|
|
Cytoskeletal changes in diseases of the nervous system |
Alexandra K. SUCHOWERSKA,Thomas FATH( ) |
Neurodegeneration and Repair Unit, School of Medical Sciences, University of New South Wales, Randwick, New South Wales 2052, Australia |
|
|
Abstract The neuronal cytoskeleton not only provides the structural backbone of neurons, but also plays a fundamental role in maintaining neuronal functions. Dysregulation of neuronal architecture is evident in both injury and diseases of the central nervous system. These changes often result in the disruption of protein trafficking, loss of synapses and the death of neurons, ultimately impacting on signal transmission and manifesting in the disease phenotype. Furthermore, mutations in cytoskeletal proteins have been implicated in numerous diseases and, in some cases, identified as the cause of the disease, highlighting the critical role of the cytoskeleton in disease pathology. This review focuses on the role of cytoskeletal proteins in the pathology of mental disorders, neurodegenerative diseases and motor function deficits. In particular, we illustrate how cytoskeletal proteins can be directly linked to disease pathology and progression.
|
Keywords
nervous system
disease
cytoskeleton
actin
microtubules
intermediate filaments
|
Corresponding Author(s):
Thomas FATH
|
Issue Date: 13 May 2014
|
|
1 |
Al-ChalabiA, AndersenP M, NilssonP, ChiozaB, AnderssonJ L, RussC, ShawC E, PowellJ F, LeighP N (1999). Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum Mol Genet, 8(2): 157–164 doi: 10.1093/hmg/8.2.157 pmid: 9931323
|
2 |
AndersonS A, VolkD W, LewisD A (1996). Increased density of microtubule associated protein 2-immunoreactive neurons in the prefrontal white matter of schizophrenic subjects. Schizophr Res, 19(2–3): 111–119 doi: 10.1016/0920-9964(96)88521-5 pmid: 8789909
|
3 |
AndrianantoandroE, PollardT D (2006). Mechanism of actin filament turnover by severing and nucleation at different concentrations of ADF/cofilin. Mol Cell, 24(1): 13–23 doi: 10.1016/j.molcel.2006.08.006 pmid: 17018289
|
4 |
AndrieuxA, SalinP A, VernetM, KujalaP, BaratierJ, Gory-FauréS, BoscC, PointuH, ProiettoD, SchweitzerA, DenarierE, KlumpermanJ, JobD (2002). The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders. Genes Dev, 16(18): 2350–2364 doi: 10.1101/gad.223302 pmid: 12231625
|
5 |
ArberS, BarbayannisF A, HanserH, SchneiderC, StanyonC A, BernardO, CaroniP (1998). Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature, 393(6687): 805–809 doi: 10.1038/31729 pmid: 9655397
|
6 |
ArmstrongR A, CairnsN J (2012). Different molecular pathologies result in similar spatial patterns of cellular inclusions in neurodegenerative disease: a comparative study of eight disorders. J Neural Transm, 119(12): 1551–1560 doi: 10.1007/s00702-012-0838-3 pmid: 22678700
|
7 |
ArmstrongR A, KertyE, SkullerudK, CairnsN J (2006). Neuropathological changes in ten cases of neuronal intermediate filament inclusion disease (NIFID): a study using alpha-internexin immunohistochemistry and principal components analysis (PCA). J Neural Transm, 113(9): 1207–1215 doi: 10.1007/s00702-005-0387-0 pmid: 16362634
|
8 |
AsburyA K, GaleM K, CoxS C, BaringerJ R, BergB O (1972). Giant axonal neuropathy—a unique case with segmental neurofilamentous masses. Acta Neuropathol, 20(3): 237–247 doi: 10.1007/BF00686905 pmid: 5044004
|
9 |
AsrarS, MengY, ZhouZ, TodorovskiZ, HuangW W, JiaZ (2009). Regulation of hippocampal long-term potentiation by p21-activated protein kinase 1 (PAK1). Neuropharmacology, 56(1): 73–80 doi: 10.1016/j.neuropharm.2008.06.055 pmid: 18644395
|
10 |
BaasP W, AhmadF J (2013). Beyond taxol: microtubule-based treatment of disease and injury of the nervous system. Brain, 136(Pt 10): 2937–2951 doi: 10.1093/brain/awt153 pmid: 23811322
|
11 |
BallatoreC, LeeV M, TrojanowskiJ Q (2007). Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci, 8(9): 663–672 doi: 10.1038/nrn2194 pmid: 17684513
|
12 |
BégouM, BrunP, BertrandJ B, JobD, SchweitzerA, D’AmatoT, SaoudM, AndrieuxA, Suaud-ChagnyM F (2007). Post-pubertal emergence of alterations in locomotor activity in stop null mice. Synapse, 61(9): 689–697 doi: 10.1002/syn.20409 pmid: 17559095
|
13 |
BégouM, VolleJ, BertrandJ B, BrunP, JobD, SchweitzerA, SaoudM, D’AmatoT, AndrieuxA, Suaud-ChagnyM F (2008). The stop null mice model for schizophrenia displays [corrected] cognitive and social deficits partly alleviated by neuroleptics. Neuroscience, 157(1): 29–39 doi: 10.1016/j.neuroscience.2008.07.080 pmid: 18804150
|
14 |
BelichenkoP V, DahlströmA (1995). Studies on the 3-dimensional architecture of dendritic spines and varicosities in human cortex by confocal laser scanning microscopy and Lucifer yellow microinjections. J Neurosci Methods, 57(1): 55–61 doi: 10.1016/0165-0270(94)00125-Z pmid: 7791365
|
15 |
Bento-AbreuA, Van DammeP, Van Den BoschL, RobberechtW (2010). The neurobiology of amyotrophic lateral sclerosis. Eur J Neurosci, 31(12): 2247–2265 doi: 10.1111/j.1460-9568.2010.07260.x pmid: 20529130
|
16 |
BergeronC, Beric-MaskarelK, MuntasserS, WeyerL, SomervilleM J, PercyM E (1994). Neurofilament light and polyadenylated mRNA levels are decreased in amyotrophic lateral sclerosis motor neurons. J Neuropathol Exp Neurol, 53(3): 221–230 doi: 10.1097/00005072-199405000-00002 pmid: 7909836
|
17 |
BernhardtR, MatusA (1984). Light and electron microscopic studies of the distribution of microtubule-associated protein 2 in rat brain: a difference between dendritic and axonal cytoskeletons. J Comp Neurol, 226(2): 203–221 doi: 10.1002/cne.902260205 pmid: 6736300
|
18 |
BishopA L, HallA (2000). Rho GTPases and their effector proteins. Biochem J, 348(Pt 2): 241–255 doi: 10.1042/0264-6021:3480241 pmid: 10816416
|
19 |
BloomG S, ValleeR B (1983). Association of microtubule-associated protein 2 (MAP 2) with microtubules and intermediate filaments in cultured brain cells. J Cell Biol, 96(6): 1523–1531 doi: 10.1083/jcb.96.6.1523 pmid: 6343400
|
20 |
BocquetA, BergesR, FrankR, RobertP, PetersonA C, EyerJ (2009). Neurofilaments bind tubulin and modulate its polymerization. J Neurosci, 29(35): 11043–11054 doi: 10.1523/JNEUROSCI.1924-09.2009 pmid: 19726663
|
21 |
BoschM, HayashiY (2012). Structural plasticity of dendritic spines. Curr Opin Neurobiol, 22(3): 383–388 doi: 10.1016/j.conb.2011.09.002 pmid: 21963169
|
22 |
BrettschneiderJ, PetzoldA, SüssmuthS D, LudolphA C, TumaniH (2006). Axonal damage markers in cerebrospinal fluid are increased in ALS. Neurology, 66(6): 852–856 doi: 10.1212/01.wnl.0000203120.85850.54 pmid: 16567701
|
23 |
BrunP, BégouM, AndrieuxA, Mouly-BadinaL, ClergetM, SchweitzerA, ScarnaH, RenaudB, JobD, Suaud-ChagnyM F (2005). Dopaminergic transmission in STOP null mice. J Neurochem, 94(1): 63–73 doi: 10.1111/j.1471-4159.2005.03166.x pmid: 15953350
|
24 |
BrundenK R, ZhangB, CarrollJ, YaoY, PotuzakJ S, HoganA M, IbaM, JamesM J, XieS X, BallatoreC, SmithA B 3rd, LeeV M Y, TrojanowskiJ Q (2010). Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J Neurosci, 30(41): 13861–13866 doi: 10.1523/JNEUROSCI.3059-10.2010 pmid: 20943926
|
25 |
BugyiB, PappG, HildG, LõrinczyD, NevalainenE M, LappalainenP, SomogyiB, NyitraiM (2006). Formins regulate actin filament flexibility through long range allosteric interactions. J Biol Chem, 281(16): 10727–10736 doi: 10.1074/jbc.M510252200 pmid: 16490788
|
26 |
CaceresA, BankerG, StewardO, BinderL, PayneM (1984). MAP2 is localized to the dendrites of hippocampal neurons which develop in culture. Brain Res, 315(2): 314–318 pmid: 6722593
|
27 |
CairnsN J, LeeV M Y, TrojanowskiJ Q (2004). The cytoskeleton in neurodegenerative diseases. J Pathol, 204(4): 438–449 doi: 10.1002/path.1650 pmid: 15495240
|
28 |
ChaiX, FörsterE, ZhaoS, BockH H, FrotscherM (2009). Reelin stabilizes the actin cytoskeleton of neuronal processes by inducing n-cofilin phosphorylation at serine3. J Neurosci, 29(1): 288–299 doi: 10.1523/JNEUROSCI.2934-08.2009 pmid: 19129405
|
29 |
ChenY, ZhengZZ, HuangR, ChenK, SongW, ZhaoB, ChenX, YangY, YuanL, ShangHF (2013) PFN1 mutations are rare in Han Chinese populations with amyotrophic lateral sclerosis. Neurobiol Aging34:1922 e1921–1925.
|
30 |
ClintonS M, AbelsonS, HaroutunianV, DavisK, Meador-WoodruffJ H (2004). Neurofilament subunit protein abnormalities in the thalamus in scizophrenia. Thalamus Relat Syst, 2: 265–272
|
31 |
ClintonS M, HaroutunianV, DavisK L, Meador-WoodruffJ H (2003). Altered transcript expression of NMDA receptor-associated postsynaptic proteins in the thalamus of subjects with schizophrenia. Am J Psychiatry, 160(6): 1100–1109 doi: 10.1176/appi.ajp.160.6.1100 pmid: 12777268
|
32 |
CohenR S, ChungS K, PfaffD W (1985). Immunocytochemical localization of actin in dendritic spines of the cerebral cortex using colloidal gold as a probe. Cell Mol Neurobiol, 5(3): 271–284 doi: 10.1007/BF00711012 pmid: 4064076
|
33 |
CollardJ F, CôtéF, JulienJ P (1995). Defective axonal transport in a transgenic mouse model of amyotrophic lateral sclerosis. Nature, 375(6526): 61–64 doi: 10.1038/375061a0 pmid: 7536898
|
34 |
CôtéF, CollardJ F, JulienJ P (1993). Progressive neuronopathy in transgenic mice expressing the human neurofilament heavy gene: a mouse model of amyotrophic lateral sclerosis. Cell, 73(1): 35–46 doi: 10.1016/0092-8674(93)90158-M pmid: 8462101
|
35 |
CotterD, WilsonS, RobertsE, KerwinR, EverallI P (2000). Increased dendritic MAP2 expression in the hippocampus in schizophrenia. Schizophr Res, 41(2): 313–323 doi: 10.1016/S0920-9964(99)00068-7 pmid: 10708340
|
36 |
DaoudH, DobrzenieckaS, CamuW, MeiningerV, DupreN, DionPA, RouleauGA (2013) Mutation analysis of PFN1 in familial amyotrophic lateral sclerosis patients. Neurobiol Aging34:1311 e1311–1312.
|
37 |
DehmeltL, HalpainS (2004). Actin and microtubules in neurite initiation: are MAPs the missing link? J Neurobiol, 58(1): 18–33 doi: 10.1002/neu.10284 pmid: 14598367
|
38 |
DentE W, KalilK (2001). Axon branching requires interactions between dynamic microtubules and actin filaments. J Neurosci, 21(24): 9757–9769 pmid: 11739584
|
39 |
DeoA J, GoldszerI M, LiS, DiBitettoJ V, HenteleffR, SampsonA, LewisD A, PenzesP, SweetR A (2013). PAK1 protein expression in the auditory cortex of schizophrenia subjects. PLoS ONE, 8(4): e59458 doi: 10.1371/journal.pone.0059458 pmid: 23613712
|
40 |
Díez-GuerraF J, AvilaJ (1993). MAP2 phosphorylation parallels dendrite arborization in hippocampal neurones in culture. Neuroreport, 4(4): 419–422 doi: 10.1097/00001756-199304000-00020 pmid: 8499602
|
41 |
DiProsperoN A, ChenE Y, CharlesV, PlomannM, KordowerJ H, TagleD A (2004). Early changes in Huntington’s disease patient brains involve alterations in cytoskeletal and synaptic elements. J Neurocytol, 33(5): 517–533 doi: 10.1007/s11068-004-0514-8 pmid: 15906159
|
42 |
DixitR, RossJ L, GoldmanY E, HolzbaurE L (2008). Differential regulation of dynein and kinesin motor proteins by tau. Science, 319(5866): 1086–1089 doi: 10.1126/science.1152993 pmid: 18202255
|
43 |
DomR, MalfroidM, BaroF (1976). Neuropathology of Huntington’s chorea.Studies of the ventrobasal complex of the thalamus. Neurology, 26(1): 64–68 doi: 10.1212/WNL.26.1.64 pmid: 128708
|
44 |
DowningK H, NogalesE (1998). Tubulin and microtubule structure. Curr Opin Cell Biol, 10(1): 16–22 doi: 10.1016/S0955-0674(98)80082-3 pmid: 9484591
|
45 |
DuanW, GuoY, JiangH, YuX, LiC (2011). MG132 enhances neurite outgrowth in neurons overexpressing mutant TAR DNA-binding protein-43 via increase of HO-1. Brain Res, 1397: 1–9 doi: 10.1016/j.brainres.2011.05.006 pmid: 21620381
|
46 |
EbnethA, GodemannR, StamerK, IllenbergerS, TrinczekB, MandelkowE (1998). Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol, 143(3): 777–794 doi: 10.1083/jcb.143.3.777 pmid: 9813097
|
47 |
EdwardsD C, SandersL C, BokochG M, GillG N (1999). Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat Cell Biol, 1(5): 253–259 doi: 10.1038/12963 pmid: 10559936
|
48 |
EhlersM D, FungE T, O’BrienR J, HuganirR L (1998). Splice variant-specific interaction of the NMDA receptor subunit NR1 with neuronal intermediate filaments. J Neurosci, 18(2): 720–730 pmid: 9425014
|
49 |
EhlersM D, TingleyW G, HuganirR L (1995). Regulated subcellular distribution of the NR1 subunit of the NMDA receptor. Science, 269(5231): 1734–1737 doi: 10.1126/science. pmid: 7569904
|
50 |
FerriC P, PrinceM, BrayneC, BrodatyH, FratiglioniL, GanguliM, HallK, HasegawaK, HendrieH, HuangY, JormA, MathersC, MenezesP R, RimmerE, ScazufcaM, and the Alzheimer’s Disease International (2005). Global prevalence of dementia: a Delphi consensus study. Lancet, 366(9503): 2112–2117 doi: 10.1016/S0140-6736(05)67889-0 pmid: 16360788
|
51 |
FiglewiczD A, KrizusA, MartinoliM G, MeiningerV, DibM, RouleauG A, JulienJ P (1994). Variants of the heavy neurofilament subunit are associated with the development of amyotrophic lateral sclerosis. Hum Mol Genet, 3(10): 1757–1761 doi: 10.1093/hmg/3.10.1757 pmid: 7849698
|
52 |
FreimanT M, Eismann-SchweimlerJ, FrotscherM (2011). Granule cell dispersion in temporal lobe epilepsy is associated with changes in dendritic orientation and spine distribution. Exp Neurol, 229(2): 332–338 doi: 10.1016/j.expneurol.2011.02.017 pmid: 21376037
|
53 |
FuchsE, ClevelandD W (1998). A structural scaffolding of intermediate filaments in health and disease. Science, 279(5350): 514–519 doi: 10.1126/science.279.5350.514 pmid: 9438837
|
54 |
FulgaT A, Elson-SchwabI, KhuranaV, SteinhilbM L, SpiresT L, HymanB T, FeanyM B (2007). Abnormal bundling and accumulation of F-actin mediates tau-induced neuronal degeneration in vivo. Nat Cell Biol, 9(2): 139–148 doi: 10.1038/ncb1528 pmid: 17187063
|
55 |
GallowayP G, MulvihillP, PerryG (1992). Filaments of Lewy bodies contain insoluble cytoskeletal elements. Am J Pathol, 140(4): 809–822 pmid: 1314025
|
56 |
GallowayP G, PerryG, GambettiP (1987). Hirano body filaments contain actin and actin-associated proteins. J Neuropathol Exp Neurol, 46(2): 185–199 doi: 10.1097/00005072-198703000-00006 pmid: 3029338
|
57 |
GareyL J, OngW Y, PatelT S, KananiM, DavisA, MortimerA M, BarnesT R, HirschS R (1998). Reduced dendritic spine density on cerebral cortical pyramidal neurons in schizophrenia. J Neurol Neurosurg Psychiatry, 65(4): 446–453 doi: 10.1136/jnnp.65.4.446 pmid: 9771764
|
58 |
GeW W, WenW, StrongW, Leystra-LantzC, StrongM J (2005). Mutant copper-zinc superoxide dismutase binds to and destabilizes human low molecular weight neurofilament mRNA. J Biol Chem, 280(1): 118–124 pmid: 15507437
|
59 |
GibsonP H, TomlinsonB E (1977). Numbers of Hirano bodies in the hippocampus of normal and demented people with Alzheimer’s disease. J Neurol Sci, 33(1–2): 199–206 doi: 10.1016/0022-510X(77)90193-9 pmid: 903782
|
60 |
GlantzL A, LewisD A (2000). Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch Gen Psychiatry, 57(1): 65–73 doi: 10.1001/archpsyc.57.1.65 pmid: 10632234
|
61 |
GlantzL A, LewisD A (2001). Dendritic spine density in schizophrenia and depression. Arch Gen Psychiatry, 58(2): 203 doi: 10.1001/archpsyc.58.2.203 pmid: 11177126
|
62 |
GoedertM, WischikC M, CrowtherR A, WalkerJ E, KlugA (1988). Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci USA, 85(11): 4051–4055 doi: 10.1073/pnas.85.11.4051 pmid: 3131773
|
63 |
Grundke-IqbalI, IqbalK, QuinlanM, TungY C, ZaidiM S, WisniewskiH M (1986a). Microtubule-associated protein tau.A component of Alzheimer paired helical filaments. J Biol Chem, 261(13): 6084–6089 pmid: 3084478
|
64 |
Grundke-IqbalI, IqbalK, TungY C, QuinlanM, WisniewskiH M, BinderL I (1986b). Abnormal phosphorylation of the microtubule-associated protein tau (τ) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA, 83(13): 4913–4917 doi: 10.1073/pnas.83.13.4913 pmid: 3088567
|
65 |
GunningP, O’NeillG, HardemanE (2008). Tropomyosin-based regulation of the actin cytoskeleton in time and space. Physiol Rev, 88(1): 1–35 doi: 10.1152/physrev.00001.2007 pmid: 18195081
|
66 |
HaasC A, DudeckO, KirschM, HuszkaC, KannG, PollakS, ZentnerJ, FrotscherM (2002). Role for reelin in the development of granule cell dispersion in temporal lobe epilepsy. J Neurosci, 22(14): 5797–5802 pmid: 12122039
|
67 |
HangerD P, AndertonB H, NobleW (2009). Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med, 15(3): 112–119 doi: 10.1016/j.molmed.2009.01.003 pmid: 19246243
|
68 |
HayashiM L, ChoiS Y, RaoB S, JungH Y, LeeH K, ZhangD, ChattarjiS, KirkwoodA, TonegawaS (2004). Altered cortical synaptic morphology and impaired memory consolidation in forebrain- specific dominant-negative PAK transgenic mice. Neuron, 42(5): 773–787 doi: 10.1016/j.neuron.2004.05.003 pmid: 15182717
|
69 |
HillJ J, HashimotoT, LewisD A (2006). Molecular mechanisms contributing to dendritic spine alterations in the prefrontal cortex of subjects with schizophrenia. Mol Psychiatry, 11(6): 557–566 doi: 10.1038/sj.mp.4001792 pmid: 16402129
|
70 |
HillW D, LeeV M, HurtigH I, MurrayJ M, TrojanowskiJ Q (1991). Epitopes located in spatially separate domains of each neurofilament subunit are present in Parkinson’s disease Lewy bodies. J Comp Neurol, 309(1): 150–160 doi: 10.1002/cne.903090111 pmid: 1716646
|
71 |
HouserC R (1990). Granule cell dispersion in the dentate gyrus of humans with temporal lobe epilepsy. Brain Res, 535(2): 195–204 doi: 10.1016/0006-8993(90)91601-C pmid: 1705855
|
72 |
HuttonM, LendonC L, RizzuP, BakerM, FroelichS, HouldenH, Pickering-BrownS, ChakravertyS, IsaacsA, GroverA, HackettJ, AdamsonJ, LincolnS, DicksonD, DaviesP, PetersenR C, StevensM, de GraaffE, WautersE, van BarenJ, HillebrandM, JoosseM, KwonJ M, NowotnyP, CheL K, NortonJ, MorrisJ C, ReedL A, TrojanowskiJ, BasunH, LannfeltL, NeystatM, FahnS, DarkF, TannenbergT, DoddP R, HaywardN, KwokJ B, SchofieldP R, AndreadisA, SnowdenJ, CraufurdD, NearyD, OwenF, OostraB A, HardyJ, GoateA, van SwietenJ, MannD, LynchT, HeutinkP (1998). Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature, 393(6686): 702–705 doi: 10.1038/31508 pmid: 9641683
|
73 |
IngreC, LandersJE, RizikN, VolkAE, AkimotoC, BirveA, HubersA, KeaglePJ, PiotrowskaK, PressR, AndersenPM, LudolphAC, WeishauptJ H (2013). A novel phosphorylation site mutation in profilin 1 revealed in a large screen of US, Nordic, and German amyotrophic lateral sclerosis/frontotemporal dementia cohorts. Neurobiol Aging, 34:1708 e1701–1706
|
74 |
IqbalK, Grundke-IqbalI, ZaidiT, MerzP A, WenG Y, ShaikhS S, WisniewskiH M, AlafuzoffI, WinbladB (1986). Defective brain microtubule assembly in Alzheimer’s disease. Lancet, 2(8504): 421–426 doi: 10.1016/S0140-6736(86)92134-3 pmid: 2874414
|
75 |
IttnerL M, KeY D, DelerueF, BiM, GladbachA, van EerselJ, WölfingH, ChiengB C, ChristieM J, NapierI A, EckertA, StaufenbielM, HardemanE, GötzJ (2010). Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models. Cell, 142(3): 387–397 doi: 10.1016/j.cell.2010.06.036 pmid: 20655099
|
76 |
JordanovaA, De JongheP, BoerkoelC F, TakashimaH, De VriendtE, CeuterickC, MartinJ J, ButlerI J, ManciasP, PapasozomenosS Ch, TerespolskyD, PotockiL, BrownC W, ShyM, RitaD A, TournevI, KremenskyI, LupskiJ R, TimmermanV (2003). Mutations in the neurofilament light chain gene (NEFL) cause early onset severe Charcot-Marie-Tooth disease. Brain, 126(Pt 3): 590–597 doi: 10.1093/brain/awg059 pmid: 12566280
|
77 |
KeY D, SuchowerskaA K, van der HovenJ, De SilvaD M, WuC W, van EerselJ, IttnerA, IttnerL M (2012). Lessons from tau-deficient mice. Int J Alzheimers Dis, 2012: 873270 doi: 10.1155/2012/873270 pmid: 22720190
|
78 |
KimC H, LismanJ E (1999). A role of actin filament in synaptic transmission and long-term potentiation. J Neurosci, 19(11): 4314–4324 pmid: 10341235
|
79 |
KorobovaF, SvitkinaT (2008). Arp2/3 complex is important for filopodia formation, growth cone motility, and neuritogenesis in neuronal cells. Mol Biol Cell, 19(4): 1561–1574 doi: 10.1091/mbc.E07-09-0964 pmid: 18256280
|
80 |
KrügerR, FischerC, SchulteT, StraussK M, MüllerT, WoitallaD, BergD, HungsM, GobbeleR, BergerK, EpplenJ T, RiessO, SchölsL (2003). Mutation analysis of the neurofilament M gene in Parkinson’s disease. Neurosci Lett, 351(2): 125–129 doi: 10.1016/S0304-3940(03)00903-0 pmid: 14583397
|
81 |
KuhnT B, BamburgJ R (2008). Tropomyosin and ADF/cofilin as collaborators and competitors. Adv Exp Med Biol, 644: 232–249 doi: 10.1007/978-0-387-85766-4_18 pmid: 19209826
|
82 |
LattanteS, Le BerI, CamuzatA, BriceA, KabashiE (2013). Mutations in the PFN1 gene are not a common cause in patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration in France. Neurobiol Aging, 34:1709 e1701–1702
|
83 |
LavedanC, BuchholtzS, NussbaumR L, AlbinR L, PolymeropoulosM H (2002). A mutation in the human neurofilament M gene in Parkinson’s disease that suggests a role for the cytoskeleton in neuronal degeneration. Neurosci Lett, 322(1): 57–61 doi: 10.1016/S0304-3940(01)02513-7 pmid: 11958843
|
84 |
LeeM K, MarszalekJ R, ClevelandD W (1994). A mutant neurofilament subunit causes massive, selective motor neuron death: implications for the pathogenesis of human motor neuron disease. Neuron, 13(4): 975–988 doi: 10.1016/0896-6273(94)90263-1 pmid: 7946341
|
85 |
LeeV M, GoedertM, TrojanowskiJ Q (2001). Neurodegenerative tauopathies. Annu Rev Neurosci, 24(1): 1121–1159 doi: 10.1146/annurev.neuro.24.1.1121 pmid: 11520930
|
86 |
LiB, ChohanM O, Grundke-IqbalI, IqbalK (2007). Disruption of microtubule network by Alzheimer abnormally hyperphosphorylated tau. Acta Neuropathol, 113(5): 501–511 doi: 10.1007/s00401-007-0207-8 pmid: 17372746
|
87 |
LückingC B, DürrA, BonifatiV, VaughanJ, De MicheleG, GasserT, HarhangiB S, MecoG, DenèfleP, WoodN W, AgidY, BriceA, and the French Parkinson’s Disease Genetics Study Group, and the European Consortium on Genetic Susceptibility in Parkinson’s Disease (2000). Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med, 342(21): 1560–1567 doi: 10.1056/NEJM200005253422103 pmid: 10824074
|
88 |
LuoL, HenschT K, AckermanL, BarbelS, JanL Y, JanY N (1996). Differential effects of the Rac GTPase on Purkinje cell axons and dendritic trunks and spines. Nature, 379(6568): 837–840 doi: 10.1038/379837a0 pmid: 8587609
|
89 |
MaciverS K, HarringtonC R (1995). Two actin binding proteins, actin depolymerizing factor and cofilin, are associated with Hirano bodies. Neuroreport, 6(15): 1985–1988 doi: 10.1097/00001756-199510010-00008 pmid: 8580423
|
90 |
MahammadS, MurthyS N, DidonnaA, GrinB, IsraeliE, PerrotR, BomontP, JulienJ P, KuczmarskiE, OpalP, GoldmanR D (2013). Giant axonal neuropathy-associated gigaxonin mutations impair intermediate filament protein degradation. J Clin Invest, 123(5): 1964–1975 doi: 10.1172/JCI66387 pmid: 23585478
|
91 |
ManettoV, SternbergerN H, PerryG, SternbergerL A, GambettiP (1988). Phosphorylation of neurofilaments is altered in amyotrophic lateral sclerosis. J Neuropathol Exp Neurol, 47(6): 642–653 doi: 10.1097/00005072-198811000-00007 pmid: 2459315
|
92 |
ManserE, LeungT, SalihuddinH, ZhaoZ S, LimL (1994). A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature, 367(6458): 40–46 doi: 10.1038/367040a0 pmid: 8107774
|
93 |
MatusA (1988). Microtubule-associated proteins: their potential role in determining neuronal morphology. Annu Rev Neurosci, 11(1): 29–44 doi: 10.1146/annurev.ne.11.030188.000333 pmid: 3284444
|
94 |
MinamideL S, StrieglA M, BoyleJ A, MebergP J, BamburgJ R (2000). Neurodegenerative stimuli induce persistent ADF/cofilin-actin rods that disrupt distal neurite function. Nat Cell Biol, 2(9): 628–636 doi: 10.1038/35023579 pmid: 10980704
|
95 |
MitchisonT J, CramerL P (1996). Actin-based cell motility and cell locomotion. Cell, 84(3): 371–379 doi: 10.1016/S0092-8674(00)81281-7 pmid: 8608590
|
96 |
MockrinS C, KornE D (1980). Acanthamoeba profilin interacts with G-actin to increase the rate of exchange of actin-bound adenosine 5′-triphosphate. Biochemistry, 19(23): 5359–5362 doi: 10.1021/bi00564a033 pmid: 6893804
|
97 |
MorfiniG, PiginoG, MizunoN, KikkawaM, BradyS T (2007). Tau binding to microtubules does not directly affect microtubule-based vesicle motility. J Neurosci Res, 85(12): 2620–2630 doi: 10.1002/jnr.21154 pmid: 17265463
|
98 |
MoriwakiA, LuY F, TomizawaK, MatsuiH (1998). An immunosuppressant, FK506, protects against neuronal dysfunction and death but has no effect on electrographic and behavioral activities induced by systemic kainate. Neuroscience, 86(3): 855–865 doi: 10.1016/S0306-4522(98)00071-2 pmid: 9692722
|
99 |
MorrisonB M, ShuI W, WilcoxA L, GordonJ W, MorrisonJ H (2000). Early and selective pathology of light chain neurofilament in the spinal cord and sciatic nerve of G86R mutant superoxide dismutase transgenic mice. Exp Neurol, 165(2): 207–220 doi: 10.1006/exnr.2000.7457 pmid: 10993681
|
100 |
MunozD G, GreeneC, PerlD P, SelkoeD J (1988). Accumulation of phosphorylated neurofilaments in anterior horn motoneurons of amyotrophic lateral sclerosis patients. J Neuropathol Exp Neurol, 47(1): 9–18 doi: 10.1097/00005072-198801000-00002 pmid: 3334727
|
101 |
Niebroj-DoboszI, DziewulskaD, JanikP (2006). Auto-antibodies against proteins of spinal cord cells in cerebrospinal fluid of patients with amyotrophic lateral sclerosis (ALS).Folia neuropathologica / Association of Polish Neuropathologists and Medical Research Centre. Polish Academy of Sciences, 44: 191–196
|
102 |
NishidaE, IidaK, YonezawaN, KoyasuS, YaharaI, SakaiH (1987). Cofilin is a component of intranuclear and cytoplasmic actin rods induced in cultured cells. Proc Natl Acad Sci USA, 84(15): 5262–5266 doi: 10.1073/pnas.84.15.5262 pmid: 3474653
|
103 |
NiwaR, Nagata-OhashiK, TakeichiM, MizunoK, UemuraT (2002). Control of actin reorganization by Slingshot, a family of phosphatases that dephosphorylate ADF/cofilin. Cell, 108(2): 233–246 doi: 10.1016/S0092-8674(01)00638-9 pmid: 11832213
|
104 |
OkamotoK, NagaiT, MiyawakiA, HayashiY (2004). Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci, 7(10): 1104–1112 doi: 10.1038/nn1311 pmid: 15361876
|
105 |
OuyangY, YangX F, HuX Y, Erbayat-AltayE, ZengL H, LeeJ M, WongM (2007). Hippocampal seizures cause depolymerization of filamentous actin in neurons independent of acute morphological changes. Brain Res, 1143: 238–246 doi: 10.1016/j.brainres.2007.01.077 pmid: 17320053
|
106 |
PatrickG N, ZukerbergL, NikolicM, de la MonteS, DikkesP, TsaiL H (1999). Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 402(6762): 615–622 doi: 10.1038/45159 pmid: 10604467
|
107 |
PavlikL L, MoshkovD A (1991). Actin in synaptic cytoskeleton during long-term potentiation in hippocampal slices. Acta Histochem Suppl, 41(Supp 41): 257–264 pmid: 1811261
|
108 |
Pérez-OlléR, López-ToledanoM A, GoryunovD, Cabrera-PochN, StefanisL, BrownK, LiemR K (2005). Mutations in the neurofilament light gene linked to Charcot-Marie-Tooth disease cause defects in transport. J Neurochem, 93(4): 861–874 doi: 10.1111/j.1471-4159.2005.03095.x pmid: 15857389
|
109 |
PerrotR, BergesR, BocquetA, EyerJ (2008). Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol Neurobiol, 38(1): 27–65 doi: 10.1007/s12035-008-8033-0 pmid: 18649148
|
110 |
PowellK J, HoriS E, LeslieR, AndrieuxA, SchellinckH, ThorneM, RobertsonG S (2007). Cognitive impairments in the STOP null mouse model of schizophrenia. Behav Neurosci, 121(5): 826–835 doi: 10.1037/0735-7044.121.5.826 pmid: 17907815
|
111 |
PrineasJ W, OuvrierR A, WrightR G, WalshJ C, McLeodJ G (1976). Gian axonal neuropathy—a generalized disorder of cytoplasmic microfilament formation. J Neuropathol Exp Neurol, 35(4): 458–470 doi: 10.1097/00005072-197607000-00006 pmid: 180266
|
112 |
QiangL, YuW, AndreadisA, LuoM, BaasP W (2006). Tau protects microtubules in the axon from severing by katanin. J Neurosci, 26(12): 3120–3129 doi: 10.1523/JNEUROSCI.5392-05.2006 pmid: 16554463
|
113 |
RaoM V, MohanP S, KumarA, YuanA, MontagnaL, CampbellJ, Veeranna, EspreaficoE M, JulienJ P, NixonR A (2011). The myosin Va head domain binds to the neurofilament-L rod and modulates endoplasmic reticulum (ER) content and distribution within axons. PLoS ONE, 6(2): e17087 doi: 10.1371/journal.pone.0017087 pmid: 21359212
|
114 |
RenY, JiangH, YangF, NakasoK, FengJ (2009). Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation. J Biol Chem, 284(6): 4009–4017 doi: 10.1074/jbc.M806245200 pmid: 19074146
|
115 |
RenY, ZhaoJ, FengJ (2003). Parkin binds to alpha/beta tubulin and increases their ubiquitination and degradation. J Neurosci, 23(8): 3316–3324 pmid: 12716939
|
116 |
RexC S, ChenL Y, SharmaA, LiuJ, BabayanA H, GallC M, LynchG (2009). Different Rho GTPase-dependent signaling pathways initiate sequential steps in the consolidation of long-term potentiation. J Cell Biol, 186(1): 85–97 doi: 10.1083/jcb.200901084 pmid: 19596849
|
117 |
RossiterJ P, AndersonL L, YangF, ColeG M (2000). Caspase-cleaved actin (fractin) immunolabelling of Hirano bodies. Neuropathol Appl Neurobiol, 26(4): 342–346 doi: 10.1046/j.1365-2990.2000.00252.x pmid: 10931367
|
118 |
RossollW, JablonkaS, AndreassiC, KröningA K, KarleK, MonaniU R, SendtnerM (2003). Smn, the spinal muscular atrophy-determining gene product, modulates axon growth and localization of beta-actin mRNA in growth cones of motoneurons. J Cell Biol, 163(4): 801–812 doi: 10.1083/jcb.200304128 pmid: 14623865
|
119 |
Rovelet-LecruxA, CampionD (2012). Copy number variations involving the microtubule-associated protein tau in human diseases. Biochem Soc Trans, 40(4): 672–676 doi: 10.1042/BST20120045 pmid: 22817714
|
120 |
RoyS, ZhangB, LeeV M, TrojanowskiJ Q (2005). Axonal transport defects: a common theme in neurodegenerative diseases. Acta Neuropathol, 109(1): 5–13 doi: 10.1007/s00401-004-0952-x pmid: 15645263
|
121 |
RubioM D, HaroutunianV, Meador-WoodruffJ H (2012). Abnormalities of the Duo/Ras-related C3 botulinum toxin substrate 1/p21-activated kinase 1 pathway drive myosin light chain phosphorylation in frontal cortex in schizophrenia. Biol Psychiatry, 71(10): 906–914 doi: 10.1016/j.biopsych.2012.02.006 pmid: 22458949
|
122 |
SánchezC, ArellanoJ I, Rodríguez-SánchezP, AvilaJ, DeFelipeJ, Díez-GuerraF J (2001). Microtubule-associated protein 2 phosphorylation is decreased in the human epileptic temporal lobe cortex. Neuroscience, 107(1): 25–33 doi: 10.1016/S0306-4522(01)00338-4 pmid: 11744243
|
123 |
SánchezC, Díaz-NidoJ, AvilaJ (2000). Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol, 61(2): 133–168 doi: 10.1016/S0301-0082(99)00046-5 pmid: 10704996
|
124 |
ScheibelM E, CrandallP H, ScheibelA B (1974). The hippocampal-dentate complex in temporal lobe epilepsy. A Golgi study. Epilepsia, 15(1): 55–80 doi: 10.1111/j.1528-1157.1974.tb03997.x pmid: 4523024
|
125 |
SchevzovG, CurthoysN M, GunningP W, FathT (2012). Functional diversity of actin cytoskeleton in neurons and its regulation by tropomyosin. Int Rev Cell Mol Biol, 298: 33–94 doi: 10.1016/B978-0-12-394309-5.00002-X pmid: 22878104
|
126 |
SchmidtM L, LeeV M, TrojanowskiJ Q (1989). Analysis of epitopes shared by Hirano bodies and neurofilament proteins in normal and Alzheimer’s disease hippocampus. Lab Invest, 60(4): 513–522 pmid: 2468822
|
127 |
SchneiderA B J, BiernatJ, von BergenM, MandelkowE M, MandelkowE M (1999). Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry, 38(12): 3549–3558 doi: 10.1021/bi981874p pmid: 10090741
|
128 |
ScottW K, NanceM A, WattsR L, HubbleJ P, KollerW C, LyonsK, PahwaR, SternM B, ColcherA, HinerB C, JankovicJ, OndoW G, AllenF H Jr, GoetzC G, SmallG W, MastermanD, MastagliaF, LaingN G, StajichJ M, SlotterbeckB, BoozeM W, RibbleR C, RampersaudE, WestS G, GibsonR A, MiddletonL T, RosesA D, HainesJ L, ScottB L, VanceJ M, Pericak-VanceM A (2001). Complete genomic screen in Parkinson disease: evidence for multiple genes. JAMA, 286(18): 2239–2244 doi: 10.1001/jama.286.18.2239 pmid: 11710888
|
129 |
SeitzA, KojimaH, OiwaK, MandelkowE M, SongY H, MandelkowE (2002). Single-molecule investigation of the interference between kinesin, tau and MAP2c. EMBO J, 21(18): 4896–4905 doi: 10.1093/emboj/cdf503 pmid: 12234929
|
130 |
ShimizuH, IwayamaY, YamadaK, ToyotaT, MinabeY, NakamuraK, NakajimaM, HattoriE, MoriN, OsumiN, YoshikawaT (2006). Genetic and expression analyses of the STOP (MAP6) gene in schizophrenia. Schizophr Res, 84(2–3): 244–252 doi: 10.1016/j.schres.2006.03.017 pmid: 16624526
|
131 |
SousaV L, BellaniS, GiannandreaM, YousufM, ValtortaF, MeldolesiJ, ChieregattiE (2009). alpha-synuclein and its A30P mutant affect actin cytoskeletal structure and dynamics. Mol Biol Cell, 20(16): 3725–3739 doi: 10.1091/mbc.E08-03-0302 pmid: 19553474
|
132 |
SternbergerL A, SternbergerN H (1983). Monoclonal antibodies distinguish phosphorylated and nonphosphorylated forms of neurofilaments in situ. Proc Natl Acad Sci USA, 80(19): 6126–6130 doi: 10.1073/pnas.80.19.6126 pmid: 6577472
|
133 |
SudoH, BaasP W (2011). Strategies for diminishing katanin-based loss of microtubules in tauopathic neurodegenerative diseases. Hum Mol Genet, 20(4): 763–778 doi: 10.1093/hmg/ddq521 pmid: 21118899
|
134 |
SweetR A, HenteleffR A, ZhangW, SampsonA R, LewisD A (2009). Reduced dendritic spine density in auditory cortex of subjects with schizophrenia. Neuropsychopharmacology, 34(2): 374–389 doi: 10.1038/npp.2008.67 pmid: 18463626
|
135 |
TakeuchiH, KobayashiY, YoshiharaT, NiwaJ, DoyuM, OhtsukaK, SobueG (2002). Hsp70 and Hsp40 improve neurite outgrowth and suppress intracytoplasmic aggregate formation in cultured neuronal cells expressing mutant SOD1. Brain Res, 949(1–2): 11–22 doi: 10.1016/S0006-8993(02)02568-4 pmid: 12213295
|
136 |
TilocaC, TicozziN, PensatoV, CorradoL, Del BoR, BertolinC, FenoglioC, GagliardiS, CaliniD, LauriaG, CastellottiB, BagarottiA, CortiS, GalimbertiD, CagninA, GabelliC, RanieriM, CeroniM, SicilianoG, MazziniL, CeredaC, ScarpiniE, SoraruG, ComiGP, D'AlfonsoS, GelleraC, RattiA, LandersJE, SilaniV (2013). Screening of the PFN1 gene in sporadic amyotrophic lateral sclerosis and in frontotemporal dementia. Neurobiol Aging, 34:1517 e1519–1510
|
137 |
Torres-BenitoL, RuizR, TabaresL (2012). Synaptic defects in spinal muscular atrophy animal models. Dev Neurobiol, 72(1): 126–133 doi: 10.1002/dneu.20912 pmid: 21567981
|
138 |
TortelliR, RuggieriM, CorteseR, D’ErricoE, CapozzoR, LeoA, MastrapasquaM, ZoccolellaS, LeanteR, LivreaP, LogroscinoG, SimoneI L (2012). Elevated cerebrospinal fluid neurofilament light levels in patients with amyotrophic lateral sclerosis: a possible marker of disease severity and progression. Eur J Neurol, 19(12): 1561–1567 doi: 10.1111/j.1468-1331.2012.03777.x pmid: 22680408
|
139 |
TrojanowskiJ Q, LeeV M Y (2005). Rous-Whipple Award Lecture. The Alzheimer’s brain: finding out what’s broken tells us how to fix it. Am J Pathol, 167(5): 1183–1188 doi: 10.1016/S0002-9440(10)61206-0 pmid: 16251403
|
140 |
TsengY, AnK M, EsueO, WirtzD (2004). The bimodal role of filamin in controlling the architecture and mechanics of F-actin networks. J Biol Chem, 279(3): 1819–1826 doi: 10.1074/jbc.M306090200 pmid: 14594947
|
141 |
van BlitterswijkM, BakerMC, BieniekKF, KnopmanDS, JosephsKA, BoeveB, CaselliR, WszolekZK, PetersenR, Graff-RadfordNR, BoylanKB, DicksonDW, RademakersR (2013). Profilin-1 mutations are rare in patients with amyotrophic lateral sclerosis and frontotemporal dementia. Amyotroph Lateral Scler Frontotemporal Degener14:463–469
|
142 |
WagnerU, UttonM, GalloJ M, MillerC C (1996). Cellular phosphorylation of tau by GSK-3 beta influences tau binding to microtubules and microtubule organisation. J Cell Sci, 109(Pt 6): 1537–1543 pmid: 8799840
|
143 |
WongN K, HeB P, StrongM J (2000). Characterization of neuronal intermediate filament protein expression in cervical spinal motor neurons in sporadic amyotrophic lateral sclerosis (ALS). J Neuropathol Exp Neurol, 59(11): 972–982 pmid: 11089575
|
144 |
WuC H, FalliniC, TicozziN, KeagleP J, SappP C, PiotrowskaK, LoweP, KoppersM, McKenna-YasekD, BaronD M, KostJ E, Gonzalez-PerezP, FoxA D, AdamsJ, TaroniF, TilocaC, LeclercA L, ChafeS C, MangrooD, MooreM J, ZitzewitzJ A, XuZ S, van den BergL H, GlassJ D, SicilianoG, CirulliE T, GoldsteinD B, SalachasF, MeiningerV, RossollW, RattiA, GelleraC, BoscoD A, BassellG J, SilaniV, DroryV E, BrownR H Jr, LandersJ E (2012). Mutations in the profilin 1 gene cause familial amyotrophic lateral sclerosis. Nature, 488(7412): 499–503 doi: 10.1038/nature11280 pmid: 22801503
|
145 |
XieZ, SrivastavaD P, PhotowalaH, KaiL, CahillM E, WoolfreyK M, ShumC Y, SurmeierD J, PenzesP (2007). Kalirin-7 controls activity-dependent structural and functional plasticity of dendritic spines. Neuron, 56(4): 640–656 doi: 10.1016/j.neuron.2007.10.005 pmid: 18031682
|
146 |
XuZ, CorkL C, GriffinJ W, ClevelandD W (1993). Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell, 73(1): 23–33 doi: 10.1016/0092-8674(93)90157-L pmid: 8462100
|
147 |
YangF, JiangQ, ZhaoJ, RenY, SuttonM D, FengJ (2005). Parkin stabilizes microtubules through strong binding mediated by three independent domains. J Biol Chem, 280(17): 17154–17162 doi: 10.1074/jbc.M500843200 pmid: 15737990
|
148 |
YangN, HiguchiO, OhashiK, NagataK, WadaA, KangawaK, NishidaE, MizunoK (1998). Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature, 393(6687): 809–812 doi: 10.1038/31735 pmid: 9655398
|
149 |
YangS, FifitaJ A, WilliamsK L, WarraichST, PamphlettR, NicholsonG A, BlairI P (2013). Mutation analysis and immunopathological studies of PFN1 in familial and sporadic amyotrophic lateral sclerosis. Neurobiol Aging, 34:2235 e2237–2210
|
150 |
YoshiharaT, YamamotoM, HattoriN, MisuK, MoriK, KoikeH, SobueG (2002). Identification of novel sequence variants in the neurofilament-light gene in a Japanese population: analysis of Charcot-Marie-Tooth disease patients and normal individuals. J Peripher Nerv Syst, 7(4): 221–224 doi: 10.1046/j.1529-8027.2002.02028.x pmid: 12477167
|
151 |
ZengL H, XuL, RensingN R, SinatraP M, RothmanS M, WongM (2007). Kainate seizures cause acute dendritic injury and actin depolymerization in vivo. J Neurosci, 27(43): 11604–11613 doi: 10.1523/JNEUROSCI.0983-07.2007 pmid: 17959803
|
152 |
ZhangB, CarrollJ, TrojanowskiJ Q, YaoY, IbaM, PotuzakJ S, HoganA M L, XieS X, BallatoreC, SmithA B 3rd, LeeV M L, BrundenK R (2012). The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J Neurosci, 32(11): 3601–3611 doi: 10.1523/JNEUROSCI.4922-11.2012 pmid: 22423084
|
153 |
ZhangB, MaitiA, ShivelyS, LakhaniF, McDonald-JonesG, BruceJ, LeeE B, XieS X, JoyceS, LiC, ToleikisP M, LeeV M, TrojanowskiJ Q (2005). Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci USA, 102(1): 227–231 doi: 10.1073/pnas.0406361102 pmid: 15615853
|
154 |
ZhangW, BensonD L (2001). Stages of synapse development defined by dependence on F-actin. J Neurosci,21:5169–5181
|
155 |
ZhuQ, Couillard-DesprésS, JulienJ P (1997). Delayed maturation of regenerating myelinated axons in mice lacking neurofilaments. Exp Neurol, 148(1): 299–316 doi: 10.1006/exnr.1997.6654 pmid: 9398473
|
156 |
ZouZY, SunQ, LiuMS, LiXG, CuiLY (2013). Mutations in the profilin 1 gene are not common in amyotrophic lateral sclerosis of Chinese origin. Neurobiol Aging, 34:1713 e1715–1716
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|