Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2011, Vol. 6 Issue (2) : 102-108    https://doi.org/10.1007/s11515-011-1118-6
REVIEW
Maize centromeres: where sequence meets epigenetics
Wenchao YIN1,3, James A. BIRCHLER2(), Fangpu HAN1()
1. State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; 2. Division of Biological Sciences, University of Missouri-Columbia, Columbia, MO 65211, USA; 3. Graduate Universtiy of the Chinese Academy of Sciences, Beijing 100039, China
 Download: PDF(222 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The centromere is a highly organized structure mainly composed of repeat sequences, which make this region extremely difficult for sequencing and other analyses. It plays a conserved role in equal division of chromosomes into daughter cells in both mitosis and meiosis. However, centromere sequences show notable plasticity. In a dicentric chromosome, one of the centromeres can become inactivated with the underlying DNA unchanged. Furthermore, formerly inactive centromeres can regain activity under certain conditions. In addition, neocentromeres without centromeric repeats have been found in a wide spectrum of species. This evidence indicates that epigenetic mechanisms together with centromeric sequences are associated with centromere specification.

Keywords centromere      centromere inactivation      centromere reactivation      nondisjunction      maize     
Corresponding Author(s): BIRCHLER James A.,Email:BirchlerJ@Missouri.edu; HAN Fangpu,Email:fphan@genetics.ac.cn   
Issue Date: 01 April 2011
 Cite this article:   
Wenchao YIN,James A. BIRCHLER,Fangpu HAN. Maize centromeres: where sequence meets epigenetics[J]. Front Biol, 2011, 6(2): 102-108.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-011-1118-6
https://academic.hep.com.cn/fib/EN/Y2011/V6/I2/102
Fig.1  Newly formed dicentric chromosome from B-9-Dp9 with the two centromeres as large as normal B centromere. Arrow indicates the new dicentric chromosome. (A) Merged image. (B) DAPI. (C) CentC and (D) CRM. Scale bar=10 μm
Fig.1  Newly formed dicentric chromosome from B-9-Dp9 with the two centromeres as large as normal B centromere. Arrow indicates the new dicentric chromosome. (A) Merged image. (B) DAPI. (C) CentC and (D) CRM. Scale bar=10 μm
Fig.2  Reactivation of an inactive centromere. Immunolocalization analysis of CENP-C in meiosis in plants containing a dicentric chromosome with one centromere inactive. CENP-C signals are red; ZmBs is green; and DAPI-stained chromosomes are blue. Arrows indicate that the smaller centromere has gained CENP-C signals. (A) Merged image. (B) DAPI. (C) ZmBs. (D) CENP-C. Scale bar=10 μm
Fig.2  Reactivation of an inactive centromere. Immunolocalization analysis of CENP-C in meiosis in plants containing a dicentric chromosome with one centromere inactive. CENP-C signals are red; ZmBs is green; and DAPI-stained chromosomes are blue. Arrows indicate that the smaller centromere has gained CENP-C signals. (A) Merged image. (B) DAPI. (C) ZmBs. (D) CENP-C. Scale bar=10 μm
Fig.3  7-Bic-1 at mitotic metaphase and meiosis pachytene. The inactive B centromere from 9Bic-1 was translocated to chromosome arm 7S and named 7-Bic-1. (A) Mitotic metaphase. Knob is green and red is B repeats; arrows indicate the new translocation chromosomes containing an inactive B centromere. (B) Meiotic pachytene, CentC is green and red is B repeats, arrow indicates the inactive B centromere. Scale bar=10 μm
Fig.3  7-Bic-1 at mitotic metaphase and meiosis pachytene. The inactive B centromere from 9Bic-1 was translocated to chromosome arm 7S and named 7-Bic-1. (A) Mitotic metaphase. Knob is green and red is B repeats; arrows indicate the new translocation chromosomes containing an inactive B centromere. (B) Meiotic pachytene, CentC is green and red is B repeats, arrow indicates the inactive B centromere. Scale bar=10 μm
Fig.4  Immunolocalization analysis of SGO1 in a plant containing one minichromosome (#3) derived from the B chromosome (Arrows). The mini-B exhibits SGO1 signal at anaphase I. The DAPI-stained chromosomes are blue; maize SGO antibody (SGO1) is magenta; ZmBs is green. (A) Merged image. (B) DAPI. (C) ZmBs. (D) SGO1. Arrow indicates the sister chromatids separated at meiosis I. Scale bar=10 μm
Fig.4  Immunolocalization analysis of SGO1 in a plant containing one minichromosome (#3) derived from the B chromosome (Arrows). The mini-B exhibits SGO1 signal at anaphase I. The DAPI-stained chromosomes are blue; maize SGO antibody (SGO1) is magenta; ZmBs is green. (A) Merged image. (B) DAPI. (C) ZmBs. (D) SGO1. Arrow indicates the sister chromatids separated at meiosis I. Scale bar=10 μm
1 Alfenito M R, Birchler J A (1993). Molecular characterization of a maize B chromosome centric sequence. Genetics , 135(2): 589–597
pmid:8244015
2 Allshire R C, Karpen G H (2008). Epigenetic regulation of centromeric chromatin: old dogs, new tricks? Nat Rev Genet , 9(12): 923–937
doi: 10.1038/nrg2466 pmid:19002142
3 Amor D J, Choo K H A (2002). Neocentromeres: role in human disease, evolution, and centromere study. Am J Hum Genet , 71(4): 695–714
doi: 10.1086/342730 pmid:12196915
4 Ananiev E V, Phillips R L, Rines H W (1998). Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci U S A , 95(22): 13073–13078
doi: 10.1073/pnas.95.22.13073 pmid:9789043
5 Ando S, Yang H, Nozaki N, Okazaki T, Yoda K (2002). CENP-A, -B, and-C chromatin complex that contains the I-type alpha-satellite array constitutes the prekinetochore in HeLa cells. Mol Cell Biol , 22(7): 2229–2241
doi: 10.1128/MCB.22.7.2229-2241.2002 pmid:11884609
6 Birchler J A, Han F P (2009). Maize centromeres: structure, function, epigenetics. Annu Rev Genet , 43(1): 287–303
doi: 10.1146/annurev-genet-102108-134834 pmid:19689211
7 Blower M D, Sullivan B A, Karpen G H (2002). Conserved organization of centromeric chromatin in flies and humans. Dev Cell , 2(3): 319–330
doi: 10.1016/S1534-5807(02)00135-1 pmid:11879637
8 Carlson W R (1969). Factors affecting preferential fertilization in maize. Genetics , 62(3): 543–554
pmid:17248448
9 Carlson W R, Phillips R (1986). The B-chromosome of maize. Crit Rev Plant Sci , 3(3): 201–226
doi: 10.1080/07352688609382210
10 Choo K H A (1997). Centromere DNA dynamics: latent centromeres and neocentromere formation. Am J Hum Genet , 61(6): 1225–1233
doi: 10.1086/301657 pmid:9399915
11 Dawe R K, Hiatt E N (2004). Plant neocentromeres: fast, focused, and driven. Chromosome Res , 12(6): 655–669
doi: 10.1023/B:CHRO.0000036607.74671.db pmid:15289670
12 Dawe R K, Reed L M, Yu H G, Muszynski M G, Hiatt E N (1999). A maize homolog of mammalian CENPC is a constitutive component of the inner kinetochore. Plant Cell , 11(7): 1227–1238
pmid:10402425
13 Guerra M, Cabral G, Cuacos M, González-García M, González-Sánchez M, Vega J, Puertas M J (2010). Neocentrics and holokinetics (holocentrics): chromosomes out of the centromeric rules. Cytogenet Genome Res , 129(1-3): 82–96
doi: 10.1159/000314289 pmid:20551611
14 Hamant O, Golubovskaya I, Meeley R, Fiume E, Timofejeva L, Schleiffer A, Nasmyth K, Cande W Z (2005). A REC8-dependent plant Shugoshin is required for maintenance of centromeric cohesion during meiosis and has no mitotic functions. Curr Biol , 15(10): 948–954
doi: 10.1016/j.cub.2005.04.049 pmid:15916952
15 Han F P, Gao Z, Birchler J A (2009). Reactivation of an inactive centromere reveals epigenetic and structural components for centromere specification in maize. Plant Cell , 21(7): 1929–1939
doi: 10.1105/tpc.109.066662 pmid:19602622
16 Han F P, Gao Z, Yu W C, Birchler J A (2007a). Minichromosome analysis of chromosome pairing, disjunction, and sister chromatid cohesion in maize. Plant Cell , 19(12): 3853–3863
doi: 10.1105/tpc.107.055905 pmid:18083907
17 Han F P, Lamb J C, Birchler J A (2006). High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci U S A , 103(9): 3238–3243
doi: 10.1073/pnas.0509650103 pmid:16492777
18 Han F P, Lamb J C, Yu W C, Gao Z, Birchler J A (2007b). Centromere function and nondisjunction are independent components of the maize B chromosome accumulation mechanism. Plant Cell , 19(2): 524–533
doi: 10.1105/tpc.106.049577 pmid:17322406
19 Henikoff S, Ahmad K, Malik H S (2001). The centromere paradox: stable inheritance with rapidly evolving DNA. Science , 293(5532): 1098–1102
doi: 10.1126/science.1062939 pmid:11498581
20 Higgins A W, Gustashaw K M, Willard H F (2005). Engineered human dicentric chromosomes show centromere plasticity. Chromosome Res , 13(8): 745–762
doi: 10.1007/s10577-005-1009-2 pmid:16331407
21 Jiang J M, Birchler J A, Parrott W A, Dawe R K (2003). A molecular view of plant centromeres. Trends Plant Sci , 8(12): 570–575
doi: 10.1016/j.tplants.2003.10.011 pmid:14659705
22 Jin W W, Melo J R, Nagaki K, Talbert P B, Henikoff S, Dawe R K, Jiang J M (2004). Maize centromeres: organization and functional adaptation in the genetic background of oat. Plant Cell , 16(3): 571–581
doi: 10.1105/tpc.018937 pmid:14973167
23 Jones R N, Rees H (1982). B chromosomes. London, Academic Press
24 Lamb J C, Kato A, Birchler J A (2005). Sequences associated with A chromosome centromeres are present throughout the maize B chromosome. Chromosoma , 113(7): 337–349
doi: 10.1007/s00412-004-0319-z pmid:15586285
25 Lin B Y (1978). Regional control of nondisjunction of the B chromosome in maize. Genetics , 90(3): 613–627
pmid:17248872
26 Malik H S, Henikoff S (2009). Major evolutionary transitions in centromere complexity. Cell , 138(6): 1067–1082
doi: 10.1016/j.cell.2009.08.036 pmid:19766562
27 McClintock B (1939). The behavior in successive nuclear divisions of a chromosome broken at meiosis. Proc Natl Acad Sci U S A , 25(8): 405–416
doi: 10.1073/pnas.25.8.405 pmid:16577924
28 McClintock B (1941). The stability of broken ends of chromosomes in Zea mays. Genetics , 26(2): 234–282
pmid:17247004
29 Mroczek R J, Dawe R K (2003). Distribution of retroelements in centromeres and neocentromeres of maize. Genetics , 165(2): 809–819
pmid:14573490
30 Nagaki K, Song J Q, Stupar R M, Parokonny A S, Yuan Q P, Ouyang S, Liu J, Hsiao J, Jones K M, Dawe R K, Buell C R, Jiang J M (2003). Molecular and cytological analyses of large tracks of centromeric DNA reveal the structure and evolutionary dynamics of maize centromeres. Genetics , 163(2): 759–770
pmid:12618412
31 Nasuda S, Hudakova S, Schubert I, Houben A, Endo T R (2005). Stable barley chromosomes without centromeric repeats. Proc Natl Acad Sci U S A , 102(28): 9842–9847
doi: 10.1073/pnas.0504235102 pmid:15998740
32 Page S L, Shaffer L G (1998). Chromosome stability is maintained by short intercentromeric distance in functionally dicentric human Robertsonian translocations. Chromosome Res , 6(2): 115–122
doi: 10.1023/A:1009286929145 pmid:9543014
33 Presting G G, Malysheva L, Fuchs J, Schubert I Z (1998). A Ty3/gypsy retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J , 16(6): 721–728
doi: 10.1046/j.1365-313x.1998.00341.x pmid:10069078
34 Rhoades M M, Vilkomerson H (1942). On the anaphase movement of chromosomes. Proc Natl Acad Sci U S A , 28(10): 433–436
doi: 10.1073/pnas.28.10.433 pmid:16588574
35 Roman H (1947). Mitotic nondisjunction in the case of interchanges involving the B-type chromosome in maize. Genetics , 32: 391–409
36 Roman H (1948). Directed fertilization in maize. Proc Natl Acad Sci USA , 34(2): 36–42
doi: 10.1073/pnas.34.2.36
37 Shelby R D, Monier K, Sullivan K F (2000). Chromatin assembly at kinetochores is uncoupled from DNA replication. J Cell Biol , 151(5): 1113–1118
doi: 10.1083/jcb.151.5.1113 pmid:11086012
38 Stimpson K M, Song I Y, Jauch A, Holtgreve-Grez H, Hayden K E, Bridger J M, Sullivan B A, Copenhaver G P (2010). Telomere disruption results in non-random formation of de novo dicentric chromosomes involving acrocentric human chromosomes. PLoS Genet , 6(8): e1001061
doi: 10.1371/journal.pgen.1001061 pmid:20711355
39 Stimpson K M, Sullivan B A (2010). Epigenomics of centromere assembly and function. Curr Opin Cell Biol , 22(6): 1–9
doi: 10.1016/j.ceb.2010.07.002 pmid:20102790
40 Sullivan B A, Willard H F (1998). Stable dicentric X chromosomes with two functional centromeres. Nat Genet , 20(3): 227–228
doi: 10.1038/3024 pmid:9806536
41 Topp C N, Okagaki R J, Melo J R, Kynast R G, Phillips R L, Dawe R K (2009). Identification of a maize neocentromere in an oat-maize addition line. Cytogenet Genome Res , 124(3-4): 228–238
doi: 10.1159/000218128 pmid:19556776
42 Van Hooser A A, Ouspenski I I, Gregson H C, Starr D A, Yen T J, Goldberg M L, Yokomori K, Earnshaw W C, Sullivan K F, Brinkley B R (2001). Specification of kinetochore-forming chromatin by the histone H3 variant CENP-A. J Cell Sci , 114(Pt 19): 3529–3542
pmid:11682612
43 Voullaire L E, Slater H R, Petrovic V, Choo K H A (1993). A functional marker centromere with no detectable alpha-satellite, satellite III, or CENP-B protein: activation of a latent centromere? Am J Hum Genet , 52(6): 1153–1163
pmid:7684888
44 Ward E J (1973). Nondisjunction: localization of the controlling site in the maize B chromosome. Genetics , 73(3): 387–391
pmid:17248594
45 Watanabe Y (2005). Shugoshin: guardian spirit at the centromere. Curr Opin Cell Biol , 17(6): 590–595
doi: 10.1016/j.ceb.2005.10.003 pmid:16229998
46 Yu W C, Han F P, Gao Z, Vega J M, Birchler J A (2007). Construction and behavior of engineered minichromosomes in maize. Proc Natl Acad Sci U S A , 104(21): 8924–8929
doi: 10.1073/pnas.0700932104 pmid:17502617
47 Yu W C, Lamb J C, Han F P, Birchler J A (2006). Telomere-mediated chromosomal truncation in maize. Proc Natl Acad Sci U S A , 103(46): 17331–17336
doi: 10.1073/pnas.0605750103 pmid:17085598
48 Zhang W L, Friebe B, Gill B S, Jiang J M (2010). Centromere inactivation and epigenetic modifications of a plant chromosome with three functional centromeres. Chromosoma , 119(5): 553–563
doi: 10.1007/s00412-010-0278-5 pmid:20499078
49 Zheng Y Z, Roseman R R, Carlson W R (1999). Time course study of the chromosome-type breakage-fusion-bridge cycle in maize. Genetics , 153(3): 1435–1444
pmid:10545471
50 Zhong C X, Marshall J B, Topp C, Mroczek R, Kato A, Nagaki K, Birchler J A, Jiang J M, Dawe R K (2002). Centromeric retroelements and satellites interact with maize kinetochore protein CENH3. Plant Cell , 14(11): 2825–2836
doi: 10.1105/tpc.006106 pmid:12417704
[1] TAO Yongsheng, ZHANG Zuxin, CHEN Yonglin, LI Lijia, ZHENG Yonglian. Technological exploration of BAC-FISH on mitotic chromosomes of maize[J]. Front. Biol., 2008, 3(4): 414-418.
[2] DAI Quanlin, YUAN Jiangang, YANG Zhongyi, FANG Wei. Differences on Pb accumulation among plant tissues of 25 varieties of maize (Zea mays)[J]. Front. Biol., 2007, 2(3): 303-308.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed