Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (6) : 632-639    https://doi.org/10.1007/s11515-013-1284-9
RESEARCH ARTICLE
Screening and molecular characterization of Serratia marcescens VITSD2: A strain producing optimum serratiopeptidase
C. Subathra DEVI(), Renuka ELIZABETH JOSEPH, Harini SARAVANAN, S. Jemimah NAINE, V. Mohana SRINIVANSAN
School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
 Download: PDF(440 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The current work was attempted to isolate and characterize the serratiopeptidase producing Serratia sp. Among the 10 bacterial isolates 7 strains were identified as Serratia sp. Out of 7 strains one showed potent proteolytic activity and selected for further studies. Based on the morphological, biochemical and molecular characterization, the potent isolate (RH03) was identified as Serratia marcescens (GenBank accession number: KC961637) and the strain was designated as Serratia marcescens VITSD2. The production of serratiopeptidase was carried out in trypticase soya broth and the enzyme was partially purified using ammonium sulfate precipitation and dialysis. The specific activity was determined by casein hydrolysis assay and was found to be 12.00, 21.33, and 25.40 units/mg for crude, precipitated and dialysed samples. The molecular weight of the protease was determined by SDS-PAGE and it was found to be 50 kDa. The antibacterial activity of the produced serratiopeptidase showed moderate activity against Pseudomonas aeruginosa MTCC No. 4676 (12 mm) and Escherichia coli MTCC No. 1588 (15 mm).

Keywords Serratiopeptidase      Serratia marcescens VITSD2      antibacterial activity     
Corresponding Author(s): DEVI C. Subathra,Email:csubathradevi@vit.ac.in, subaresearch@rediffmail.com   
Issue Date: 01 December 2013
 Cite this article:   
C. Subathra DEVI,Renuka ELIZABETH JOSEPH,Harini SARAVANAN, et al. Screening and molecular characterization of Serratia marcescens VITSD2: A strain producing optimum serratiopeptidase[J]. Front Biol, 2013, 8(6): 632-639.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-013-1284-9
https://academic.hep.com.cn/fib/EN/Y2013/V8/I6/632
S. noPlace collectedNumber of samplesSoil type
1Thevera, Kochi,Kerala,India3 soil samplesGarden soil
2VIT University, Vellore,Tamil Nadu,India3 soil samplesRhizosphere
3Chennai, Tamil Nadu,India1 soil sampleGarden soil
Tab.1  Soil samples collected from different regions of India
Organism NameMorphologySample
RH01(Kochi, Kerala)Elevated red colonies
RH02(Kochi, Kerala)Elevated red colonies
RH03(Kochi, Kerala)Elevated red colonies
RH04(Vellore, Tamilnadu)Elevated red colonies
RH05(Vellore, Tamilnadu)Irregular, pale red colonies
RH06(Vellore, Tamilnadu)Elevated red colonies
RH07(Chennai, Tamilnadu)Elevated red colonies
Tab.2  Colony morphology of the bacterial isolates
Fig.8  Red color colonies on nutrient agar.
Fig.9  Isolates showing zone of clearance on skim milk agar
Strain No.Primary screeningSecondary screening
RH01Zone of clearance(mm)Zone of clearance (mm)
RH022121
RH032324
RH042020
RH052222
RH062222
RH072019
Tab.3  Screening of . for Serratiopeptidase enzyme
Fig.10  Caseinolytic activity of crude enzyme (RH03)
Fig.11  Pure culture of sp. (RH03) on nutrient agar.
RH03
Gram stainingMotilityMarginCapsuleIndoleMRVPCitrateLysineUreaseNitrate reductionH2sGlucoseAdonitolLactose
-ve rods+smooth and raised+--+++-+-++-
Tab.4  Morphological and biochemical characterization of the strain RH03
Fig.12  Phylogenetic tree of the strain VITSD2
Fig.13  (A) RNA secondary structure, (B) Mountain plot representation, (C) Base pair probabilities of Dot plot
FractionVolumeProtein content (mg/mL)Total protein (mg*mL)Tyrosine (ug/Ml)Activity unitsTotal activity (units*mL)Specific activity(units/mg)Yield(%)Purification fold
Lysate1002.828080.633.63359.412.00100.001
50%22.34.6117.849.198.121.332.921.8
Dialysed21.73.4103.643.286.425.402.572.1
Tab.5  Determination of SP activity and yield of enzyme from isolate VITSD2
Fig.14  SDS PAGE
Fig.15  HPLC Chromatogram of the partially purified serratiopeptidase enzyme
Zone of inhibition (mm)
Organisms(Reference drug) Chloramphenicol 25μg/mLPartially purified enzyme(60%)
Escherichia coli MTCC No: 158818mm15mm
Pseudomonas aeruginosa MTCC No: 467612mm12mm
Tab.6  Antibacterial activity of partially purified enzyme
Fig.16  Zone of inhibition of serratiopeptidase against and (A) MTCC No: 1588 (15mm); (B) MTCC No: 4676 (12mm).
1 Aiyappa P S, Harris J O (1976). The extracellular metalloprotease of Serratia marcescens: I. Purification and characterization. Mol Cell Biochem , 13(2): 95–100
doi: 10.1007/BF01837059 pmid:12465
2 Altschul S F, Gish W, Miller W, Myers E W, Lipman D J (1990). Basic local alignment search tool. J Mol Biol , 215(3): 403–410
pmid:2231712
3 Chenna R, Sugawara H, Koike T, Lopez R, Gibson T J, Higgins D G, Thompson J D (2003). Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Res , 31(13): 3497–3500
doi: 10.1093/nar/gkg500 pmid:12824352
4 Decedue C J, Broussard E A N 2nd, Larson A D, Braymer H D (1979). Purification and characterization of the extracellular proteinase of Serratia marcescens. Biochim Biophys Acta , 569(2): 293–301
doi: 10.1016/0005-2744(79)90065-2 pmid:383155
5 Ding Y, Lawrence C E (2003). A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res , 31(24): 7280–7301
doi: 10.1093/nar/gkg938 pmid:14654704
6 Felsenstein J (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution , 39(4): 783–791
doi: 10.2307/2408678
7 Grimont P A D, Grimont F, Dulong de Rosnay H L C (1977). Characterization of Serratia marcescens, S. liquefaciens, S. plymuthica and S. marinoruba by electrophoresis of their proteinases. J Gen Microbiol , 99(2): 301–310
doi: 10.1099/00221287-99-2-301
8 Gruber A R, Lorenz R, Bernhart S H, Neub?ck R, Hofacker I L (2008). The Vienna RNA websuite. Nucleic Acids Res , 36 (Web Server issue): W70-74.
pmid:18424795
9 Mohankumar A, Raj R H K, (2011). Production and characterization of Serratiopeptidase enzyme from Serratia marcescens. Int J Biol, 3(3)
10 Holt J G (1994). Group 17 Gram-Positive Cocci: Bergey's Manual of Determinative Bacteriology, ed 9th. Baltimore: William & Wilkins: 529–541
11 Lowry O H, Rosebrough N J, Farr A L, Randall R J (1951). Protein measurement with the Folin phenol reagent. J Biol Chem , 193(1): 265–275
pmid:14907713
12 Machielsen R, Uria A R, Kengen S W M, van der Oost J (2006). Production and characterization of a thermostable alcohol dehydrogenase that belongs to the aldo-keto reductase superfamily. Appl Environ Microbiol , 72(1): 233–238
doi: 10.1128/AEM.72.1.233-238.2006 pmid:16391048
13 McCaskill J S (1990). The equilibrium partition function and base pair binding probabilities for RNA secondary structure. Biopolymers , 29(6-7): 1105–1119
doi: 10.1002/bip.360290621 pmid:1695107
14 Miguel F, Carrascosa José R (2013). Serratia marcescens rhabdomyolysis. Adv Inf Diseases , 3(02): 63–64
doi: 10.4236/aid.2013.32009
15 Miyata K, Maejima K, Tomoda K, Isono M (1970). Serratia protease.Part I.Purification and general properties of the enzyme. Agric Biol Chem , 34(2): 310–318
doi: 10.1271/bbb1961.34.310
16 Nakahama K, Yoshimura K, Marumoto R, Kikuchi M, Lee I S, Hase T, Matsubara H (1986). Cloning and sequencing of Serratia protease gene. Nucleic Acids Res , 14(14): 5843–5855
doi: 10.1093/nar/14.14.5843 pmid:3016665
17 Nirale N M, Menon M D (2010). Topical formulations of serratiopeptidase: development and pharmacodynamic evaluation. Indian J Pharm Sci , 72(1): 65–71
doi: 10.4103/0250-474X.62246 pmid:20582192
18 Saitou N, Nei M (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol , 4(4): 406–425
pmid:3447015
19 Subbaiya R, Ayyappadasan G, Mythili S V, Dhivya E, Ponmurugan P (2011). Pilot scale microbial production and optimization of Serratia peptidase from Serratia marcescens. J Ecobiotechnol , 3(12): 10–13
20 Trumbore MW, Rariy RV, Hirsh M, Hirsh J, Saunders JA(2005). Composition for topical enzymatic debridement. Collegium Pharmaceuticals, Inc, USPT application no . 20050281806–A1
21 Valeria M D, Borin M F, Fonseca M J (2003). Topical formulation with superoxide dismutase: Influence of formulation composition on physical stability and enzymatic activity. J Pharm Biomed Anal , 3(32): 97–105
22 Weissmann G (2006). Homeopathy: Holmes, Hogwarts, and the Prince of Wales. FASEB J , 20(11): 1755–1758
doi: 10.1096/fj.06-0901ufm pmid:16940145
23 Yourassowsky E, van der Linden M P, Lismont M J, Crokaert F (1989). Growth curve patterns of Escherichia coli, Serratia marcescens, and Proteus vulgaris submitted to different tigemonam concentrations. J Chemother , 1(Suppl 2): 49–53
pmid:2681561
24 Zuker M, Stiegler P (1981). Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res , 9(1): 133–148
doi: 10.1093/nar/9.1.133 pmid:6163133
[1] Aruna Muthukumar,Pallavi Pradeep,Isha Thigale,Mohanasrinivasan V.,Jemimah Naine S.,C. Subathra Devi. Exploring the bioactive potential of Serriatia marcescens VITAPI (Acc: 1933637) isolated from soil[J]. Front. Biol., 2016, 11(6): 476-480.
[2] PENG Rong, LIU Kaiyu, YAO Hanchao, YANG Hong, HONG Huazhu, YANG Zhong, CUI Yanfang. Induction, selection and antibacterial activity of the antibacterial peptides from lepidopteran insect cultured cell lines[J]. Front. Biol., 2008, 3(2): 203-206.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed