Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2017, Vol. 12 Issue (4) : 290-297    https://doi.org/10.1007/s11515-017-1457-z
RESEARCH ARTICLE
Thiamine deficiency perturbed energy metabolism enzymes in brain mitochondrial fraction of Swiss mice
Anupama Sharma1(), Renu Bist1, Surender Singh2
1. Department of Bioscience and Biotechnology, Banasthali University, Banasthali, Rajasthan, India
2. Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
 Download: PDF(676 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

BACKGROUND: Thiamine is an essential cofactor associated with several enzymes in energy metabolism and its deficiency may lead to neurological deficits. Current research evaluated the biochemical and molecular changes in TCA cycle enzymes using the mitochondrial fraction of the brain following thiamine deficiency (TD) in mice.

METHODS: The investigation was carried out on Swiss mice (6-8 week old) allocated into three groups. First group was control; second and third group were made thiamine deficient for 8 and 10 days.

RESULTS: Current study showed that alpha-ketoglutarate dehydrogenase (KGDHC) (thiamine-dependent enzyme) level found to be significantly reduced in experimental groups as compared to control group. In comparison to control group, a significant decrease in the succinate dehydrogenase (SDH) activity was calculated in group II and group III (p<0.0001) mice. Diminished enzymatic activity of fumarase and MDH enzyme in thiamine deficient groups exposed for 8 and 10 days was calculated as compared to control group. The expression analysis of different genes governing TCA cycle enzymes in different experimental groups showed that there was a negotiable change in the expression of fumarase and DLD (dihydrolipoyl dehydrogenase- E3 subunit of KGDHC) whereas a declined in the expression of SDH and two subunits of KGDHC i.e. OGDH (2-oxoglutarate dehydrogenase- E1 subunit of KGDHC) and DLST (dihydrolipoyllysine-residue succinyltransferase- E2 subunit of KGDHC) was observed as compared to control group.

CONCLUSIONS: Hence, current findings strongly entail that TD promotes alteration in energy metabolism in brain mitochondria which will decline the neuronal progression which may lead to neurodegenerative diseases such as Alzheimer’s diseases.

Keywords thiamine      brain      TCA cycle enzymes      m itochondrial dysfunction     
Corresponding Author(s): Anupama Sharma   
Online First Date: 22 August 2017    Issue Date: 13 September 2017
 Cite this article:   
Anupama Sharma,Renu Bist,Surender Singh. Thiamine deficiency perturbed energy metabolism enzymes in brain mitochondrial fraction of Swiss mice[J]. Front. Biol., 2017, 12(4): 290-297.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-017-1457-z
https://academic.hep.com.cn/fib/EN/Y2017/V12/I4/290
Enzyme Subunit of enzymes Forward primer Reverse primer Annealing temperature (°C) Amplicon size
KGDHC OGDH 5′TGCTAAGCCATCTTGCCAGAC 3′ 5′CAACCTAACGTCGACAAACTCG 3′ 51 ~6400bps
DLST 5′AATGGTGTAGATGTAGTAGCAG 3′ 5′CAGCGTTTGCAGAGTCTG 3′ 52 ~2400bps
DLD 5′GCTGACGTGACAGTGATAG 3′ 5′TTTGGTGTCTTCATTCCC 3′ 53 ~2000bps
SDH 5′GAGAACAAGAAGGCATCAGCT 3′ 5′TCAAGGAAGTCAGGGCATGA 3′ 51 ~5400bps
Fumarase 5′ATCTGACGTATTAGGGGGC 3′ 5′AACTGCTCTGCTGTGAGATAG 3′ 53 ~1500bps
MDH 5′GTCGTTGGAGTCACTCGTCTT 3′ 5′TTGGAAGAGATGCTGATGCT 3′ 54 ~5000bps
Tab.1  Primer sequences of different TCA cycle enzymes
Fig.1  KGDHC activity in brain mitochondria of different experimental groups. Results were expressed as mean±SE. a-compared to group I; b-compared to group II; c-compared to group III. *p<0.05, ***p<0.001, ****p<0.0001.
Fig.2  SDH activity in brain mitochondria of different experimental groups. Results were expressed as mean±SE. a-compared to group I; b-compared to group II; c-compared to group III. ***p<0.001, ****p<0.0001.
