt 2): 241–255
doi: 10.1042/0264-6021:3480241 pmid: 10816416
19 BloomG S, ValleeR B (1983). Association of microtubule-associated protein 2 (MAP 2) with microtubules and intermediate filaments in cultured brain cells. J Cell Biol, 96(6): 1523–1531
doi: 10.1083/jcb.96.6.1523 pmid: 6343400
20 BocquetA, BergesR, FrankR, RobertP, PetersonA C, EyerJ (2009). Neurofilaments bind tubulin and modulate its polymerization. J Neurosci, 29(35): 11043–11054
doi: 10.1523/JNEUROSCI.1924-09.2009 pmid: 19726663
21 BoschM, HayashiY (2012). Structural plasticity of dendritic spines. Curr Opin Neurobiol, 22(3): 383–388
doi: 10.1016/j.conb.2011.09.002 pmid: 21963169
22 BrettschneiderJ, PetzoldA, SüssmuthS D, LudolphA C, TumaniH (2006). Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology, 66(6): 852–856
doi: 10.1212/01.wnl.0000203120.85850.54 pmid: 16567701
23 BrunP, BégouM, AndrieuxA, Mouly-BadinaL, ClergetM, SchweitzerA, ScarnaH, RenaudB, JobD, Suaud-ChagnyM F (2005). Dopaminergic transmission in STOP null mice. J Neurochem, 94(1): 63–73
doi: 10.1111/j.1471-4159.2005.03166.x pmid: 15953350
24 BrundenK R, ZhangB, CarrollJ, YaoY, PotuzakJ S, HoganA M, IbaM, JamesM J, XieS X, BallatoreC, SmithA B 3rd, LeeV M Y, TrojanowskiJ Q (2010). Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J Neurosci, 30(41): 13861–13866
doi: 10.1523/JNEUROSCI.3059-10.2010 pmid: 20943926
25 BugyiB, PappG, HildG, LõrinczyD, NevalainenE M, LappalainenP, SomogyiB, NyitraiM (2006). Formins regulate actin filament flexibility through long range allosteric interactions. J Biol Chem, 281(16): 10727–10736
doi: 10.1074/jbc.M510252200 pmid: 16490788
26 CaceresA, BankerG, StewardO, BinderL, PayneM (1984). MAP2 is localized to the dendrites of hippocampal neurons which develop in culture. Brain Res, 315(2): 314–318
pmid: 6722593
27 CairnsN J, LeeV M Y, TrojanowskiJ Q (2004). The cytoskeleton in neurodegenerative diseases. J Pathol, 204(4): 438–449
doi: 10.1002/path.1650 pmid: 15495240
28 ChaiX, FörsterE, ZhaoS, BockH H, FrotscherM (2009). Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3. J Neurosci, 29(1): 288–299
doi: 10.1523/JNEUROSCI.2934-08.2009 pmid: 19129405
29 ChenY, ZhengZZ, HuangR, ChenK, SongW, ZhaoB, ChenX, YangY, YuanL, ShangHF (2013) PFN1 mutations are rare in Han Chinese populations with amyotrophic lateral sclerosis. Neurobiol Aging34:1922 e1921–1925.
30 ClintonS M, AbelsonS, HaroutunianV, DavisK, Meador-WoodruffJ H (2004). Neurofilament subunit protein abnormalities in the thalamus in scizophrenia. Thalamus Relat Syst, 2: 265–272
31 ClintonS M, HaroutunianV, DavisK L, Meador-WoodruffJ H (2003). Altered transcript expression of NMDA receptor-associated postsynaptic proteins in the thalamus of subjects with schizophrenia. Am J Psychiatry, 160(6): 1100–1109
doi: 10.1176/appi.ajp.160.6.1100 pmid: 12777268
32 CohenR S, ChungS K, PfaffD W (1985). Immunocytochemical localization of actin in dendritic spines of the cerebral cortex using colloidal gold as a probe. Cell Mol Neurobiol, 5(3): 271–284
doi: 10.1007/BF00711012 pmid: 4064076
33 CollardJ F, CôtéF, JulienJ P (1995). Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature, 375(6526): 61–64
doi: 10.1038/375061a0 pmid: 7536898
34 CôtéF, CollardJ F, JulienJ P (1993). Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell, 73(1): 35–46
doi: 10.1016/0092-8674(93)90158-M pmid: 8462101
35 CotterD, WilsonS, RobertsE, KerwinR, EverallI P (2000). Increased dendritic MAP2 expression in the hippocampus in schizophrenia. Schizophr Res, 41(2): 313–323
doi: 10.1016/S0920-9964(99)00068-7 pmid: 10708340
36 DaoudH, DobrzenieckaS, CamuW, MeiningerV, DupreN, DionPA, RouleauGA (2013) Mutation analysis of PFN1 in familial amyotrophic lateral sclerosis patients. Neurobiol Aging34:1311 e1311–1312.
37 DehmeltL, HalpainS (2004). Actin and microtubules in neurite initiation: are MAPs the missing link? J Neurobiol, 58(1): 18–33
doi: 10.1002/neu.10284 pmid: 14598367
38 DentE W, KalilK (2001). Axon branching requires interactions between dynamic microtubules and actin filaments. J Neurosci, 21(24): 9757–9769
pmid: 11739584
39 DeoA J, GoldszerI M, LiS, DiBitettoJ V, HenteleffR, SampsonA, LewisD A, PenzesP, SweetR A (2013). PAK1 protein expression in the auditory cortex of schizophrenia subjects. PLoS ONE, 8(4): e59458
doi: 10.1371/journal.pone.0059458 pmid: 23613712
40 Díez-GuerraF J, AvilaJ (1993). MAP2 phosphorylation parallels dendrite arborization in hippocampal neurones in culture. Neuroreport, 4(4): 419–422
doi: 10.1097/00001756-199304000-00020 pmid: 8499602
41 DiProsperoN A, ChenE Y, CharlesV, PlomannM, KordowerJ H, TagleD A (2004). Early changes in Huntington’s disease patient brains involve alterations in cytoskeletal and synaptic elements. J Neurocytol, 33(5): 517–533
doi: 10.1007/s11068-004-0514-8 pmid: 15906159
42 DixitR, RossJ L, GoldmanY E, HolzbaurE L (2008). Differential regulation of dynein and kinesin motor proteins by tau. Science, 319(5866): 1086–1089
doi: 10.1126/science.1152993 pmid: 18202255
43 DomR, MalfroidM, BaroF (1976). Neuropathology of Huntington’s chorea.Studies of the ventrobasal complex of the thalamus. Neurology, 26(1): 64–68
doi: 10.1212/WNL.26.1.64 pmid: 128708
44 DowningK H, NogalesE (1998). Tubulin and microtubule structure. Curr Opin Cell Biol, 10(1): 16–22
doi: 10.1016/S0955-0674(98)80082-3 pmid: 9484591
45 DuanW, GuoY, JiangH, YuX, LiC (2011). MG132 enhances neurite outgrowth in neurons overexpressing mutant TAR DNA-binding protein-43 via increase of HO-1. Brain Res, 1397: 1–9
doi: 10.1016/j.brainres.2011.05.006 pmid: 21620381
46 EbnethA, GodemannR, StamerK, IllenbergerS, TrinczekB, MandelkowE (1998). Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol, 143(3): 777–794
doi: 10.1083/jcb.143.3.777 pmid: 9813097
47 EdwardsD C, SandersL C, BokochG M, GillG N (1999). Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol, 1(5): 253–259
doi: 10.1038/12963 pmid: 10559936
48 EhlersM D, FungE T, O’BrienR J, HuganirR L (1998). Splice variant-specific interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments. J Neurosci, 18(2): 720–730
pmid: 9425014
49 EhlersM D, TingleyW G, HuganirR L (1995). Regulated subcellular distribution of the NR1 subunit of the NMDA receptor. Science, 269(5231): 1734–1737
doi: 10.1126/science. pmid: 7569904
50 FerriC P, PrinceM, BrayneC, BrodatyH, FratiglioniL, GanguliM, HallK, HasegawaK, HendrieH, HuangY, JormA, MathersC, MenezesP R, RimmerE, ScazufcaM, and the Alzheimer’s Disease International (2005). Global prevalence of dementia: a Delphi consensus study. Lancet, 366(9503): 2112–2117
doi: 10.1016/S0140-6736(05)67889-0 pmid: 16360788
51 FiglewiczD A, KrizusA, MartinoliM G, MeiningerV, DibM, RouleauG A, JulienJ P (1994). Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum Mol Genet, 3(10): 1757–1761
doi: 10.1093/hmg/3.10.1757 pmid: 7849698
52 FreimanT M, Eismann-SchweimlerJ, FrotscherM (2011). Granule cell dispersion in temporal lobe epilepsy is associated with changes in dendritic orientation and spine distribution. Exp Neurol, 229(2): 332–338
doi: 10.1016/j.expneurol.2011.02.017 pmid: 21376037
53 FuchsE, ClevelandD W (1998). A structural scaffolding of intermediate filaments in health and disease. Science, 279(5350): 514–519
doi: 10.1126/science.279.5350.514 pmid: 9438837
54 FulgaT A, Elson-SchwabI, KhuranaV, SteinhilbM L, SpiresT L, HymanB T, FeanyM B (2007). Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol, 9(2): 139–148
doi: 10.1038/ncb1528 pmid: 17187063
55 GallowayP G, MulvihillP, PerryG (1992). Filaments of Lewy bodies contain insoluble cytoskeletal elements. Am J Pathol, 140(4): 809–822
pmid: 1314025
56 GallowayP G, PerryG, GambettiP (1987). Hirano body filaments contain actin and actin-associated proteins. J Neuropathol Exp Neurol, 46(2): 185–199
doi: 10.1097/00005072-198703000-00006 pmid: 3029338
57 GareyL J, OngW Y, PatelT S, KananiM, DavisA, MortimerA M, BarnesT R, HirschS R (1998). Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry, 65(4): 446–453
doi: 10.1136/jnnp.65.4.446 pmid: 9771764
58 GeW W, WenW, StrongW, Leystra-LantzC, StrongM J (2005). Mutant copper-zinc superoxide dismutase binds to and destabilizes human low molecular weight neurofilament mRNA. J Biol Chem, 280(1): 118–124
pmid: 15507437
59 GibsonP H, TomlinsonB E (1977). Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer’s disease. J Neurol Sci, 33(1–2): 199–206
doi: 10.1016/0022-510X(77)90193-9 pmid: 903782
60 GlantzL A, LewisD A (2000). Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry, 57(1): 65–73
doi: 10.1001/archpsyc.57.1.65 pmid: 10632234
61 GlantzL A, LewisD A (2001). Dendritic spine density in schizophrenia and depression. Arch Gen Psychiatry, 58(2): 203
doi: 10.1001/archpsyc.58.2.203 pmid: 11177126
62 GoedertM, WischikC M, CrowtherR A, WalkerJ E, KlugA (1988). Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci USA, 85(11): 4051–4055
doi: 10.1073/pnas.85.11.4051 pmid: 3131773
63 Grundke-IqbalI, IqbalK, QuinlanM, TungY C, ZaidiM S, WisniewskiH M (1986a). Microtubule-associated protein tau.A component of Alzheimer paired helical filaments. J Biol Chem, 261(13): 6084–6089
pmid: 3084478
64 Grundke-IqbalI, IqbalK, TungY C, QuinlanM, WisniewskiH M, BinderL I (1986b). Abnormal phosphorylation of the microtubule-associated protein tau (τ) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA, 83(13): 4913–4917
doi: 10.1073/pnas.83.13.4913 pmid: 3088567
65 GunningP, O’NeillG, HardemanE (2008). Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev, 88(1): 1–35
doi: 10.1152/physrev.00001.2007 pmid: 18195081
66 HaasC A, DudeckO, KirschM, HuszkaC, KannG, PollakS, ZentnerJ, FrotscherM (2002). Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J Neurosci, 22(14): 5797–5802
pmid: 12122039
67 HangerD P, AndertonB H, NobleW (2009). Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med, 15(3): 112–119
doi: 10.1016/j.molmed.2009.01.003 pmid: 19246243
68 HayashiM L, ChoiS Y, RaoB S, JungH Y, LeeH K, ZhangD, ChattarjiS, KirkwoodA, TonegawaS (2004). Altered cortical synaptic morphology and impaired memory consolidation in forebrain- specific dominant-negative PAK transgenic mice. Neuron, 42(5): 773–787
doi: 10.1016/j.neuron.2004.05.003 pmid: 15182717
69 HillJ J, HashimotoT, LewisD A (2006). Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia. Mol Psychiatry, 11(6): 557–566
doi: 10.1038/sj.mp.4001792 pmid: 16402129
70 HillW D, LeeV M, HurtigH I, MurrayJ M, TrojanowskiJ Q (1991). Epitopes located in spatially separate domains of each neurofilament subunit are present in Parkinson’s disease Lewy bodies. J Comp Neurol, 309(1): 150–160
doi: 10.1002/cne.903090111 pmid: 1716646
71 HouserC R (1990). Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res, 535(2): 195–204
doi: 10.1016/0006-8993(90)91601-C pmid: 1705855
72 HuttonM, LendonC L, RizzuP, BakerM, FroelichS, HouldenH, Pickering-BrownS, ChakravertyS, IsaacsA, GroverA, HackettJ, AdamsonJ, LincolnS, DicksonD, DaviesP, PetersenR C, StevensM, de GraaffE, WautersE, van BarenJ, HillebrandM, JoosseM, KwonJ M, NowotnyP, CheL K, NortonJ, MorrisJ C, ReedL A, TrojanowskiJ, BasunH, LannfeltL, NeystatM, FahnS, DarkF, TannenbergT, DoddP R, HaywardN, KwokJ B, SchofieldP R, AndreadisA, SnowdenJ, CraufurdD, NearyD, OwenF, OostraB A, HardyJ, GoateA, van SwietenJ, MannD, LynchT, HeutinkP (1998). Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature, 393(6686): 702–705
doi: 10.1038/31508 pmid: 9641683
73 IngreC, LandersJE, RizikN, VolkAE, AkimotoC, BirveA, HubersA, KeaglePJ, PiotrowskaK, PressR, AndersenPM, LudolphAC, WeishauptJ H (2013). A novel phosphorylation site mutation in profilin 1 revealed in a large screen of US, Nordic, and German amyotrophic lateral sclerosis/frontotemporal dementia cohorts. Neurobiol Aging, 34:1708 e1701–1706
74 IqbalK, Grundke-IqbalI, ZaidiT, MerzP A, WenG Y, ShaikhS S, WisniewskiH M, AlafuzoffI, WinbladB (1986). Defective brain microtubule assembly in Alzheimer’s disease. Lancet, 2(8504): 421–426
doi: 10.1016/S0140-6736(86)92134-3 pmid: 2874414
75 IttnerL M, KeY D, DelerueF, BiM, GladbachA, van EerselJ, WölfingH, ChiengB C, ChristieM J, NapierI A, EckertA, StaufenbielM, HardemanE, GötzJ (2010). Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell, 142(3): 387–397
doi: 10.1016/j.cell.2010.06.036 pmid: 20655099
76 JordanovaA, De JongheP, BoerkoelC F, TakashimaH, De VriendtE, CeuterickC, MartinJ J, ButlerI J, ManciasP, PapasozomenosS Ch, TerespolskyD, PotockiL, BrownC W, ShyM, RitaD A, TournevI, KremenskyI, LupskiJ R, TimmermanV (2003). Mutations in the neurofilament light chain gene (NEFL) cause early onset severe Charcot-Marie-Tooth disease. Brain, 126(Pt 3): 590–597
doi: 10.1093/brain/awg059 pmid: 12566280
77 KeY D, SuchowerskaA K, van der HovenJ, De SilvaD M, WuC W, van EerselJ, IttnerA, IttnerL M (2012). Lessons from tau-deficient mice. Int J Alzheimers Dis, 2012: 873270
doi: 10.1155/2012/873270 pmid: 22720190
78 KimC H, LismanJ E (1999). A role of actin filament in synaptic transmission and long-term potentiation. J Neurosci, 19(11): 4314–4324
pmid: 10341235
79 KorobovaF, SvitkinaT (2008). Arp2/3 complex is important for filopodia formation, growth cone motility, and neuritogenesis in neuronal cells. Mol Biol Cell, 19(4): 1561–1574
doi: 10.1091/mbc.E07-09-0964 pmid: 18256280
80 KrügerR, FischerC, SchulteT, StraussK M, MüllerT, WoitallaD, BergD, HungsM, GobbeleR, BergerK, EpplenJ T, RiessO, SchölsL (2003). Mutation analysis of the neurofilament M gene in Parkinson’s disease. Neurosci Lett, 351(2): 125–129
doi: 10.1016/S0304-3940(03)00903-0 pmid: 14583397
81 KuhnT B, BamburgJ R (2008). Tropomyosin and ADF/cofilin as collaborators and competitors. Adv Exp Med Biol, 644: 232–249
doi: 10.1007/978-0-387-85766-4_18 pmid: 19209826
82 LattanteS, Le BerI, CamuzatA, BriceA, KabashiE (2013). Mutations in the PFN1 gene are not a common cause in patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration in France. Neurobiol Aging, 34:1709 e1701–1702
83 LavedanC, BuchholtzS, NussbaumR L, AlbinR L, PolymeropoulosM H (2002). A mutation in the human neurofilament M gene in Parkinson’s disease that suggests a role for the cytoskeleton in neuronal degeneration. Neurosci Lett, 322(1): 57–61
doi: 10.1016/S0304-3940(01)02513-7 pmid: 11958843
84 LeeM K, MarszalekJ R, ClevelandD W (1994). A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron, 13(4): 975–988
doi: 10.1016/0896-6273(94)90263-1 pmid: 7946341
85 LeeV M, GoedertM, TrojanowskiJ Q (2001). Neurodegenerative tauopathies. Annu Rev Neurosci, 24(1): 1121–1159
doi: 10.1146/annurev.neuro.24.1.1121 pmid: 11520930
86 LiB, ChohanM O, Grundke-IqbalI, IqbalK (2007). Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathol, 113(5): 501–511
doi: 10.1007/s00401-007-0207-8 pmid: 17372746
87 LückingC B, DürrA, BonifatiV, VaughanJ, De MicheleG, GasserT, HarhangiB S, MecoG, DenèfleP, WoodN W, AgidY, BriceA, and the French Parkinson’s Disease Genetics Study Group, and the European Consortium on Genetic Susceptibility in Parkinson’s Disease (2000). Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med, 342(21): 1560–1567
doi: 10.1056/NEJM200005253422103 pmid: 10824074
88 LuoL, HenschT K, AckermanL, BarbelS, JanL Y, JanY N (1996). Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature, 379(6568): 837–840
doi: 10.1038/379837a0 pmid: 8587609
89 MaciverS K, HarringtonC R (1995). Two actin binding proteins, actin depolymerizing factor and cofilin, are associated with Hirano bodies. Neuroreport, 6(15): 1985–1988
doi: 10.1097/00001756-199510010-00008 pmid: 8580423
90 MahammadS, MurthyS N, DidonnaA, GrinB, IsraeliE, PerrotR, BomontP, JulienJ P, KuczmarskiE, OpalP, GoldmanR D (2013). Giant axonal neuropathy-associated gigaxonin mutations impair intermediate filament protein degradation. J Clin Invest, 123(5): 1964–1975
doi: 10.1172/JCI66387 pmid: 23585478
91 ManettoV, SternbergerN H, PerryG, SternbergerL A, GambettiP (1988). Phosphorylation of neurofilaments is altered in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol, 47(6): 642–653
doi: 10.1097/00005072-198811000-00007 pmid: 2459315
92 ManserE, LeungT, SalihuddinH, ZhaoZ S, LimL (1994). A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature, 367(6458): 40–46
doi: 10.1038/367040a0 pmid: 8107774
93 MatusA (1988). Microtubule-associated proteins: their potential role in determining neuronal morphology. Annu Rev Neurosci, 11(1): 29–44
doi: 10.1146/annurev.ne.11.030188.000333 pmid: 3284444
94 MinamideL S, StrieglA M, BoyleJ A, MebergP J, BamburgJ R (2000). Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nat Cell Biol, 2(9): 628–636
doi: 10.1038/35023579 pmid: 10980704
95 MitchisonT J, CramerL P (1996). Actin-based cell motility and cell locomotion. Cell, 84(3): 371–379
doi: 10.1016/S0092-8674(00)81281-7 pmid: 8608590
96 MockrinS C, KornE D (1980). Acanthamoeba profilin interacts with G-actin to increase the rate of exchange of actin-bound adenosine 5′-triphosphate. Biochemistry, 19(23): 5359–5362
doi: 10.1021/bi00564a033 pmid: 6893804
97 MorfiniG, PiginoG, MizunoN, KikkawaM, BradyS T (2007). Tau binding to microtubules does not directly affect microtubule-based vesicle motility. J Neurosci Res, 85(12): 2620–2630
doi: 10.1002/jnr.21154 pmid: 17265463
98 MoriwakiA, LuY F, TomizawaK, MatsuiH (1998). An immunosuppressant, FK506, protects against neuronal dysfunction and death but has no effect on electrographic and behavioral activities induced by systemic kainate. Neuroscience, 86(3): 855–865
doi: 10.1016/S0306-4522(98)00071-2 pmid: 9692722
99 MorrisonB M, ShuI W, WilcoxA L, GordonJ W, MorrisonJ H (2000). Early and selective pathology of light chain neurofilament in the spinal cord and sciatic nerve of G86R mutant superoxide dismutase transgenic mice. Exp Neurol, 165(2): 207–220
doi: 10.1006/exnr.2000.7457 pmid: 10993681
100 MunozD G, GreeneC, PerlD P, SelkoeD J (1988). Accumulation of phosphorylated neurofilaments in anterior horn motoneurons of amyotrophic lateral sclerosis patients. J Neuropathol Exp Neurol, 47(1): 9–18
doi: 10.1097/00005072-198801000-00002 pmid: 3334727
101 Niebroj-DoboszI, DziewulskaD, JanikP (2006). Auto-antibodies against proteins of spinal cord cells in cerebrospinal fluid of patients with amyotrophic lateral sclerosis (ALS).Folia neuropathologica / Association of Polish Neuropathologists and Medical Research Centre. Polish Academy of Sciences, 44: 191–196
102 NishidaE, IidaK, YonezawaN, KoyasuS, YaharaI, SakaiH (1987). Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Proc Natl Acad Sci USA, 84(15): 5262–5266
doi: 10.1073/pnas.84.15.5262 pmid: 3474653
103 NiwaR, Nagata-OhashiK, TakeichiM, MizunoK, UemuraT (2002). Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell, 108(2): 233–246
doi: 10.1016/S0092-8674(01)00638-9 pmid: 11832213
104 OkamotoK, NagaiT, MiyawakiA, HayashiY (2004). Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci, 7(10): 1104–1112
doi: 10.1038/nn1311 pmid: 15361876
105 OuyangY, YangX F, HuX Y, Erbayat-AltayE, ZengL H, LeeJ M, WongM (2007). Hippocampal seizures cause depolymerization of filamentous actin in neurons independent of acute morphological changes. Brain Res, 1143: 238–246
doi: 10.1016/j.brainres.2007.01.077 pmid: 17320053
106 PatrickG N, ZukerbergL, NikolicM, de la MonteS, DikkesP, TsaiL H (1999). Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 402(6762): 615–622
doi: 10.1038/45159 pmid: 10604467
107 PavlikL L, MoshkovD A (1991). Actin in synaptic cytoskeleton during long-term potentiation in hippocampal slices. Acta Histochem Suppl, 41(Supp 41): 257–264
pmid: 1811261
108 Pérez-OlléR, López-ToledanoM A, GoryunovD, Cabrera-PochN, StefanisL, BrownK, LiemR K (2005). Mutations in the neurofilament light gene linked to Charcot-Marie-Tooth disease cause defects in transport. J Neurochem, 93(4): 861–874
doi: 10.1111/j.1471-4159.2005.03095.x pmid: 15857389
109 PerrotR, BergesR, BocquetA, EyerJ (2008). Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol, 38(1): 27–65
doi: 10.1007/s12035-008-8033-0 pmid: 18649148
110 PowellK J, HoriS E, LeslieR, AndrieuxA, SchellinckH, ThorneM, RobertsonG S (2007). Cognitive impairments in the STOP null mouse model of schizophrenia. Behav Neurosci, 121(5): 826–835
doi: 10.1037/0735-7044.121.5.826 pmid: 17907815
111 PrineasJ W, OuvrierR A, WrightR G, WalshJ C, McLeodJ G (1976). Gian axonal neuropathy—a generalized disorder of cytoplasmic microfilament formation. J Neuropathol Exp Neurol, 35(4): 458–470
doi: 10.1097/00005072-197607000-00006 pmid: 180266
112 QiangL, YuW, AndreadisA, LuoM, BaasP W (2006). Tau protects microtubules in the axon from severing by katanin. J Neurosci, 26(12): 3120–3129
doi: 10.1523/JNEUROSCI.5392-05.2006 pmid: 16554463
113 RaoM V, MohanP S, KumarA, YuanA, MontagnaL, CampbellJ, Veeranna, EspreaficoE M, JulienJ P, NixonR A (2011). The myosin Va head domain binds to the neurofilament-L rod and modulates endoplasmic reticulum (ER) content and distribution within axons. PLoS ONE, 6(2): e17087
doi: 10.1371/journal.pone.0017087 pmid: 21359212
114 RenY, JiangH, YangF, NakasoK, FengJ (2009). Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation. J Biol Chem, 284(6): 4009–4017
doi: 10.1074/jbc.M806245200 pmid: 19074146
115 RenY, ZhaoJ, FengJ (2003). Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci, 23(8): 3316–3324
pmid: 12716939
116 RexC S, ChenL Y, SharmaA, LiuJ, BabayanA H, GallC M, LynchG (2009). Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J Cell Biol, 186(1): 85–97
doi: 10.1083/jcb.200901084 pmid: 19596849
117 RossiterJ P, AndersonL L, YangF, ColeG M (2000). Caspase-cleaved actin (fractin) immunolabelling of Hirano bodies. Neuropathol Appl Neurobiol, 26(4): 342–346
doi: 10.1046/j.1365-2990.2000.00252.x pmid: 10931367
118 RossollW, JablonkaS, AndreassiC, KröningA K, KarleK, MonaniU R, SendtnerM (2003). Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol, 163(4): 801–812
doi: 10.1083/jcb.200304128 pmid: 14623865
119 Rovelet-LecruxA, CampionD (2012). Copy number variations involving the microtubule-associated protein tau in human diseases. Biochem Soc Trans, 40(4): 672–676
doi: 10.1042/BST20120045 pmid: 22817714
120 RoyS, ZhangB, LeeV M, TrojanowskiJ Q (2005). Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol, 109(1): 5–13
doi: 10.1007/s00401-004-0952-x pmid: 15645263
121 RubioM D, HaroutunianV, Meador-WoodruffJ H (2012). Abnormalities of the Duo/Ras-related C3 botulinum toxin substrate 1/p21-activated kinase 1 pathway drive myosin light chain phosphorylation in frontal cortex in schizophrenia. Biol Psychiatry, 71(10): 906–914
doi: 10.1016/j.biopsych.2012.02.006 pmid: 22458949
122 SánchezC, ArellanoJ I, Rodríguez-SánchezP, AvilaJ, DeFelipeJ, Díez-GuerraF J (2001). Microtubule-associated protein 2 phosphorylation is decreased in the human epileptic temporal lobe cortex. Neuroscience, 107(1): 25–33
doi: 10.1016/S0306-4522(01)00338-4 pmid: 11744243
123 SánchezC, Díaz-NidoJ, AvilaJ (2000). Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol, 61(2): 133–168
doi: 10.1016/S0301-0082(99)00046-5 pmid: 10704996
124 ScheibelM E, CrandallP H, ScheibelA B (1974). The hippocampal-dentate complex in temporal lobe epilepsy. A Golgi study. Epilepsia, 15(1): 55–80
doi: 10.1111/j.1528-1157.1974.tb03997.x pmid: 4523024
125 SchevzovG, CurthoysN M, GunningP W, FathT (2012). Functional diversity of actin cytoskeleton in neurons and its regulation by tropomyosin. Int Rev Cell Mol Biol, 298: 33–94
doi: 10.1016/B978-0-12-394309-5.00002-X pmid: 22878104
126 SchmidtM L, LeeV M, TrojanowskiJ Q (1989). Analysis of epitopes shared by Hirano bodies and neurofilament proteins in normal and Alzheimer’s disease hippocampus. Lab Invest, 60(4): 513–522
pmid: 2468822
127 SchneiderA B J, BiernatJ, von BergenM, MandelkowE M, MandelkowE M (1999). Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry, 38(12): 3549–3558
doi: 10.1021/bi981874p pmid: 10090741
128 ScottW K, NanceM A, WattsR L, HubbleJ P, KollerW C, LyonsK, PahwaR, SternM B, ColcherA, HinerB C, JankovicJ, OndoW G, AllenF H Jr, GoetzC G, SmallG W, MastermanD, MastagliaF, LaingN G, StajichJ M, SlotterbeckB, BoozeM W, RibbleR C, RampersaudE, WestS G, GibsonR A, MiddletonL T, RosesA D, HainesJ L, ScottB L, VanceJ M, Pericak-VanceM A (2001). Complete genomic screen in Parkinson disease: evidence for multiple genes. JAMA, 286(18): 2239–2244
doi: 10.1001/jama.286.18.2239 pmid: 11710888
129 SeitzA, KojimaH, OiwaK, MandelkowE M, SongY H, MandelkowE (2002). Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J, 21(18): 4896–4905
doi: 10.1093/emboj/cdf503 pmid: 12234929
130 ShimizuH, IwayamaY, YamadaK, ToyotaT, MinabeY, NakamuraK, NakajimaM, HattoriE, MoriN, OsumiN, YoshikawaT (2006). Genetic and expression analyses of the STOP (MAP6) gene in schizophrenia. Schizophr Res, 84(2–3): 244–252
doi: 10.1016/j.schres.2006.03.017 pmid: 16624526
131 SousaV L, BellaniS, GiannandreaM, YousufM, ValtortaF, MeldolesiJ, ChieregattiE (2009). alpha-synuclein and its A30P mutant affect actin cytoskeletal structure and dynamics. Mol Biol Cell, 20(16): 3725–3739
doi: 10.1091/mbc.E08-03-0302 pmid: 19553474
132 SternbergerL A, SternbergerN H (1983). Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci USA, 80(19): 6126–6130
doi: 10.1073/pnas.80.19.6126 pmid: 6577472
133 SudoH, BaasP W (2011). Strategies for diminishing katanin-based loss of microtubules in tauopathic neurodegenerative diseases. Hum Mol Genet, 20(4): 763–778
doi: 10.1093/hmg/ddq521 pmid: 21118899
134 SweetR A, HenteleffR A, ZhangW, SampsonA R, LewisD A (2009). Reduced dendritic spine density in auditory cortex of subjects with schizophrenia. Neuropsychopharmacology, 34(2): 374–389
doi: 10.1038/npp.2008.67 pmid: 18463626
135 TakeuchiH, KobayashiY, YoshiharaT, NiwaJ, DoyuM, OhtsukaK, SobueG (2002). Hsp70 and Hsp40 improve neurite outgrowth and suppress intracytoplasmic aggregate formation in cultured neuronal cells expressing mutant SOD1. Brain Res, 949(1–2): 11–22
doi: 10.1016/S0006-8993(02)02568-4 pmid: 12213295
136 TilocaC, TicozziN, PensatoV, CorradoL, Del BoR, BertolinC, FenoglioC, GagliardiS, CaliniD, LauriaG, CastellottiB, BagarottiA, CortiS, GalimbertiD, CagninA, GabelliC, RanieriM, CeroniM, SicilianoG, MazziniL, CeredaC, ScarpiniE, SoraruG, ComiGP, D'AlfonsoS, GelleraC, RattiA, LandersJE, SilaniV (2013). Screening of the PFN1 gene in sporadic amyotrophic lateral sclerosis and in frontotemporal dementia. Neurobiol Aging, 34:1517 e1519–1510
137 Torres-BenitoL, RuizR, TabaresL (2012). Synaptic defects in spinal muscular atrophy animal models. Dev Neurobiol, 72(1): 126–133
doi: 10.1002/dneu.20912 pmid: 21567981
138 TortelliR, RuggieriM, CorteseR, D’ErricoE, CapozzoR, LeoA, MastrapasquaM, ZoccolellaS, LeanteR, LivreaP, LogroscinoG, SimoneI L (2012). Elevated cerebrospinal fluid neurofilament light levels in patients with amyotrophic lateral sclerosis: a possible marker of disease severity and progression. Eur J Neurol, 19(12): 1561–1567
doi: 10.1111/j.1468-1331.2012.03777.x pmid: 22680408
139 TrojanowskiJ Q, LeeV M Y (2005). Rous-Whipple Award Lecture. The Alzheimer’s brain: finding out what’s broken tells us how to fix it. Am J Pathol, 167(5): 1183–1188
doi: 10.1016/S0002-9440(10)61206-0 pmid: 16251403
140 TsengY, AnK M, EsueO, WirtzD (2004). The bimodal role of filamin in controlling the architecture and mechanics of F-actin networks. J Biol Chem, 279(3): 1819–1826
doi: 10.1074/jbc.M306090200 pmid: 14594947
141 van BlitterswijkM, BakerMC, BieniekKF, KnopmanDS, JosephsKA, BoeveB, CaselliR, WszolekZK, PetersenR, Graff-RadfordNR, BoylanKB, DicksonDW, RademakersR (2013). Profilin-1 mutations are rare in patients with amyotrophic lateral sclerosis and frontotemporal dementia. Amyotroph Lateral Scler Frontotemporal Degener14:463–469
142 WagnerU, UttonM, GalloJ M, MillerC C (1996). Cellular phosphorylation of tau by GSK-3 beta influences tau binding to microtubules and microtubule organisation. J Cell Sci, 109(Pt 6): 1537–1543
pmid: 8799840
143 WongN K, HeB P, StrongM J (2000). Characterization of neuronal intermediate filament protein expression in cervical spinal motor neurons in sporadic amyotrophic lateral sclerosis (ALS). J Neuropathol Exp Neurol, 59(11): 972–982
pmid: 11089575
144 WuC H, FalliniC, TicozziN, KeagleP J, SappP C, PiotrowskaK, LoweP, KoppersM, McKenna-YasekD, BaronD M, KostJ E, Gonzalez-PerezP, FoxA D, AdamsJ, TaroniF, TilocaC, LeclercA L, ChafeS C, MangrooD, MooreM J, ZitzewitzJ A, XuZ S, van den BergL H, GlassJ D, SicilianoG, CirulliE T, GoldsteinD B, SalachasF, MeiningerV, RossollW, RattiA, GelleraC, BoscoD A, BassellG J, SilaniV, DroryV E, BrownR H Jr, LandersJ E (2012). Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature, 488(7412): 499–503
doi: 10.1038/nature11280 pmid: 22801503
145 XieZ, SrivastavaD P, PhotowalaH, KaiL, CahillM E, WoolfreyK M, ShumC Y, SurmeierD J, PenzesP (2007). Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines. Neuron, 56(4): 640–656
doi: 10.1016/j.neuron.2007.10.005 pmid: 18031682
146 XuZ, CorkL C, GriffinJ W, ClevelandD W (1993). Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell, 73(1): 23–33
doi: 10.1016/0092-8674(93)90157-L pmid: 8462100
147 YangF, JiangQ, ZhaoJ, RenY, SuttonM D, FengJ (2005). Parkin stabilizes microtubules through strong binding mediated by three independent domains. J Biol Chem, 280(17): 17154–17162
doi: 10.1074/jbc.M500843200 pmid: 15737990
148 YangN, HiguchiO, OhashiK, NagataK, WadaA, KangawaK, NishidaE, MizunoK (1998). Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature, 393(6687): 809–812
doi: 10.1038/31735 pmid: 9655398
149 YangS, FifitaJ A, WilliamsK L, WarraichST, PamphlettR, NicholsonG A, BlairI P (2013). Mutation analysis and immunopathological studies of PFN1 in familial and sporadic amyotrophic lateral sclerosis. Neurobiol Aging, 34:2235 e2237–2210
150 YoshiharaT, YamamotoM, HattoriN, MisuK, MoriK, KoikeH, SobueG (2002). Identification of novel sequence variants in the neurofilament-light gene in a Japanese population: analysis of Charcot-Marie-Tooth disease patients and normal individuals. J Peripher Nerv Syst, 7(4): 221–224
doi: 10.1046/j.1529-8027.2002.02028.x pmid: 12477167
151 ZengL H, XuL, RensingN R, SinatraP M, RothmanS M, WongM (2007). Kainate seizures cause acute dendritic injury and actin depolymerization in vivo. J Neurosci, 27(43): 11604–11613
doi: 10.1523/JNEUROSCI.0983-07.2007 pmid: 17959803
152 ZhangB, CarrollJ, TrojanowskiJ Q, YaoY, IbaM, PotuzakJ S, HoganA M L, XieS X, BallatoreC, SmithA B 3rd, LeeV M L, BrundenK R (2012). The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J Neurosci, 32(11): 3601–3611
doi: 10.1523/JNEUROSCI.4922-11.2012 pmid: 22423084
153 ZhangB, MaitiA, ShivelyS, LakhaniF, McDonald-JonesG, BruceJ, LeeE B, XieS X, JoyceS, LiC, ToleikisP M, LeeV M, TrojanowskiJ Q (2005). Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci USA, 102(1): 227–231
doi: 10.1073/pnas.0406361102 pmid: 15615853
154 ZhangW, BensonD L (2001). Stages of synapse development defined by dependence on F-actin. J Neurosci,21:5169–5181
155 ZhuQ, Couillard-DesprésS, JulienJ P (1997). Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp Neurol, 148(1): 299–316
doi: 10.1006/exnr.1997.6654 pmid: 9398473
156 ZouZY, SunQ, LiuMS, LiXG, CuiLY (2013). Mutations in the profilin 1 gene are not common in amyotrophic lateral sclerosis of Chinese origin. Neurobiol Aging, 34:1713 e1715–1716
[1] Peyman Hadi, Karimeh Haghani, Ali Noori-Zadeh, Salar Bakhtiyari. Prevalence of fragile X syndrome among patients with mental retardation in the west of Iran[J]. Front. Biol., 2018, 13(6): 464-468.
[2] Ankita Chattopadhyay, Mythili S.. The journey of gut microbiome – An introduction and its influence on metabolic disorders[J]. Front. Biol., 2018, 13(5): 327-341.
[3] Elham Rajaee, Karim Mowla, Ali Ghorbani, Mehrdad Dargahi-Malamir, Marzieh Zarei, Faraj Allah Rahimikhah. The relationship between serum zinc levels and rheumatoid arthritis activity[J]. Front. Biol., 2018, 13(1): 51-55.
[4] Yujie Deng, Caixia Lin, Huanjiao Jenny Zhou, Wang Min. Smooth muscle cell differentiation: Mechanisms and models for vascular diseases[J]. Front. Biol., 2017, 12(6): 392-405.
[5] Ji-Song Guan, Hong Xie, San-Xiong Liu. Epigenetic regulators sculpt the plastic brain[J]. Front. Biol., 2017, 12(5): 317-332.
[6] S. Pooja, T. Aditi, S. Jemimah Naine, C. Subathra Devi. Bioactive compounds from marine Streptomycessp. VITPSA as therapeutics[J]. Front. Biol., 2017, 12(4): 280-289.
[7] Mohammad Jodeiri Farshbaf. Succinate dehydrogenase in Parkinson’s disease[J]. Front. Biol., 2017, 12(3): 175-182.
[8] Fakhredin Saba, Najmaldin Saki, Elahe Khodadi, Masoud Soleimani. Crosstalk between catecholamines and erythropoiesis[J]. Front. Biol., 2017, 12(2): 103-115.
[9] Kimberly D. Girling,Yu Tian Wang. Neuroprotective strategies for NMDAR-mediated excitotoxicity in Huntington’s Disease[J]. Front. Biol., 2016, 11(6): 439-458.
[10] Fu-Ming Zhou,Li Li,Juming Yue,John A. Dani. Transcription factor Pitx3 mutant mice as a model for Parkinson’s disease[J]. Front. Biol., 2016, 11(6): 427-438.
[11] James M. Murphy,Hyeonsoo Park,Ssang-Taek Steve Lim. FAK and Pyk2 in disease[J]. Front. Biol., 2016, 11(1): 1-9.
[12] H. C. Yashavantha Rao,Devaraju Rakshith,Sreedharamurthy Satish. Antimicrobial properties of endophytic actinomycetes isolated from Combretum latifolium Blume, a medicinal shrub from Western Ghats of India[J]. Front. Biol., 2015, 10(6): 528-536.
[13] Altea Rocchi,Congcong He. Emerging roles of autophagy in metabolism and metabolic disorders[J]. Front. Biol., 2015, 10(2): 154-164.
[14] Claudia A. BERTUCCIO,Daniel C. DEVOR. Intermediate conductance, Ca2+-activated K+ channels: a novel target for chronic renal diseases[J]. Front. Biol., 2015, 10(1): 52-60.
[15] Jacqueline A. GLEAVE,Peter D. PERRI,Joanne E. NASH. Mitochondrial dysfunction in Parkinson’s disease: a possible target for neuroprotection[J]. Front. Biol., 2014, 9(6): 489-503.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed