|
|
Functional states of resident vascular stem cells and vascular remodeling |
Desiree F. Leach1,Mitzi Nagarkatti2,Prakash Nagarkatti2,Taixing Cui1,*( ) |
1. Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29209, USA 2. Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA |
|
|
Abstract Recent evidence indicates that different types of vascular stem cells (VSCs) reside within the mural layers of arteries and veins. The precise identities of these resident VSCs are still unclear; generally, postnatal vasculature contains multilineage stem cells and vascular cell lineage-specific progenitor/stem cells which may participate in both vascular repair and lesion formation. However, the underlying mechanism remains poorly understood. In this review, we summarize the potential molecular mechanisms, which may control the quiescence and activation of resident VSCs and highlight a notion that the differential states of resident VSCs are directly linked to vascular repair or lesion formation.
|
Keywords
vascular stem cell
quiescence
activation
remodeling
|
Corresponding Author(s):
Taixing Cui
|
Just Accepted Date: 22 October 2015
Online First Date: 23 October 2015
Issue Date: 30 October 2015
|
|
1 |
Adler A S, McCleland M L, Truong T, Lau S, Modrusan Z, Soukup T M, Roose-Girma M, Blackwood E M, Firestein R (2012). CDK8 maintains tumor dedifferentiation and embryonic stem cell pluripotency. Cancer Res, 72(8): 2129–2139
https://doi.org/10.1158/0008-5472.CAN-11-3886
pmid: 22345154
|
2 |
Alessandri G, Girelli M, Taccagni G, Colombo A, Nicosia R, Caruso A, Baronio M, Pagano S, Cova L, Parati E (2001). Human vasculogenesis ex vivo: embryonal aorta as a tool for isolation of endothelial cell progenitors. Lab Invest, 81(6): 875–885
https://doi.org/10.1038/labinvest.3780296
pmid: 11406648
|
3 |
Arai F, Hirao A, Ohmura M, Sato H, Matsuoka S, Takubo K, Ito K, Koh G Y, Suda T (2004). Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell, 118(2): 149–161
https://doi.org/10.1016/j.cell.2004.07.004
pmid: 15260986
|
4 |
Bautch V L (2011). Stem cells and the vasculature. Nat Med, 17(11): 1437–1443
https://doi.org/10.1038/nm.2539
pmid: 22064433
|
5 |
Bearzi C, Leri A, Lo Monaco F, Rota M, Gonzalez A, Hosoda T, Pepe M, Qanud K, Ojaimi C, Bardelli S, D’Amario D, D’Alessandro D A, Michler R E, Dimmeler S, Zeiher A M, Urbanek K, Hintze T H, Kajstura J, Anversa P (2009). Identification of a coronary vascular progenitor cell in the human heart. Proc Natl Acad Sci USA, 106(37): 15885–15890
https://doi.org/10.1073/pnas.0907622106
pmid: 19717420
|
6 |
Blank U, Karlsson G, Karlsson S (2008). Signaling pathways governing stem-cell fate. Blood, 111(2): 492–503
https://doi.org/10.1182/blood-2007-07-075168
pmid: 17914027
|
7 |
Campagnolo P, Cesselli D, Al Haj Zen A, Beltrami A P, Kränkel N, Katare R, Angelini G, Emanueli C, Madeddu P (2010). Human adult vena saphena contains perivascular progenitor cells endowed with clonogenic and proangiogenic potential. Circulation, 121(15): 1735–1745
https://doi.org/10.1161/CIRCULATIONAHA.109.899252
pmid: 20368523
|
8 |
Chen Y, Wong M M, Campagnolo P, Simpson R, Winkler B, Margariti A, Hu Y, Xu Q (2013). Adventitial stem cells in vein grafts display multilineage potential that contributes to neointimal formation. Arterioscler Thromb Vasc Biol, 33(8): 1844–1851
https://doi.org/10.1161/ATVBAHA.113.300902
pmid: 23744989
|
9 |
Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, Scadden D T (2000). Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science, 287(5459): 1804–1808
https://doi.org/10.1126/science.287.5459.1804
pmid: 10710306
|
10 |
Covas D T, Piccinato C E, Orellana M D, Siufi J L, Silva W A Jr, Proto-Siqueira R, Rizzatti E G, Neder L, Silva A R, Rocha V, Zago M A (2005). Mesenchymal stem cells can be obtained from the human saphena vein. Exp Cell Res, 309(2): 340–344
https://doi.org/10.1016/j.yexcr.2005.06.005
pmid: 16018999
|
11 |
Fang S, Wei J, Pentinmikko N, Leinonen H, Salven P (2012). Generation of functional blood vessels from a single c-kit+ adult vascular endothelial stem cell. PLoS Biol, 10(10): e1001407
https://doi.org/10.1371/journal.pbio.1001407
pmid: 23091420
|
12 |
Florian M C, Geiger H (2010). Concise review: polarity in stem cells, disease, and aging. Stem Cells, 28(9): 1623–1629
https://doi.org/10.1002/stem.481
|
13 |
Fukada S, Uezumi A, Ikemoto M, Masuda S, Segawa M, Tanimura N, Yamamoto H, Miyagoe-Suzuki Y, Takeda S (2007). Molecular signature of quiescent satellite cells in adult skeletal muscle. Stem Cells, 25(10): 2448–2459
https://doi.org/10.1634/stemcells.2007-0019
pmid: 17600112
|
14 |
Guevara N V, Kim H S, Antonova E I, Chan L (1999). The absence of p53 accelerates atherosclerosis by increasing cell proliferation in vivo. Nat Med, 5(3): 335–339
https://doi.org/10.1038/6585
pmid: 10086392
|
15 |
Hoshino A, Chiba H, Nagai K, Ishii G, Ochiai A (2008). Human vascular adventitial fibroblasts contain mesenchymal stem/progenitor cells. Biochem Biophys Res Commun, 368(2): 305–310
https://doi.org/10.1016/j.bbrc.2008.01.090
pmid: 18230345
|
16 |
Howson K M, Aplin A C, Gelati M, Alessandri G, Parati E A, Nicosia R F (2005). The postnatal rat aorta contains pericyte progenitor cells that form spheroidal colonies in suspension culture. Am J Physiol Cell Physiol, 289(6): C1396–C1407
https://doi.org/10.1152/ajpcell.00168.2005
pmid: 16079185
|
17 |
Hu Y, Zhang Z, Torsney E, Afzal A R, Davison F, Metzler B, Xu Q (2004). Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest, 113(9): 1258–1265
https://doi.org/10.1172/JCI19628
pmid: 15124016
|
18 |
Hüttmann A, Liu S L, Boyd A W, Li C L (2001). Functional heterogeneity within rhodamine123(lo) Hoechst33342(lo/sp) primitive hemopoietic stem cells revealed by pyronin Y. Exp Hematol, 29(9): 1109–1116
https://doi.org/10.1016/S0301-472X(01)00684-1
pmid: 11532352
|
19 |
Ingram D A, Mead L E, Moore D B, Woodard W, Fenoglio A, Yoder M C (2005). Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood, 105(7): 2783–2786
https://doi.org/10.1182/blood-2004-08-3057
pmid: 15585655
|
20 |
Invernici G, Emanueli C, Madeddu P, Cristini S, Gadau S, Benetti A, Ciusani E, Stassi G, Siragusa M, Nicosia R, Peschle C, Fascio U, Colombo A, Rizzuti T, Parati E, Alessandri G (2007). Human fetal aorta contains vascular progenitor cells capable of inducing vasculogenesis, angiogenesis, and myogenesis in vitro and in a murine model of peripheral ischemia. Am J Pathol, 170(6): 1879–1892
https://doi.org/10.2353/ajpath.2007.060646
pmid: 17525256
|
21 |
Kawabe J, Hasebe N (2014). Role of the vasa vasorum and vascular resident stem cells in atherosclerosis. BioMed Res Int, 2014: 701571
https://doi.org/10.1155/2014/701571
pmid: 24724094
|
22 |
Kippin T E, Martens D J, van der Kooy D (2005). p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev, 19(6): 756–767
https://doi.org/10.1101/gad.1272305
pmid: 15769947
|
23 |
Klein D, Weisshardt P, Kleff V, Jastrow H, Jakob H G, Ergün S (2011). Vascular wall-resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS ONE, 6(5): e20540
https://doi.org/10.1371/journal.pone.0020540
pmid: 21637782
|
24 |
Li L, Bhatia R (2011). Stem cell quiescence. Clin Cancer Res, 17(15): 4936–4941
https://doi.org/10.1158/1078-0432.CCR-10-1499
pmid: 21593194
|
25 |
Liu C, Wang S, Metharom P, Caplice N M (2009). Myeloid lineage of human endothelial outgrowth cells circulating in blood and vasculogenic endothelial-like cells in the diseased vessel wall. J Vasc Res, 46(6): 581–591
https://doi.org/10.1159/000226226
pmid: 19571578
|
26 |
Liu Y, Elf S E, Miyata Y, Sashida G, Liu Y, Huang G, Di Giandomenico S, Lee J M, Deblasio A, Menendez S, Antipin J, Reva B, Koff A, Nimer S D (2009). p53 regulates hematopoietic stem cell quiescence. Cell Stem Cell, 4(1): 37–48
https://doi.org/10.1016/j.stem.2008.11.006
pmid: 19128791
|
27 |
Majesky M W, Dong X R, Hoglund V, Mahoney W M Jr, Daum G (2011). The adventitia: a dynamic interface containing resident progenitor cells. Arterioscler Thromb Vasc Biol, 31(7): 1530–1539
https://doi.org/10.1161/ATVBAHA.110.221549
pmid: 21677296
|
28 |
Naito H, Kidoya H, Sakimoto S, Wakabayashi T, Takakura N (2012). Identification and characterization of a resident vascular stem/progenitor cell population in preexisting blood vessels. EMBO J, 31(4): 842–855
https://doi.org/10.1038/emboj.2011.465
pmid: 22179698
|
29 |
Orlandi A, Bennett M (2010). Progenitor cell-derived smooth muscle cells in vascular disease. Biochem Pharmacol, 79(12): 1706–1713
https://doi.org/10.1016/j.bcp.2010.01.027
pmid: 20117099
|
30 |
Owens G K, Kumar M S, Wamhoff B R (2004). Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev, 84(3): 767–801
https://doi.org/10.1152/physrev.00041.2003
pmid: 15269336
|
31 |
Pasquinelli G, Pacilli A, Alviano F, Foroni L, Ricci F, Valente S, Orrico C, Lanzoni G, Buzzi M, Luigi Tazzari P, Pagliaro P, Stella A, Paolo Bagnara G (2010). Multidistrict human mesenchymal vascular cells: pluripotency and stemness characteristics. Cytotherapy, 12(3): 275–287
https://doi.org/10.3109/14653241003596679
pmid: 20230218
|
32 |
Pasquinelli G, Tazzari P L, Vaselli C, Foroni L, Buzzi M, Storci G, Alviano F, Ricci F, Bonafè M, Orrico C, Bagnara G P, Stella A, Conte R (2007). Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cells, 25(7): 1627–1634
https://doi.org/10.1634/stemcells.2006-0731
pmid: 17446560
|
33 |
Passman J N, Dong X R, Wu S P, Maguire C T, Hogan K A, Bautch V L, Majesky M W (2008). A sonic hedgehog signaling domain in the arterial adventitia supports resident Sca1+ smooth muscle progenitor cells. Proc Natl Acad Sci USA, 105(27): 9349–9354
https://doi.org/10.1073/pnas.0711382105
pmid: 18591670
|
34 |
Porter D C, Farmaki E, Altilia S, Schools G P, West D K, Chen M, Chang B D, Puzyrev A T, Lim C, Rokow-Kittell R, Friedhoff L T, Papavassiliou A G, Kalurupalle S, Hurteau G, Shi J, Baran P S, Gyorffy B, Wentland M P, Broude E V, Kiaris H, RRoninson I B (2012). Cyclin-dependent kinase 8 mediates chemotherapy-induced tumor-promoting paracrine activities. Proc Natl Acad Sci USA, 109(34): 13799–13804
|
35 |
Psaltis P J, Harbuzariu A, Delacroix S, Holroyd E W, Simari R D (2011). Resident vascular progenitor cells—diverse origins, phenotype, and function. J Cardiovasc Transl Res, 4(2): 161–176
https://doi.org/10.1007/s12265-010-9248-9
pmid: 21116882
|
36 |
Psaltis P J, Simari R D (2015). Vascular wall progenitor cells in health and disease. Circ Res, 116(8): 1392–1412
https://doi.org/10.1161/CIRCRESAHA.116.305368
pmid: 25858065
|
37 |
Ross J J, Hong Z, Willenbring B, Zeng L, Isenberg B, Lee E H, Reyes M, Keirstead S A, Weir E K, Tranquillo R T, Verfaillie C M (2006). Cytokine-induced differentiation of multipotent adult progenitor cells into functional smooth muscle cells. J Clin Invest, 116(12): 3139–3149
https://doi.org/10.1172/JCI28184
pmid: 17099777
|
38 |
Sainz J, Al Haj Zen A, Caligiuri G, Demerens C, Urbain D, Lemitre M, Lafont A (2006). Isolation of “side population” progenitor cells from healthy arteries of adult mice. Arterioscler Thromb Vasc Biol, 26(2): 281–286
https://doi.org/10.1161/01.ATV.0000197793.83391.91
pmid: 16306431
|
39 |
Song H, Wang H, Wu W, Qi L, Shao L, Wang F, Lai Y, Leach D, Mathis B, Janicki J S, Wang X L, Tang D, Cui T (2015). Inhibitory role of reactive oxygen species in the differentiation of multipotent vascular stem cells into vascular smooth muscle cells in rats: a novel aspect of traditional culture of rat aortic smooth muscle cells. Cell Tissue Res, 362(1): 97–113
https://doi.org/10.1007/s00441-015-2193-9
pmid: 26022334
|
40 |
Tang Z, Wang A, Yuan F, Yan Z, Liu B, Chu J S, Helms J A, Li S (2012). Differentiation of multipotent vascular stem cells contributes to vascular diseases. Nat Commun, 3: 875
https://doi.org/10.1038/ncomms1867
pmid: 22673902
|
41 |
Tesio M, Tang Y, Müdder K, Saini M, von Paleske L, Macintyre E, Pasparakis M, Waisman A, Trumpp A (2015). Hematopoietic stem cell quiescence and function are controlled by the CYLD-TRAF2-p38MAPK pathway. J Exp Med, 212(4): 525–538
https://doi.org/10.1084/jem.20141438
pmid: 25824820
|
42 |
Tom H, Cheung T A R (2012). Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol, 29(6): 997–1003
|
43 |
Torsney E, Mandal K, Halliday A, Jahangiri M, Xu Q (2007). Characterisation of progenitor cells in human atherosclerotic vessels. Atherosclerosis, 191(2): 259–264
https://doi.org/10.1016/j.atherosclerosis.2006.05.033
pmid: 16787646
|
44 |
Torsney E, Xu Q (2011). Resident vascular progenitor cells. J Mol Cell Cardiol, 50(2): 304–311
https://doi.org/10.1016/j.yjmcc.2010.09.006
pmid: 20850452
|
45 |
Tsai T N, Kirton J P, Campagnolo P, Zhang L, Xiao Q, Zhang Z, Wang W, Hu Y, Xu Q (2012). Contribution of stem cells to neointimal formation of decellularized vessel grafts in a novel mouse model. Am J Pathol, 181(1): 362–373
https://doi.org/10.1016/j.ajpath.2012.03.021
pmid: 22613026
|
46 |
Tsaousi A, Williams H, Lyon C A, Taylor V, Swain A, Johnson J L, George S J (2011). Wnt4/β-catenin signaling induces VSMC proliferation and is associated with intimal thickening. Circ Res, 108(4): 427–436
https://doi.org/10.1161/CIRCRESAHA.110.233999
pmid: 21193738
|
47 |
van Os R, de Haan G, Dykstra B J (2009). Hematopoietic stem cell quiescence: yet another role for p53. Cell Stem Cell, 4(1): 7–8
https://doi.org/10.1016/j.stem.2008.12.007
pmid: 19128788
|
48 |
Wabik A, Jones P H (2015). Switching roles: the functional plasticity of adult tissue stem cells. EMBO J, 34(9): 1164–1179
|
49 |
Wang Y Z, Plane J M, Jiang P, Zhou C J, Deng W (2011). Concise review: Quiescent and active states of endogenous adult neural stem cells: identification and characterization. Stem Cells, 29(6): 907–912
https://doi.org/10.1002/stem.644
pmid: 21557389
|
50 |
Wong M M, Winkler B, Karamariti E, Wang X, Yu B, Simpson R, Chen T, Margariti A, Xu Q (2013). Sirolimus stimulates vascular stem/progenitor cell migration and differentiation into smooth muscle cells via epidermal growth factor receptor/extracellular signal-regulated kinase/β-catenin signaling pathway. Arterioscler Thromb Vasc Biol, 33(10): 2397–2406
https://doi.org/10.1161/ATVBAHA.113.301595
pmid: 23928863
|
51 |
Yoshihara H, Arai F, Hosokawa K, Hagiwara T, Takubo K, Nakamura Y, Gomei Y, Iwasaki H, Matsuoka S, Miyamoto K, Miyazaki H, Takahashi T, Suda T (2007). Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell, 1(6): 685–697
https://doi.org/10.1016/j.stem.2007.10.020
pmid: 18371409
|
52 |
Zengin E, Chalajour F, Gehling U M, Ito W D, Treede H, Lauke H, Weil J, Reichenspurner H, Kilic N, Ergün S (2006). Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development, 133(8): 1543–1551
https://doi.org/10.1242/dev.02315
pmid: 16524930
|
53 |
Zhang J, Niu C, Ye L, Huang H, He X, Tong W G, Ross J, Haug J, Johnson T, Feng J Q, Harris S, Wiedemann L M, Mishina Y, Li L (2003). Identification of the haematopoietic stem cell niche and control of the niche size. Nature, 425(6960): 836–841
https://doi.org/10.1038/nature02041
pmid: 14574412
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|