Fig.3  Fumarase activity in brain mitochondria of different experimental groups. Results were expressed as mean±SE. a-compared to group I; b-compared to group II; c-compared to group III. *p<0.05, ****p<0.0001.
Fig.4  MDH activity in brain mitochondria of different experimental groups. Results were expressed as mean±SE. a-compared to group I; b-compared to group II; c-compared to group III. ****p<0.0001.
Fig.5  RNA of different experimental groups. A- Group I; B- Group II; C-Group III.
Fig.6  (A) Group I- Gene expression of different enzymes in control group. Lane A- MDH, B- Fumarase, C- SDH, D- OGDH, E- DLST, F- DLD and M- marker. (B) Group II- Gene expression of different enzymes in thiamine deficient group for 08 days. Lane A- MDH, B- Fumarase, C- SDH, D- OGDH, E- DLST, F- DLD and M- marker. (C) Group III- Gene expression of different enzymes in thiamine deficient group for 10 days. Lane A- MDH, B- Fumarase, C- SDH, D- OGDH, E- DLST, F- DLD and M- marker.
1 Bist R, Misra  S, Bhatt D K  (2010). Inhibition of lindane-induced toxicity using alpha-lipoic acid and vitamin E in the brain of Mus musculus. Protoplasma, 242(1-4): 49–53
https://doi.org/10.1007/s00709-010-0121-0 pmid: 20490610
2 Bogdan A S (1983). Effect of small amounts of 2,4-dichlorophenoxyacetic acid derivatives on thiamine and riboflavin metabolism in the animal body. Vopr Pitan, (2): 59–62 
pmid: 6858074
3 Bubber P, Ke  Z J, Gibson  G E (2004). Tricarboxylic acid cycle enzymes following thiamine deficiency. Neurochem Int, 45(7): 1021–1028
https://doi.org/10.1016/j.neuint.2004.05.007 pmid: 15337301
4 Capettini L S ,  Cortes S F ,  Gomes M A ,  Silva G A ,  Pesquero J L ,  Lopes M J ,  Teixeira M M ,  Lemos V S  (2008). Neuronal nitric oxide synthase-derived hydrogen peroxide is a major endothelium-dependent relaxing factor. Am J Physiol Heart Circ Physiol, 295(6): H2503–H2511
https://doi.org/10.1152/ajpheart.00731.2008 pmid: 18952716
5 Dror V, Eliash  S, Rehavi M ,  Assaf Y ,  Biton I E ,  Fattal-Valevski A  (2010). Neurodegeneration in thiamine deficient rats-A longitudinal MRI study. Brain Res, 1308: 176–184
https://doi.org/10.1016/j.brainres.2009.10.032 pmid: 19857469
6 Eliash S, Dror  V, Cohen S ,  Rehavi M  (2009). Neuroprotection by rasagiline in thiamine deficient rats. Brain Res, 1256: 138–148
https://doi.org/10.1016/j.brainres.2008.11.097 pmid: 19103184
7 Gibson G E, Blass  J P (2007). Thiamine-dependent processes and treatment strategies in neurodegeneration. Antioxid Redox Signal, 9(10): 1605–1619
https://doi.org/10.1089/ars.2007.1766 pmid: 17685850
8 Gibson G E, Hirsch  J A, Cirio  R T, Jordan  B D, Fonzetti  P, Elder J  (2013). Abnormal thiamine-dependent processes in Alzheimer’s Disease. Lessons from diabetes. Mol Cell Neurosci, 55: 17–25
https://doi.org/10.1016/j.mcn.2012.09.001 pmid: 22982063
9 Gibson G E, Ksiezak-Reding  H, Sheu K F ,  Mykytyn V ,  Blass J P  (1984). Correlation of enzymatic, metabolic, and behavioral deficits in thiamin deficiency and its reversal. Neurochem Res, 9(6): 803–814
https://doi.org/10.1007/BF00965667 pmid: 6149477
10 Gibson G E, Park  L C, Sheu  K F, Blass  J P, Calingasan  N Y (2000). The alpha-ketoglutarate dehydrogenase complex in neurodegeneration. Neurochem Int, 36(2): 97–112
https://doi.org/10.1016/S0197-0186(99)00114-X pmid: 10676873
11 Gibson G E, Sheu  K F, Blass  J P, Baker  A, Carlson K C ,  Harding B ,  Perrino P  (1988). Reduced activities of thiamine-dependent enzymes in the brains and peripheral tissues of patients with Alzheimer’s disease. Arch Neurol, 45(8): 836–840
https://doi.org/10.1001/archneur.1988.00520320022009 pmid: 3395256
12 Gibson G E, Starkov  A, Blass J P ,  Ratan R R ,  Beal M F  (2010). Cause and consequence: mitochondrial dysfunction initiates and propagates neuronal dysfunction, neuronal death and behavioral abnormalities in age-associated neurodegenerative diseases. Biochim Biophys Acta, 1802(1): 122–134
https://doi.org/10.1016/j.bbadis.2009.08.010 pmid: 19715758
13 Hill R L, Bradshaw  R A (1969) Fumarase. In: Lowenstein, J.M. (Ed.). Methods Enzymol, 13: 91–92
14 Ke Z J, DeGiorgio  L A, Volpe  B T, Gibson  G E (2003). Reversal of thiamine deficiency-induced neurodegeneration. J Neuropathol Exp Neurol, 62(2): 195–207
https://doi.org/10.1093/jnen/62.2.195 pmid: 12578229
15 Kitto G B (1969) Intra and extra mitochondrial malate dehydrogenases from chicken heart. Methods Enzymol, 13: 106–116
16 Kruse M, Navarro  D, Desjardins P ,  Butterworth R F  (2004). Increased brain endothelial nitric oxide synthase expression in thiamine deficiency: relationship to selective vulnerability. Neurochem Int, 45(1): 49–56
https://doi.org/10.1016/j.neuint.2003.12.007 pmid: 15082221
17 Liu D, Ke  Z, Luo J  (2016) Thiamine deficiency and neurodegeneration: The Interplay among oxidative stress, endoplasmic reticulum stress, autophagy. J Mol Neurobiol, 
https://doi.org/10.1007/s12035-016-0079-9
18 Lyubarev A E, Kurganov  B I (1989). Supramolecular organization of tricarboxylic acid cycle enzymes. Biosystems, 22(2): 91–102
https://doi.org/10.1016/0303-2647(89)90038-5 pmid: 2720141
19 Mailloux RJ, Beriault  R, Lemire J ,  Singh R ,  Chenier D R  (2007). The tricarboxylic acid cycle, an ancient metabolic network with a novel twist. PLoS One, 8 Suppl e690: 1–10
20 Mergenthaler P, Lindauer  U, Dienel G A ,  Meisel A  (2013). Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends Neurosci, 36(10): 587–597
https://doi.org/10.1016/j.tins.2013.07.001 pmid: 23968694
21 Nakano K, Matuda  S, Yamanaka T ,  Tsubouchi H ,  Nakagawa S ,  Titani K ,  Ohta S, Miyata  T (1991). Purification and molecular cloning of succinyltransferase of the rat alpha-ketoglutarate dehydrogenase complex. Absence of a sequence motif of the putative E3 and/or E1 binding site. J Biol Chem, 266(28): 19013–19017
pmid: 1918017
22 Nose Y, Takahashi  K, Nakamura A  (1976). Thiamine diphosphate-dependent enzyme status due to thiamine deficiency in rat liver. J Nutr Sci Vitaminol (Tokyo), 22(SUPPL): 51–55
https://doi.org/10.3177/jnsv.22.Supplement_51 pmid: 185344
23 Park L C H ,  Zhang H ,  Sheu K F R ,  Calingasan N Y ,  Kristal B S ,  Lindsay J G ,  Gibson G E  (1999). Metabolic impairment induces oxidative stress, compromises inflammatory responses, and inactivates a key mitochondrial enzyme in microglia. J Neurochem, 72(5): 1948–1958
https://doi.org/10.1046/j.1471-4159.1999.0721948.x pmid: 10217272
24 Rutter J, Winge  D R, Schiffman  J D (2010). Succinate dehydrogenase- Assembly, regulation and role in human disease. Mitochondrion, 10(4): 393–401
https://doi.org/10.1016/j.mito.2010.03.001 pmid: 20226277
25 Shaikh A S, Tamloorkar  H L, Yasmeen  R (2012). Malate dehydrogenase activity post exposure recovery from lead intoxicated fresh water fish Anabas testudineus. Int J Biomed Advan Res, 3(Suppl 2): 118–121
26 Sharma A, Bist  R (2014). Thiamine deprivation disturbs cholinergic system and oxidative stress in liver of Mus musculus. Int J Pharm Pharma Sci Sci, 6: 139–143
27 Sharma A, Bist  R, Bubber P  (2013). Thiamine deficiency induces oxidative stress in brain mitochondria of Mus musculus. J Physiol Biochem, 69(3): 539–546
https://doi.org/10.1007/s13105-013-0242-y pmid: 23417786
28 Sheu K F, Calingasan  N Y, Lindsay  J G, Gibson  G E (1998). Immunochemical characterization of the deficiency of the alpha-ketoglutarate dehydrogenase complex in thiamine-deficient rat brain. J Neurochem, 70(3): 1143–1150
https://doi.org/10.1046/j.1471-4159.1998.70031143.x pmid: 9489735
29 Shi Q, Chen  H L, Xu  H, Gibson G E  (2005). Reduction in the E2k subunit of the alpha-ketoglutarate dehydrogenase complex has effects independent of complex activity. J Biol Chem, 280(12): 10888–10896
https://doi.org/10.1074/jbc.M409064200 pmid: 15649899
33 Singer TP, Kearney  E B, Kenney W C  (1973). Succinate dehydrogenase. Adv Enzymol·Relat Areas Mol Biol, 37: 189–272.
30 Sorbi S, Bird  E D, Blass  J P (1983). Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol, 13(1): 72–78
https://doi.org/10.1002/ana.410130116 pmid: 6219611
31 Tretter L, Adam-Vizi  V (2000). Inhibition of Krebs cycle enzymes by hydrogen peroxide: A key role of [alpha]-ketoglutarate dehydrogenase in limiting NADH production under oxidative stress. J Neurosci, 20(24): 8972–8979
pmid: 11124972
32 Troncoso J C, Johnston  M V, Hess  K M, Griffin  J W, Price  D L (1981). Model of Wernicke’s encephalopathy. Arch Neurol, 38(6): 350–354
https://doi.org/10.1001/archneur.1981.00510060052007 pmid: 7236062
34 Vélot C, Mixon  M B, Teige  M, Srere P A  (1997). Model of a quinary structure between Krebs TCA cycle enzymes: a model for the metabolon. Biochemistry, 36(47): 14271–14276
https://doi.org/10.1021/bi972011j pmid: 9400365
35 Vermulst M, Bielas  J H, Loeb  L A (2008). Quantification of random mutations in the mitochondrial genome. Methods, 46(4): 263–268
https://doi.org/10.1016/j.ymeth.2008.10.008 pmid: 18948200
36 Zastre J A, Sweet  R L, Hanberry B S ,  Ye S (2013). Linking vitamin B1 with cancer cell metabolism. Cancer Metabl, 1–16
[1] Karen Arnaud,Ariel A. Di Nardo. Choroid plexus trophic factors in the developing and adult brain[J]. Front. Biol., 2016, 11(3): 214-221.
[2] Lingbin MENG,Xiaolei CHEN,Rongqiang YANG,Rui JI. Role of BDNF in the taste system[J]. Front. Biol., 2014, 9(6): 481-488.
[3] Vladimir ZAKHAROV,Ekaterina DROZDOVA,Nikolay YAKHNO. Cognitive disorder in brain concussion[J]. Front. Biol., 2014, 9(4): 332-337.
[4] Chandler L. WALKER, Nai-Kui LIU, Xiao-Ming XU. PTEN/PI3K and MAPK signaling in protection and pathology following CNS injuries[J]. Front Biol, 2013, 8(4): 421-433.
[5] Yiming SUN, Zhiheng XU. Regulation of neural stem cell by bone morphogenetic protein (BMP) signaling during brain development[J]. Front Biol, 2010, 5(5): 380-385.
[6] Qiumin LE, Zhaoyang HU, Lan MA. MicroRNAs in the neural system[J]. Front Biol, 2010, 5(3): 219-226.
[7] ZHAO Xiaofeng, WANG Shu, SHI Xuemin, WEN Jingrong. Proteomics analysis of cerebral cortex in Wistar rats[J]. Front. Biol., 2008, 3(4): 419-427.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed