Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2016, Vol. 11 Issue (6) : 427-438    https://doi.org/10.1007/s11515-016-1429-8
REVIEW
Transcription factor Pitx3 mutant mice as a model for Parkinson’s disease
Fu-Ming Zhou1(),Li Li1,Juming Yue2,John A. Dani3
1. Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN 38103, USA
2. Department of Pathology, University of Tennessee College of Medicine, Memphis, TN 38103, USA
3. Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
 Download: PDF(991 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Parkinson?s disease (PD) is a common, age-dependent degenerative neurological disorder impairing motor control function and cognition. A key pathology of PD is a degeneration of the nigrostriatal dopamine system, leading to a severe dopamine denervation in the striatum and dynsfunction of the striatal neural circuits.

OBJECTIVE: To better understand the pathophysiology of the nigrostriatal dopamine denervation and to discover better treatments, animal PD models are needed.

METHODS: The authors’ original research on the transcription factor Pitx3 null mutant mice and the relevant literature were reviewed.

RESULTS: An important feature of an animal PD model is the severe, PD-like nigrostriatal dopamine denervation. This feature is provided in the transcription factor Pitx3 null mutant mice. These mice have a severe and bilateral nigral dopamine neuron loss and dopamine denervation in the dorsal striatum, while the dopamine neuron loss in the ventral tegmental area and dopamine denervation in the ventral striatum are moderate, creating a dorsal-ventral dopamine loss gradient and mimicking the dopamine denervation pattern in PD. Pitx3 null mice show motor function deficits in the balance beam and pole tests and these deficits are reversed by L-3,4-dihydroxyphenylalanine (L-dopa). These mice also show impaired cognitive functions as indicated by reduced motor learning and avoidance memory. L-dopa, D1 agonists and, to a lesser extent, D2 agonists, induce normal horizontal movements (walking) and also dyskinesia-like movements consisting of vertical body trunk movements and waving paw movements.

CONCLUSIONS: The easy-to-maintain Pitx3 null mice with an autogenic, consistent and gradient dopamine denervation are a convenient and suitable mouse model to study the consequences of dopamine loss in PD and to test dopaminergic replacement therapies for PD.

Keywords Animal model      basal ganglia      L-3      4-dihydroxyphenylalanine (L-dopa)      dopamine receptor supersensitivity      6-hydroxydopamine (6-OHDA)      Parkinson’s disease      Pitx3      striatum      substantia nigra     
Corresponding Author(s): Fu-Ming Zhou   
Just Accepted Date: 04 November 2016   Online First Date: 01 December 2016    Issue Date: 26 December 2016
 Cite this article:   
Fu-Ming Zhou,Li Li,Juming Yue, et al. Transcription factor Pitx3 mutant mice as a model for Parkinson’s disease[J]. Front. Biol., 2016, 11(6): 427-438.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-016-1429-8
https://academic.hep.com.cn/fib/EN/Y2016/V11/I6/427
Fig.1  Visual identification of Pitx3+/+ (Pitx3 WT) mice and Pitx3−/− mutant (Pitx3 null) mice. (A) Pitx3 WT mouse. (B) A Pitx3 null mouse. These 2 example mice were of 35 days old. Pitx3 WT and Pitx3 null mice look identical except that Pitx3 null mice have malformed eyes that clearly identified Pitx3 null mice on or after postnatal day 14 when Pitx3 WT and Pitx3 null mice open their eyes. A' and B' show that, compared with the Pitx3 WT mouse, the eye of the Pitx3 null mouse is much smaller. The scale in B' applies to A'. However, Pitx3Null mice eat, drink, are fertile, and do not need any special care. (C) PCR-based genotyping identifies Pitx3 WT, Pitx3− /− homozygotes, and Pitx3+/ − heterozygotes using the following primers: TTCTACCGAGGAAAGCTGGA and TGCTTTGCTGGACATGGTAG. A-B from Wei et al., 2013, C from Li et al., 2013.
Fig.2  The PD-like DA neuron loss pattern in Pitx3 null mice. (A) Tyrosine hydroxylase (TH)-immunostained midbrain DA neurons in a Pitx3 WT mouse. Note the dense DA dendritic network in the substantia nigra pars reticulate (SNr) in Pitx3 WT (wild-type) mice. (B) TH-immunostained mibrain DA neurons in a Pitx3 null mouse. (C) Dense DA innervation in the entire striatum in a Pitx3 WT mouse. AC, anterior commissure. (D) Severe (95-99%) DA axon loss in the dorsal striatum in a Pitx3 null mouse. The ventral striatum has about 50% residual DA axons. Modified from Ding et al., 2015.
1 Aarsland D, Bronnick K, Williams-Gray C, Weintraub D, Marder K, Kulisevsky J, Burn D, Barone P, Pagonabarraga J, Allcock L, Santangelo G, Foltynie T, Janvin C, Larsen J P, Barker R A, Emre M (2010). Mild cognitive impairment in Parkinson disease: a multicenter pooled analysis. Neurology, 75(12): 1062–1069
https://doi.org/10.1212/WNL.0b013e3181f39d0e pmid: 20855849
2 Aarsland D, Kurz M W (2010). The epidemiology of dementia associated with Parkinson disease. J Neurol Sci, 289(1-2): 18–22
https://doi.org/10.1016/j.jns.2009.08.034 pmid: 19733364
3 Alexander G E, DeLong M R, Strick P L (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci, 9(1): 357–381
https://doi.org/10.1146/annurev.ne.09.030186.002041 pmid: 3085570
4 Ardayfio P, Moon J, Leung K K, Youn-Hwang D, Kim K S (2008). Impaired learning and memory in Pitx3 deficient aphakia mice: a genetic model for striatum-dependent cognitive symptoms in Parkinson’s disease. Neurobiol Dis, 31(3): 406–412
https://doi.org/10.1016/j.nbd.2008.05.017 pmid: 18573342
5 Bagga V, Dunnett S B, Fricker R A (2015). The 6-OHDA mouse model of Parkinson’s disease- Terminal striatal lesions provide a superior measure of neuronal loss and replacement than median forebrain bundle lesions. Behav Brain Res, 288: 107–117
https://doi.org/10.1016/j.bbr.2015.03.058 pmid: 25841616
6 Ballard P A, Tetrud J W, Langston J W (1985). Permanent human parkinsonism due to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): seven cases. Neurology, 35(7): 949–956
https://doi.org/10.1212/WNL.35.7.949 pmid: 3874373
7 Bastide M F, Meissner W G, Picconi B, Fasano S, Fernagut P O, Feyder M, Francardo V, Alcacer C, Ding Y, Brambilla R, Fisone G, Jon Stoessl A, Bourdenx M, Engeln M, Navailles S, De Deurwaerdère P, Ko W K, Simola N, Morelli M, Groc L, Rodriguez M C, Gurevich E V, Quik M, Morari M, Mellone M, Gardoni F, Tronci E, Guehl D, Tison F, Crossman A R, Kang U J, Steece-Collier K, Fox S, Carta M, Angela Cenci M, Bézard E (2015). Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol, 132: 96–168
https://doi.org/10.1016/j.pneurobio.2015.07.002 pmid: 26209473
8 Bateup H S, Santini E, Shen W, Birnbaum S, Valjent E, Surmeier D J, Fisone G, Nestler E J, Greengard P (2010). Distinct subclasses of medium spiny neurons differentially regulate striatal motor behaviors. Proc Natl Acad Sci USA, 107(33): 14845–14850
https://doi.org/10.1073/pnas.1009874107 pmid: 20682746
9 Beaulieu-Boire I, Lang A E (2015). Behavioral effects of levodopa. Mov Disord, 30(1): 90–102
https://doi.org/10.1002/mds.26121 pmid: 25491470
10 Beeler J A, Cao Z F, Kheirbek M A, Zhuang X (2009). Loss of cocaine locomotor response in Pitx3-deficient mice lacking a nigrostriatal pathway. Neuropsychopharmacology, 34(5): 1149–1161
https://doi.org/10.1038/npp.2008.117 pmid: 18704092
11 Bidinost C, Matsumoto M, Chung D, Salem N, Zhang K, Stockton D W, Khoury A, Megarbane A, Bejjani B A, Traboulsi E I (2006). Heterozygous and homozygous mutations in PITX3 in a large Lebanese family with posterior polar cataracts and neurodevelopmental abnormalities. Invest Ophthalmol Vis Sci, 47(4): 1274–1280
https://doi.org/10.1167/iovs.05-1095 pmid: 16565358
12 Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K (2004). Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res, 318(1): 121–134
https://doi.org/10.1007/s00441-004-0956-9 pmid: 15338272
13 Carlsson A (2001). A half-century of neurotransmitter research: impact on neurology and psychiatry. Nobel lecture. Biosci Rep, 21(6): 691–710
https://doi.org/10.1023/A:1015556204669 pmid: 12166820
14 Chen L, Xie Z, Turkson S, Zhuang X (2015). A53T human -synuclein overexpression in transgenic mice induces pervasive mitochondria macroautophagy defects preceding dopamine neuron degeneration. J Neurosci, 35: 890–905
pmid: 25609609; PMC4300331
15 Chesselet MF, Richter F (2011). Modelling of Parkinson’s disease in mice. Lancet Neurol, 10:1108–18
pmid: 22094131
16 Chiken S, Sato A, Ohta C, Kurokawa M, Arai S, Maeshima J, Sunayama-Morita T, Sasaoka T, Nambu A(2015). Dopamine D1 receptor-mediated transmission maintains information flow through the cortico-striato-entopeduncular direct pathway to release movements. Cereb Cortex, 25:4885–97
pmid: 26443442; PMC4635926
17 Chu H Y, Atherton J F, Wokosin D, Surmeier D J, Bevan M D (2015). Heterosynaptic regulation of external globus pallidus inputs to the subthalamic nucleus by the motor cortex. Neuron, 85(2): 364–376
https://doi.org/10.1016/j.neuron.2014.12.022 pmid: 25578364
18 Coelho M, Ferreira J J (2012). Late-stage Parkinson disease. Nat Rev Neurol, 8(8):435–42
pmid: 22777251
19 Cools R, Barker R A, Sahakian B J, Robbins T W (2001). Mechanisms of cognitive set flexibility in Parkinson’s disease. Brain, 124:2503–2512
pmid: 11701603
20 Ciliax B J, Drash G W, Staley J K, Haber S, Mobley C J, Miller G W, Mufson E J, Mash D C, Levey A I (1999). Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol, 409(1): 38–56
https://doi.org/10.1002/(SICI)1096-9861(19990621)409:1<38::AID-CNE4>3.0.CO;2-1 pmid: 10363710
21 Damier P, Hirsch E C, Agid Y, Graybiel A M (1999). The substantia nigra of the human brain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain, 122(Pt 8): 1437–1448
https://doi.org/10.1093/brain/122.8.1437 pmid: 10430830
22 Darvas M, Palmiter R D (2009). Restriction of dopamine signaling to the dorsolateral striatum is sufficient for many cognitive behaviors. Proc Natl Acad Sci USA, 106(34): 14664–14669
https://doi.org/10.1073/pnas.0907299106 pmid: 19667174
23 de Lau L M, Breteler M M (2006). Epidemiology of Parkinson’s disease. Lancet Neurol, 5(6): 525–535
https://doi.org/10.1016/S1474-4422(06)70471-9 pmid: 16713924
24 Del Tredici K, Braak H (2016). Review: Sporadic Parkinson’s disease: development and distribution of α-synuclein pathology. Neuropathol Appl Neurobiol, 42(1): 33–50
https://doi.org/10.1111/nan.12298 pmid: 26662475
25 Deng Y, Lanciego J, Kerkerian-Le-Goff L, Coulon P, Salin P, Kachidian P, Lei W, Del Mar N, Reiner A (2015). Differential organization of cortical inputs to striatal projection neurons of the matrix compartment in rats. Front Syst Neurosci, 9: 51
https://doi.org/10.3389/fnsys.2015.00051 pmid: 25926776
26 Ding S, Li L, Zhou F M (2015). Nigral dopamine loss induces a global upregulation of presynaptic dopamine D1 receptor facilitation of the striatonigral GABAergic output. J Neurophysiol, 113(6): 1697–1711
https://doi.org/10.1152/jn.00752.2014 pmid: 25552639
27 Ding Y, Restrepo J, Won L, Hwang D Y, Kim K S, Kang U J (2007). Chronic 3,4-dihydroxyphenylalanine treatment induces dyskinesia in aphakia mice, a novel genetic model of Parkinson’s disease. Neurobiol Dis, 27(1): 11–23
https://doi.org/10.1016/j.nbd.2007.03.013 pmid: 17499513
28 Ding Y, Won L, Britt J P, Lim S A, McGehee D S, Kang U J (2011). Enhanced striatal cholinergic neuronal activity mediates L-DOPA-induced dyskinesia in parkinsonian mice. Proc Natl Acad Sci USA, 108(2): 840–845
https://doi.org/10.1073/pnas.1006511108 pmid: 21187382
29 Doig N M, Moss J, Bolam J P (2010). Cortical and thalamic innervation of direct and indirect pathway medium-sized spiny neurons in mouse striatum. J Neurosci, 30(44): 14610–14618
https://doi.org/10.1523/JNEUROSCI.1623-10.2010 pmid: 21048118
30 Doucet J P, Nakabeppu Y, Bedard P J, Hope B T, Nestler E J, Jasmin B J, Chen J S, Iadarola M J, St-Jean M, Wigle N, Blanchet P, Grondin R, Robertson G S (1996). Chronic alterations in dopaminergic neurotransmission produce a persistent elevation of deltaFosB-like protein(s) in both the rodent and primate striatum. Eur J Neurosci, 8(2): 365–381
https://doi.org/10.1111/j.1460-9568.1996.tb01220.x pmid: 8714707
31 Durieux P F, Bearzatto B, Guiducci S, Buch T, Waisman A, Zoli M, Schiffmann S N, de Kerchove d’Exaerde A (2009). D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nat Neurosci, 12(4): 393–395
https://doi.org/10.1038/nn.2286 pmid: 19270687
32 Durieux P F, Schiffmann S N, de Kerchove d’Exaerde A (2012). Differential regulation of motor control and response to dopaminergic drugs by D1R and D2R neurons in distinct dorsal striatum subregions. EMBO J, 31(3): 640–653
https://doi.org/10.1038/emboj.2011.400 pmid: 22068054
33 Ekstrand M I, Terzioglu M, Galter D, Zhu S, Hofstetter C, Lindqvist E, Thams S, Bergstrand A, Hansson F S, Trifunovic A, Hoffer B, Cullheim S, Mohammed A H, Olson L, Larsson N G (2007). Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci USA, 104(4): 1325–1330
https://doi.org/10.1073/pnas.0605208103 pmid: 17227870
34 Fahn S (2015). The medical treatment of Parkinson disease from James Parkinson to George Cotzias. Mov Disord, 30(1): 4–18
https://doi.org/10.1002/mds.26102 pmid: 25491387
35 Francis T C, Chandra R, Friend D M, Finkel E, Dayrit G, Miranda J, Brooks J M, Iñiguez S D, O'Donnell P, Kravitz A, Lobo M K (2015) Nucleus accumbens medium spiny neuron subtypes mediate depression-related outcomes to social defeat stress. Biol Psychiatry, 77: 212–22
pmid: 25173629
36 Franco V, Turner R S (2012). Testing the contributions of striatal dopamine loss to the genesis of parkinsonian signs. Neurobiol Dis, 47(1): 114–125
https://doi.org/10.1016/j.nbd.2012.03.028 pmid: 22498034
37 Friend D M, Kravitz A V (2014). Working together: basal ganglia pathways in action selection. Trends Neurosci, 37(6): 301–303
https://doi.org/10.1016/j.tins.2014.04.004 pmid: 24816402
38 Galati S, Stanzione P, D’Angelo V, Fedele E, Marzetti F, Sancesario G, Procopio T, Stefani A (2009). The pharmacological blockade of medial forebrain bundle induces an acute pathological synchronization of the cortico-subthalamic nucleus-globus pallidus pathway. J Physiol, 587(Pt 18): 4405–4423
https://doi.org/10.1113/jphysiol.2009.172759 pmid: 19622605
39 Gellhaar S, Marcellino D, Abrams M B, Galter D (2015). Chronic L-DOPA induces hyperactivity, normalization of gait and dyskinetic behavior in MitoPark mice. Genes Brain Behav, 14(3): 260–270
https://doi.org/10.1111/gbb.12210 pmid: 25752644
40 Gerfen C R, Bolam J P (2010) The neuroanatomical organization of the basal ganglia. In: Steiner H, Tseng K Y (eds). Handbook of Basal Ganglia Structure and Function. Academic Press. Pages 3–28
41 German D C, Manaye K F (1993). Midbrain dopaminergic neurons (nuclei A8, A9, and A10): three-dimensional reconstruction in the rat. J Comp Neurol, 331(3): 297–309
https://doi.org/10.1002/cne.903310302 pmid: 8514911
42 Glajch K E, Fleming S M, Surmeier D J, Osten P (2012). Sensorimotor assessment of the unilateral 6-hydroxydopamine mouse model of Parkinson’s disease. Behav Brain Res, 230(2): 309–316
https://doi.org/10.1016/j.bbr.2011.12.007 pmid: 22178078
43 Glass M, Dragunow M, Faull R L (2000). The pattern of neurodegeneration in Huntington’s disease: a comparative study of cannabinoid, dopamine, adenosine and GABA(A) receptor alterations in the human basal ganglia in Huntington’s disease. Neuroscience, 97(3): 505–519
https://doi.org/10.1016/S0306-4522(00)00008-7 pmid: 10828533
44 Goedert M, Spillantini M G, Del Tredici K, Braak H (2013). 100 years of Lewy pathology. Nat Rev Neurol, 9(1): 13–24
https://doi.org/10.1038/nrneurol.2012.242 pmid: 23183883
45 Golden J P, Demaro J A 3rd, Knoten A, Hoshi M, Pehek E, Johnson E M Jr, Gereau R W 4th, Jain S (2013). Dopamine-dependent compensation maintains motor behavior in mice with developmental ablation of dopaminergic neurons. J Neurosci, 33(43): 17095–17107
https://doi.org/10.1523/JNEUROSCI.0890-13.2013 pmid: 24155314
46 Gotham A M, Brown R G, Marsden C D (1988). ‘Frontal’ cognitive function in patients with Parkinson’s disease ‘on’ and ‘off’ levodopa. Brain, 111(Pt 2): 299–321
https://doi.org/10.1093/brain/111.2.299 pmid: 3378138
47 Graybiel A M, Grafton S T (2015). The striatum: where skills and habits meet. Cold Spring Harb Perspect Biol, 7(8): a021691
https://doi.org/10.1101/cshperspect.a021691 pmid: 26238359
48 Guo Y, Le W D, Jankovic J, Yang H R, Xu H B, Xie W J, Song Z, Deng H (2011). Systematic genetic analysis of the PITX3 gene in patients with Parkinson disease. Mov Disord, 26(9): 1729–1732
https://doi.org/10.1002/mds.23693 pmid: 21469209
49 Haber S N (2016). Corticostriatal circuitry. Dialogues Clin Neurosci, 18(1): 7–21
pmid: 27069376
50 Haber S N, Knutson B (2010). The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1): 4–26
https://doi.org/10.1038/npp.2009.129 pmid: 19812543
51 Hardman C D, Henderson J M, Finkelstein D I, Horne M K, Paxinos G, Halliday G M (2002). Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J Comp Neurol, 445(3): 238–255
https://doi.org/10.1002/cne.10165 pmid: 11920704
52 Hikosaka O, Takikawa Y, Kawagoe R (2000). Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev, 80(3): 953–978
pmid: 10893428
53 Hornykiewicz O (1998). Biochemical aspects of Parkinson’s disease. Neurology, 51(2 Suppl 2): S2–S9
https://doi.org/10.1212/WNL.51.2_Suppl_2.S2 pmid: 9711973
54 Hornykiewicz O (2001). Chemical neuroanatomy of the basal ganglia—normal and in Parkinson’s disease. J Chem Neuroanat, 22(1-2): 3–12
https://doi.org/10.1016/S0891-0618(01)00100-4 pmid: 11470551
55 Huerta-Ocampo I, Mena-Segovia J, Bolam J P (2014). Convergence of cortical and thalamic input to direct and indirect pathway medium spiny neurons in the striatum. Brain Struct Funct, 219(5): 1787–1800
https://doi.org/10.1007/s00429-013-0601-z pmid: 23832596
56 Hurd Y L, Suzuki M, Sedvall G C (2001). D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J Chem Neuroanat, 22(1-2): 127–137
https://doi.org/10.1016/S0891-0618(01)00122-3 pmid: 11470560
57 Hwang D Y, Ardayfio P, Kang U J, Semina E V, Kim K S (2003). Selective loss of dopaminergic neurons in the substantia nigra of Pitx3-deficient aphakia mice. Brain Res Mol Brain Res, 114(2): 123–131
https://doi.org/10.1016/S0169-328X(03)00162-1 pmid: 12829322
58 Hwang D Y, Fleming S M, Ardayfio P, Moran-Gates T, Kim H, Tarazi F I, Chesselet M F, Kim K S (2005). 3,4-dihydroxyphenylalanine reverses the motor deficits in Pitx3-deficient aphakia mice: behavioral characterization of a novel genetic model of Parkinson’s disease. J Neurosci, 25(8): 2132–2137
https://doi.org/10.1523/JNEUROSCI.3718-04.2005 pmid: 15728853
59 Ikemoto S, Yang C, Tan A (2015). Basal ganglia circuit loops, dopamine and motivation: A review and enquiry. Behav Brain Res, 290: 17–31
https://doi.org/10.1016/j.bbr.2015.04.018 pmid: 25907747
60 Jiménez-Jiménez F J, García-Martín E, Alonso-Navarro H, Agúndez J A ( 2014). PITX3 and risk for Parkinson’s disease: a systematic review and meta-analysis. Eur Neurol,71(1–2):49–56
pmid: 24525476
61 Katzenschlager R, Head J, Schrag A, Ben-Shlomo Y, Evans A, Lees A J, the Parkinson’s Disease Research Group of the United Kingdom (2008). Fourteen-year final report of the randomized PDRG-UK trial comparing three initial treatments in PD. Neurology, 71(7): 474–480
https://doi.org/10.1212/01.wnl.0000310812.43352.66 pmid: 18579806
62 Kirik D, Rosenblad C, Björklund A (1998). Characterization of behavioral and neurodegenerative changes following partial lesions of the nigrostriatal dopamine system induced by intrastriatal 6-hydroxydopamine in the rat. Exp Neurol, 152(2): 259–277
https://doi.org/10.1006/exnr.1998.6848 pmid: 9710526
62a Kish S J, Shannak K, Hornykiewicz O (1988). Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinical implications. N Engl J Med, 318(14): 876–880
63 Kita H, Kita T (2011). Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia. J Neurosci, 31(28): 10311–10322
https://doi.org/10.1523/JNEUROSCI.0915-11.2011 pmid: 21753008
64 Kordower J H, Olanow C W, Dodiya H B, Chu Y, Beach T G, Adler C H, Halliday G M, Bartus R T (2013). Disease duration and the integrity of the nigrostriatal system in Parkinson’s disease. Brain, 136(Pt 8): 2419–2431
https://doi.org/10.1093/brain/awt192 pmid: 23884810
65 Korotkova T M, Ponomarenko A A, Haas H L, Sergeeva O A (2005) Differential expression of the homeobox gene Pitx3 in midbrain dopaminergic neurons. Eur J Neurosci. 22:1287–93
pmid: 16190884
66 Kravitz A V, Freeze B S, Parker P R, Kay K, Thwin M T, Deisseroth K, Kreitzer A C (2010). Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature, 466(7306): 622–626
https://doi.org/10.1038/nature09159 pmid: 20613723
67 Lane E L, Cheetham S C, Jenner P (2006). Does contraversive circling in the 6-OHDA-lesioned rat indicate an ability to induce motor complications as well as therapeutic effects in Parkinson’s disease? Exp Neurol, 197(2): 284–290
https://doi.org/10.1016/j.expneurol.2005.06.006 pmid: 16005456
68 Le W, Zhang L, Xie W, Li S, Dani J A (2015). Pitx3 deficiency produces decreased dopamine signaling and induces motor deficits in Pitx3(-/-) mice. Neurobiol Aging, 36(12): 3314–3320
https://doi.org/10.1016/j.neurobiolaging.2015.08.012 pmid: 26363812
69 Lee C S, Sauer H, Bjorklund A (1996). Dopaminergic neuronal degeneration and motor impairments following axon terminal lesion by instrastriatal 6-hydroxydopamine in the rat. Neuroscience, 72(3): 641–653
https://doi.org/10.1016/0306-4522(95)00571-4 pmid: 9157311
70 Lees A J, Tolosa E, Olanow C W (2015). Four pioneers of L-dopa treatment: Arvid Carlsson, Oleh Hornykiewicz, George Cotzias, and Melvin Yahr. Mov Disord, 30(1): 19–36
https://doi.org/10.1002/mds.26120 pmid: 25488030
71 Lemos J C, Friend D M, Kaplan A R, Shin J H, Rubinstein M, Kravitz A V, Alvarez V A (2016). Enhanced GABA Transmission Drives Bradykinesia Following Loss of Dopamine D2 Receptor Signaling. Neuron, 90(4): 824–838
https://doi.org/10.1016/j.neuron.2016.04.040 pmid: 27196975
72 Levey A I, Hersch S M, Rye D B, Sunahara R K, Niznik H B, Kitt C A, Price D L, Maggio R, Brann M R, Ciliax B J (1993). Localization of D1 and D2 dopamine receptors in brain with subtype-specific antibodies. Proc Natl Acad Sci U S A. 90:8861–8865
pmid: 8415621; PMC47460
73 Lewis D A, Melchitzky D S, Sesack S R, Whitehead R E, Auh S, Sampson A (2001). Dopamine transporter immunoreactivity in monkey cerebral cortex: regional, laminar, and ultrastructural localization. J Comp Neurol, 432(1): 119–136
https://doi.org/10.1002/cne.1092 pmid: 11241381
74 Li L, Qiu G, Ding S, Zhou F M (2013). Serotonin hyperinnervation and upregulated 5-HT2A receptor expression and motor-stimulating function in nigrostriatal dopamine-deficient Pitx3 mutant mice. Brain Res, 1491: 236–250
https://doi.org/10.1016/j.brainres.2012.11.010 pmid: 23159831
75 Li L, Zhou F M (2013). Parallel dopamine D1 receptor activity dependence of l-Dopa-induced normal movement and dyskinesia in mice. Neuroscience, 236: 66–76
https://doi.org/10.1016/j.neuroscience.2012.12.065 pmid: 23357114
76 Lobo M K, Zaman S, Damez-Werno D M, Koo J W, Bagot R C, DiNieri J A, Nugent A, Finkel E, Chaudhury D, Chandra R, Riberio E, Rabkin J, Mouzon E, Cachope R, Cheer J F, Han M H, Dietz D M, Self D W, Hurd Y L, Vialou V, Nestler E J (2013). DFosB induction in striatal medium spiny neuron subtypes in response to chronic pharmacological, emotional, and optogenetic stimuli. J Neurosci, 33(47): 18381–18395
https://doi.org/10.1523/JNEUROSCI.1875-13.2013 pmid: 24259563
77 Luk K C, Rymar V V, van den Munckhof P, Nicolau S, Steriade C, Bifsha P, Drouin J, Sadikot A F (2013). The transcription factor Pitx3 is expressed selectively in midbrain dopaminergic neurons susceptible to neurodegenerative stress. J Neurochem, 125(6): 932–943
https://doi.org/10.1111/jnc.12160 pmid: 23331067
78 Marin C, Rodriguez-Oroz M C, Obeso J A (2006). Motor complications in Parkinson’s disease and the clinical significance of rotational behavior in the rat: have we wasted our time? Exp Neurol, 197(2): 269–274
https://doi.org/10.1016/j.expneurol.2005.11.002 pmid: 16375892
79 Matsuda W, Furuta T, Nakamura K C, Hioki H, Fujiyama F, Arai R, Kaneko T (2009). Single nigrostriatal dopaminergic neurons form widely spread and highly dense axonal arborizations in the neostriatum. J Neurosci, 29(2): 444–453
https://doi.org/10.1523/JNEUROSCI.4029-08.2009 pmid: 19144844
80 McCann H, Cartwright H, Halliday G M (2016). Neuropathology of α-synuclein propagation and braak hypothesis. Mov Disord, 31(2): 152–160
https://doi.org/10.1002/mds.26421 pmid: 26340605
81 McRitchie D A, Cartwright H R, Halliday G M (1997). Specific A10 dopaminergic nuclei in the midbrain degenerate in Parkinson’s disease. Exp Neurol, 144(1): 202–213
https://doi.org/10.1006/exnr.1997.6418 pmid: 9126172
82 Mitchell I J, Cooper A J, Griffiths M R (1999). The selective vulnerability of striatopallidal neurons. Prog Neurobiol, 59(6): 691–719
https://doi.org/10.1016/S0301-0082(99)00019-2 pmid: 10845758
83 Nambu A (2008). Seven problems on the basal ganglia. Curr Opin Neurobiol, 18(6): 595–604
https://doi.org/10.1016/j.conb.2008.11.001 pmid: 19081243
84 Nambu A (2011). Somatotopic organization of the primate Basal Ganglia. Front Neuroanat, 5: 26
https://doi.org/10.3389/fnana.2011.00026 pmid: 21541304
85 Nelson E L, Liang C L, Sinton C M, German D C (1996). Midbrain dopaminergic neurons in the mouse: computer-assisted mapping. J Comp Neurol, 369(3): 361–371
https://doi.org/10.1002/(SICI)1096-9861(19960603)369:3<361::AID-CNE3>3.0.CO;2-3 pmid: 8743418
86 Nunes I, Tovmasian L T, Silva R M, Burke R E, Goff S P (2003). Pitx3 is required for development of substantia nigra dopaminergic neurons. Proc Natl Acad Sci USA, 100(7): 4245–4250
https://doi.org/10.1073/pnas.0230529100 pmid: 12655058
87 Nutt J G, Chung K A, Holford N H (2010). Dyskinesia and the antiparkinsonian response always temporally coincide: a retrospective study. Neurology, 74(15): 1191–1197
https://doi.org/10.1212/WNL.0b013e3181d90050 pmid: 20220120
88 Obeso J A, Rodriguez-Oroz M C, Stamelou M, Bhatia K P, Burn D J (2014). The expanding universe of disorders of the basal ganglia. Lancet, 384(9942): 523–531
https://doi.org/10.1016/S0140-6736(13)62418-6 pmid: 24954674
89 Olanow C W, Stern M B, Sethi K (2009). The scientific and clinical basis for the treatment of Parkinson disease (2009). Neurology, 72(21 Suppl 4): S1–S136
https://doi.org/10.1212/WNL.0b013e3181a1d44c pmid: 19470958
90 Oorschot D E (1996). Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the cavalieri and optical disector methods. J Comp Neurol, 366(4): 580–599
https://doi.org/10.1002/(SICI)1096-9861(19960318)366:4<580::AID-CNE3>3.0.CO;2-0 pmid: 8833111
91 Oorschot D E (2010). Cell types in the different nuclei of the basal ganglia. In: Steiner H, Tseng K Y (Eds.), Handbook of Basal Ganglia Structure and Function. London: Academic Press, pp. 63–74
92 Parkinson J (1817). An essay on shaking palsy. Originally published by Sherwood, Neely, and Jones (London, 1817), reprinted in J Neuropsychiatry Clin Neurosci. 2002 Spring; 14:223–36
pmid: 11983801
93 Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz M C, Lehericy S, Bergman H, Agid Y, DeLong M R, Obeso J A (2010). Goal-directed and habitual control in the basal ganglia: implications for Parkinson’s disease. Nat Rev Neurosci, 11(11): 760–772
https://doi.org/10.1038/nrn2915 pmid: 20944662
94 Révy D, Jaouen F, Salin P, Melon C, Chabbert D, Tafi E, Concetta L, Langa F, Amalric M, Kerkerian-Le Goff L, Marie H, Beurrier C (2014). Cellular and behavioral outcomes of dorsal striatonigral neuron ablation: new insights into striatal functions. Neuropsychopharmacology, 39(11): 2662–2672
https://doi.org/10.1038/npp.2014.121 pmid: 24903652
95 Reyes S, Fu Y, Double K L, Cottam V, Thompson L H, Kirik D, Paxinos G, Watson C, Cooper H M, Halliday G M (2013). Trophic factors differentiate dopamine neurons vulnerable to Parkinson’s disease. Neurobiol Aging, 34(3): 873–886
https://doi.org/10.1016/j.neurobiolaging.2012.07.019 pmid: 22926168
96 Robbins T W, Cools R (2014). Cognitive deficits in Parkinson’s disease: a cognitive neuroscience perspective. Mov Disord, 29(5): 597–607
https://doi.org/10.1002/mds.25853 pmid: 24757109
97 Rothwell P E, Fuccillo M V, Maxeiner S, Hayton S J, Gokce O, Lim B K, Fowler S C, Malenka R C, Südhof T C (2014). Autism-associated neuroligin-3 mutations commonly impair striatal circuits to boost repetitive behaviors. Cell, 158(1): 198–212
https://doi.org/10.1016/j.cell.2014.04.045 pmid: 24995986
98 Samii A, Nutt J G, Ransom B R (2004). Parkinson’s disease. Lancet, 363(9423): 1783–1793
https://doi.org/10.1016/S0140-6736(04)16305-8 pmid: 15172778
99 Sano H, Chiken S, Hikida T, Kobayashi K, Nambu A (2013). Signals through the striatopallidal indirect pathway stop movements by phasic excitation in the substantia nigra. J Neurosci, 33(17): 7583–7594
https://doi.org/10.1523/JNEUROSCI.4932-12.2013 pmid: 23616563
100 Sano H, Yasoshima Y, Matsushita N, Kaneko T, Kohno K, Pastan I, Kobayashi K (2003). Conditional ablation of striatal neuronal types containing dopamine D2 receptor disturbs coordination of basal ganglia function. J Neurosci, 23(27): 9078–9088
pmid: 14534241
101 Schwarting R K, Huston J P (1996). The unilateral 6-hydroxydopamine lesion model in behavioral brain research. Analysis of functional deficits, recovery and treatments. Prog Neurobiol, 50(2-3): 275–331
https://doi.org/10.1016/S0301-0082(96)00040-8 pmid: 8971983
102 Semina E V, Ferrell R E, Mintz-Hittner H A, Bitoun P, Alward W L, Reiter R S, Funkhauser C, Daack-Hirsch S, Murray J C (1998). A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat Genet, 19(2): 167–170
https://doi.org/10.1038/527 pmid: 9620774
103 Semina E V, Murray J C, Reiter R, Hrstka R F, Graw J (2000). Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice. Hum Mol Genet, 9(11): 1575–1585
https://doi.org/10.1093/hmg/9.11.1575 pmid: 10861284
104 Semina E V, Reiter R S, Murray J C (1997). Isolation of a new homeobox gene belonging to the Pitx/Rieg family: expression during lens development and mapping to the aphakia region on mouse chromosome 19. Hum Mol Genet, 6(12): 2109–2116
https://doi.org/10.1093/hmg/6.12.2109 pmid: 9328475
105 Sesack S R, Grace A A (2010). Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology, 35(1): 27–47
https://doi.org/10.1038/npp.2009.93 pmid: 19675534
106 Siepel F J, Brønnick K S, Booij J, Ravina B M, Lebedev A V, Pereira J B, Grüner R, Aarsland D (2014). Cognitive executive impairment and dopaminergic deficits in de novo Parkinson’s disease. Mov Disord, 29(14): 1802–1808
https://doi.org/10.1002/mds.26051 pmid: 25284687
107 Simpson E H, Kellendonk C, Kandel E (2010). A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron, 65(5): 585–596
https://doi.org/10.1016/j.neuron.2010.02.014 pmid: 20223196
108 Smidt M P, Smits S M, Bouwmeester H, Hamers F P, van der Linden A J, Hellemons A J, Graw J, Burbach J P (2004). Early developmental failure of substantia nigra dopamine neurons in mice lacking the homeodomain gene Pitx3. Development, 131(5): 1145–1155
https://doi.org/10.1242/dev.01022 pmid: 14973278
109 Smidt M P, van Schaick H S, Lanctôt C, Tremblay J J, Cox J J, van der Kleij A A, Wolterink G, Drouin J, Burbach J P (1997). A homeodomain gene Ptx3 has highly restricted brain expression in mesencephalic dopaminergic neurons. Proc Natl Acad Sci U S A. 94:13305–13310
pmid: 9371841; PMC24304
110 Smith Y, Galvan A, Ellender T J, Doig N, Villalba R M, Huerta-Ocampo I, Wichmann T, Bolam J P (2014). The thalamostriatal system in normal and diseased states. Front Syst Neurosci, 8: 5
https://doi.org/10.3389/fnsys.2014.00005 pmid: 24523677
111 Smits S M, Burbach J P, Smidt M P (2006). Developmental origin and fate of meso-diencephalic dopamine neurons. Prog Neurobiol, 78(1): 1–16
https://doi.org/10.1016/j.pneurobio.2005.12.003 pmid: 16414173
112 Stern Y, Langston J W (1985). Intellectual changes in patients with MPTP-induced parkinsonism. Neurology, 35(10): 1506–1509
https://doi.org/10.1212/WNL.35.10.1506 pmid: 3875807
113 Stern Y, Tetrud J W, Martin W R, Kutner S J, Langston J W (1990). Cognitive change following MPTP exposure. Neurology, 40(2): 261–264
https://doi.org/10.1212/WNL.40.2.261 pmid: 2300245
114 Svenningsson P, Westman E, Ballard C, Aarsland D (2012). Cognitive impairment in patients with Parkinson’s disease: diagnosis, biomarkers, and treatment. Lancet Neurol, 11(8): 697–707
https://doi.org/10.1016/S1474-4422(12)70152-7 pmid: 22814541
115 Thiele S L, Warre R, Khademullah C S, Fahana N, Lo C, Lam D, Talwar S, Johnston T H, Brotchie J M, Nash J E (2011). Generation of a model of L-DOPA-induced dyskinesia in two different mouse strains. J Neurosci Methods, 197(2): 193–208
https://doi.org/10.1016/j.jneumeth.2011.02.012 pmid: 21352853
116 Tremblay L, Worbe Y, Thobois S, Sgambato-Faure V, Féger J (2015). Selective dysfunction of basal ganglia subterritories: From movement to behavioral disorders. Mov Disord, 30(9): 1155–1170
https://doi.org/10.1002/mds.26199 pmid: 25772380
117 Ungerstedt U (1971). Adipsia and aphagia after 6-hydroxydopamine induced degeneration of the nigro-striatal dopamine system. Acta Physiol Scand Suppl, 367(S367): 95–122
https://doi.org/10.1111/j.1365-201X.1971.tb11001.x pmid: 4332694
118 van den Munckhof P, Luk K C, Ste-Marie L, Montgomery J, Blanchet P J, Sadikot A F, Drouin J (2003). Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons. Development, 130(11): 2535–2542
https://doi.org/10.1242/dev.00464 pmid: 12702666
118a van den Munckhof P, Gilbert F, Chamberland M, Lévesque D, Drouin J. (2006). Striatal neuroadaptation and rescue of locomotor deficit by L-dopa in aphakia mice, a model of Parkinson's disease. J Neurochem, 96(1): 160–170
119 Varnum D S, Stevens L C (1968). Aphakia, a new mutation in the mouse. J Hered, 59(2): 147–150
pmid: 4970465
120 Walker F O (2007). Huntington’s disease. Lancet, 369(9557): 218–228
https://doi.org/10.1016/S0140-6736(07)60111-1 pmid: 17240289
121 Wei W, Li L, Yu G, Ding S, Li C, Zhou F M (2013). Supersensitive presynaptic dopamine D2 receptor inhibition of the striatopallidal projection in nigrostriatal dopamine-deficient mice. J Neurophysiol, 110(9): 2203–2216
https://doi.org/10.1152/jn.00161.2013 pmid: 23945778
122 Weintraub D, Simuni T, Caspell-Garcia C, Coffey C, Lasch S, Siderowf A, Aarsland D, Barone P, Burn D, Chahine L M, Eberling J, Espay A J, Foster E D, Leverenz J B, Litvan I, Richard I, Troyer M D, Hawkins K A, and the Parkinson’s Progression Markers Initiative (2015). Cognitive performance and neuropsychiatric symptoms in early, untreated Parkinson’s disease. Mov Disord, 30(7): 919–927
https://doi.org/10.1002/mds.26170 pmid: 25737166
123 Willard A M, Bouchard R S, Gittis A H (2015). Differential degradation of motor deficits during gradual dopamine depletion with 6-hydroxydopamine in mice. Neuroscience, 301: 254–267
https://doi.org/10.1016/j.neuroscience.2015.05.068 pmid: 26067595
124 Yarnall A J, Breen D P, Duncan G W, Khoo T K, Coleman S Y, Firbank M J, Nombela C, Winder-Rhodes S, Evans J R, Rowe J B, Mollenhauer B, Kruse N, Hudson G, Chinnery P F, O’Brien J T, Robbins T W, Wesnes K, Brooks D J, Barker R A, Burn D J, and the ICICLE-PD Study Group (2014). Characterizing mild cognitive impairment in incident Parkinson disease: the ICICLE-PD study. Neurology, 82(4): 308–316
https://doi.org/10.1212/WNL.0000000000000066 pmid: 24363137
125 Yung K K, Bolam J P, Smith A D, Hersch S M, Ciliax B J, Levey A I (1995). Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience, 65(3): 709–730
https://doi.org/10.1016/0306-4522(94)00536-E pmid: 7609871
126 Zhou F M (2016). The Substantia Nigra Pars Reticulata. In: Steiner H, K Tseng (eds.). Handbook of Basal Ganglia Structure and Function. pp. 293–316. Elsevier.
127 Zhou Q Y, Palmiter R D (1995). Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell, 83(7): 1197–1209
https://doi.org/10.1016/0092-8674(95)90145-0 pmid: 8548806
[1] Hansa Jain. Cationic antimicrobial peptide: LL-37 and its role in periodontitis[J]. Front. Biol., 2017, 12(2): 116-123.
[2] Stacy Nguy,Maria Victoria Tejada-Simon. Phenotype analysis and rescue on female FVB.129-Fmr1 knockout mice[J]. Front. Biol., 2016, 11(1): 43-52.
[3] Yiping LI,Chandler L. WALKER,Yi Ping ZHANG,Christopher B. SHIELDS,Xiao-Ming XU. Surgical decompression in acute spinal cord injury: A review of clinical evidence, animal model studies, and potential future directions of investigation[J]. Front. Biol., 2014, 9(2): 127-136.
[4] Jeffrey P. CANTLE, Xiao-Hong LU, Xiaofeng GU, X. William YANG. Cellular and molecular mechanisms implicated in pathogenesis of selective neurodegeneration in Huntington’s disease[J]. Front Biol, 2012, 7(5): 459-476.
[5] Hua SU, Ling SU, Qiuxia HE, Jing ZHAO, Shangli ZHANG, Junying MIAO, Baoxiang ZHAO, . A benzoxazine derivative specifically inhibits cell cycle progression in p53-wild type pulmonary adenocarcinoma cells[J]. Front. Biol., 2010, 5(2): 180-186.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed