|
|
Growth arrest signaling of the Raf/MEK/ERK pathway in cancer |
Jong-In PARK( ) |
Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA |
|
|
Abstract The Raf/MEK/extracellular signal-regulated kinase (ERK) pathway has a pivotal role in facilitating cell proliferation, and its deregulated activation is a central signature of many epithelial cancers. However paradoxically, sustained activity of Raf/MEK/ERK can also result in growth arrest in many different cell types. This anti-proliferative Raf/MEK/ERK signaling also has physiological significance, as exemplified by its potential as a tumor suppressive mechanism. Therefore, significant questions include in which cell types and by what mechanisms this pathway can mediate such an opposing context of signaling. Particularly, our understating of the role of ERK1 and ERK2, the focal points of pathway signaling, in growth arrest signaling is still limited. This review discusses these aspects of Raf/MEK/ERK-mediated growth arrest signaling.
|
Keywords
Raf
MEK1/2
ERK1/2
proliferation
growth arrest
non-kinase effect
|
Corresponding Author(s):
Jong-In PARK
|
Issue Date: 13 May 2014
|
|
1 |
ArthanD, HongS K, ParkJ I (2010). Leukemia inhibitory factor can mediate Ras/Raf/MEK/ERK-induced growth inhibitory signaling in medullary thyroid cancer cells. Cancer Lett, 297(1): 31–41 doi: 10.1016/j.canlet.2010.04.021 pmid: 20570039
|
2 |
BalkS P, KnudsenK E (2008). AR, the cell cycle, and prostate cancer. Nucl Recept Signal, 6: e001 pmid: 18301781
|
3 |
BélangerL F, RoyS, TremblayM, BrottB, SteffA M, MouradW, HugoP, EriksonR, CharronJ (2003). Mek2 is dispensable for mouse growth and development. Mol Cell Biol, 23(14): 4778–4787 doi: 10.1128/MCB.23.14.4778-4787.2003 pmid: 12832465
|
4 |
BessardA, FréminC, EzanF, FautrelA, GailhousteL, BaffetG (2008). RNAi-mediated ERK2 knockdown inhibits growth of tumor cells in vitro and in vivo. Oncogene, 27(40): 5315–5325 doi: 10.1038/onc.2008.163 pmid: 18521085
|
5 |
BinétruyB, HeasleyL, BostF, CaronL, AouadiM (2007). Concise review: regulation of embryonic stem cell lineage commitment by mitogen-activated protein kinases. Stem Cells, 25(5): 1090–1095 doi: 10.1634/stemcells.2006-0612 pmid: 17218395
|
6 |
BoultonT G, YancopoulosG D, GregoryJ S, SlaughterC, MoomawC, HsuJ, CobbM H (1990). An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science, 249(4964): 64–67 doi: 10.1126/science. pmid: 2164259
|
7 |
BraigM, LeeS, LoddenkemperC, RudolphC, PetersA H, SchlegelbergerB, SteinH, DörkenB, JenuweinT, SchmittC A (2005). Oncogene-induced senescence as an initial barrier in lymphoma development. Nature, 436(7051): 660–665 doi: 10.1038/nature03841 pmid: 16079837
|
8 |
BurkhardK A, ChenF, ShapiroP (2011). Quantitative analysis of ERK2 interactions with substrate proteins: roles for kinase docking domains and activity in determining binding affinity. J Biol Chem, 286(4): 2477–2485 doi: 10.1074/jbc.M110.177899 pmid: 21098038
|
9 |
CagnolS, ChambardJ C (2010). ERK and cell death: mechanisms of ERK-induced cell death—apoptosis, autophagy and senescence. FEBS J, 277(1): 2–21 doi: 10.1111/j.1742-4658.2009.07366.x pmid: 19843174
|
10 |
CarsonE B, McMahonM, BaylinS B, NelkinB D (1995). Ret gene silencing is associated with Raf-1-induced medullary thyroid carcinoma cell differentiation. Cancer Res, 55(10): 2048–2052 pmid: 7743500
|
11 |
Carson-WalterE B, SmithD P, PonderB A, BaylinS B, NelkinB D (1998). Post-transcriptional silencing of RET occurs, but is not required, during raf-1 mediated differentiation of medullary thyroid carcinoma cells. Oncogene, 17(3): 367–376 doi: 10.1038/sj.onc.1201938 pmid: 9690518
|
12 |
CasarB, PintoA, CrespoP (2008). Essential role of ERK dimers in the activation of cytoplasmic but not nuclear substrates by ERK-scaffold complexes. Mol Cell, 31(5): 708–721 doi: 10.1016/j.molcel.2008.07.024 pmid: 18775330
|
13 |
ChenJ, FujiiK, ZhangL, RobertsT, FuH (2001). Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci USA, 98(14): 7783–7788 doi: 10.1073/pnas.141224398 pmid: 11427728
|
14 |
CheungM, SharmaA, MadhunapantulaS V, RobertsonG P (2008). Akt3 and mutant V600E B-Raf cooperate to promote early melanoma development. Cancer Res, 68(9): 3429–3439 doi: 10.1158/0008-5472.CAN-07-5867 pmid: 18451171
|
15 |
ColladoM, GilJ, EfeyanA, GuerraC, SchuhmacherA J, BarradasM, BenguríaA, ZaballosA, FloresJ M, BarbacidM, BeachD, SerranoM (2005). Tumour biology: senescence in premalignant tumours. Nature, 436(7051): 642 doi: 10.1038/436642a pmid: 16079833
|
16 |
CourchesneW E, KunisawaR, ThornerJ (1989). A putative protein kinase overcomes pheromone-induced arrest of cell cycling in S. cerevisiae. Cell, 58(6): 1107–1119 doi: 10.1016/0092-8674(89)90509-6 pmid: 2673544
|
17 |
Courtois-CoxS, JonesS L, CichowskiK (2008). Many roads lead to oncogene-induced senescence. Oncogene, 27(20): 2801–2809 doi: 10.1038/sj.onc.1210950 pmid: 18193093
|
18 |
DhillonA S, HaganS, RathO, KolchW (2007). MAP kinase signalling pathways in cancer. Oncogene, 26(22): 3279–3290 doi: 10.1038/sj.onc.1210421 pmid: 17496922
|
19 |
DhillonA S, MeikleS, PeyssonnauxC, GrindlayJ, KaiserC, SteenH, ShawP E, MischakH, EychèneA, KolchW (2003). A Raf-1 mutant that dissociates MEK/extracellular signal-regulated kinase activation from malignant transformation and differentiation but not proliferation. Mol Cell Biol, 23(6): 1983–1993 doi: 10.1128/MCB.23.6.1983-1993.2003 pmid: 12612072
|
20 |
DuhamelS, HébertJ, GabouryL, BouchardA, SimonR, SauterG, BasikM, MelocheS (2012). Sef downregulation by Ras causes MEK1/2 to become aberrantly nuclear localized leading to polyploidy and neoplastic transformation. Cancer Res, 72(3): 626–635 doi: 10.1158/0008-5472.CAN-11-2126 pmid: 22298595
|
21 |
EblenS T, Slack-DavisJ K, TarcsafalviA, ParsonsJ T, WeberM J, CatlingA D (2004). Mitogen-activated protein kinase feedback phosphorylation regulates MEK1 complex formation and activation during cellular adhesion. Mol Cell Biol, 24(6): 2308–2317 doi: 10.1128/MCB.24.6.2308-2317.2004 pmid: 14993270
|
22 |
FantonC P, McMahonM, PieperR O (2001). Dual growth arrest pathways in astrocytes and astrocytic tumors in response to Raf-1 activation. J Biol Chem, 276(22): 18871–18877 doi: 10.1074/jbc.M011514200 pmid: 11278920
|
23 |
FerrellJ E Jr (1996). Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem Sci, 21(12): 460–466 doi: 10.1016/S0968-0004(96)20026-X pmid: 9009826
|
24 |
FischerA M, KatayamaC D, PagèsG, PouysségurJ, HedrickS M (2005). The role of erk1 and erk2 in multiple stages of T cell development. Immunity, 23(4): 431–443 doi: 10.1016/j.immuni.2005.08.013 pmid: 16226508
|
25 |
FukudaM, GotohY, NishidaE (1997). Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J, 16(8): 1901–1908 doi: 10.1093/emboj/16.8.1901 pmid: 9155016
|
26 |
GirouxS, TremblayM, BernardD, Cardin-GirardJ F, AubryS, LaroucheL, RousseauS, HuotJ, LandryJ, JeannotteL, CharronJ (1999). Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr Biol, 9(7): 369–372 doi: 10.1016/S0960-9822(99)80164-X pmid: 10209122
|
27 |
GuéganJ P, EzanF, GailhousteL, LangouëtS, BaffetG (2013b). MEK1/2 Overactivation can Promote Growth Arrest by Mediating ERK1/2-Dependent Phosphorylation of p70S6K. J Cell Physiol: doi: 10.1002/jcp.24521 pmid: 24501087
|
28 |
GuéganJ P, EzanF, ThéretN, LangouëtS, BaffetG (2013a). MAPK signaling in cisplatin-induced death: predominant role of ERK1 over ERK2 in human hepatocellular carcinoma cells. Carcinogenesis, 34(1): 38–47 doi: 10.1093/carcin/bgs317 pmid: 23042098
|
29 |
GuptaR, WajapeyeeN (2013). Induction of cellular senescence by oncogenic RAS. Methods Mol Biol, 1048: 127–133 doi: 10.1007/978-1-62703-556-9_10 pmid: 23929102
|
30 |
HamiltonW B, KajiK, KunathT (2013). ERK2 suppresses self-renewal capacity of embryonic stem cells, but is not required for multi-lineage commitment. PLoS ONE, 8(4): e60907 doi: 10.1371/journal.pone.0060907 pmid: 23613754
|
31 |
HongS K, KimJ H, LinM F, ParkJ I (2011). The Raf/MEK/extracellular signal-regulated kinase 1/2 pathway can mediate growth inhibitory and differentiation signaling via androgen receptor downregulation in prostate cancer cells. Exp Cell Res, 317(18): 2671–2682 doi: 10.1016/j.yexcr.2011.08.008 pmid: 21871886
|
32 |
HongS K, YoonS, MoellingC, ArthanD, ParkJ I (2009). Noncatalytic function of ERK1/2 can promote Raf/MEK/ERK-mediated growth arrest signaling. J Biol Chem, 284(48): 33006–33018 doi: 10.1074/jbc.M109.012591 pmid: 19805545
|
33 |
HuS, XieZ, OnishiA, YuX, JiangL, LinJ, RhoH S, WoodardC, WangH, JeongJ S, LongS, HeX, WadeH, BlackshawS, QianJ, ZhuH (2009). Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell, 139(3): 610–622 doi: 10.1016/j.cell.2009.08.037 pmid: 19879846
|
34 |
HwangC Y, LeeC, KwonK S (2009). Extracellular signal-regulated kinase 2-dependent phosphorylation induces cytoplasmic localization and degradation of p21Cip1. Mol Cell Biol, 29(12): 3379–3389 doi: 10.1128/MCB.01758-08 pmid: 19364816
|
35 |
KimE J, ParkJ I, NelkinB D (2005). IFI16 is an essential mediator of growth inhibition, but not differentiation, induced by the leukemia inhibitory factor/JAK/STAT pathway in medullary thyroid carcinoma cells. J Biol Chem, 280(6): 4913–4920 doi: 10.1074/jbc.M410542200 pmid: 15572361
|
36 |
KortenjannM, ThomaeO, ShawP E (1994). Inhibition of v-raf-dependent c-fos expression and transformation by a kinase-defective mutant of the mitogen-activated protein kinase Erk2. Mol Cell Biol, 14(7): 4815–4824 pmid: 8007980
|
37 |
KrensS F, HeS, LamersG E, MeijerA H, BakkersJ, SchmidtT, SpainkH P, Snaar-JagalskaB E (2008). Distinct functions for ERK1 and ERK2 in cell migration processes during zebrafish gastrulation. Dev Biol, 319(2): 370–383 doi: 10.1016/j.ydbio.2008.04.032 pmid: 18514184
|
38 |
KucharskaA, RushworthL K, StaplesC, MorriceN A, KeyseS M (2009). Regulation of the inducible nuclear dual-specificity phosphatase DUSP5 by ERK MAPK. Cell Signal, 21(12): 1794–1805 doi: 10.1016/j.cellsig.2009.07.015 pmid: 19666109
|
39 |
LawrenceM C, JivanA, ShaoC, DuanL, GoadD, ZaganjorE, OsborneJ, McGlynnK, StippecS, EarnestS, ChenW, CobbM H (2008). The roles of MAPKs in disease. Cell Res, 18(4): 436–442 doi: 10.1038/cr.2008.37 pmid: 18347614
|
40 |
LeflochR, PouysségurJ, LenormandP (2008). Single and combined silencing of ERK1 and ERK2 reveals their positive contribution to growth signaling depending on their expression levels. Mol Cell Biol, 28(1): 511–527 doi: 10.1128/MCB.00800-07 pmid: 17967895
|
41 |
LinA W, BarradasM, StoneJ C, van AelstL, SerranoM, LoweS W (1998). Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev, 12(19): 3008–3019 doi: 10.1101/gad.12.19.3008 pmid: 9765203
|
42 |
MabryM, NakagawaT, BaylinS, PettengillO, SorensonG, NelkinB (1989). Insertion of the v-Ha-ras oncogene induces differentiation of calcitonin-producing human small cell lung cancer. J Clin Invest, 84(1): 194–199 doi: 10.1172/JCI114140 pmid: 2544624
|
43 |
MansourS J, CandiaJ M, GloorK K, AhnN G (1996). Constitutively active mitogen-activated protein kinase kinase 1 (MAPKK1) and MAPKK2 mediate similar transcriptional and morphological responses. Cell Growth Differ, 7(2): 243–250 pmid: 8822208
|
44 |
McCubreyJ A, SteelmanL S, ChappellW H, AbramsS L, MontaltoG, CervelloM, NicolettiF, FagoneP, MalaponteG, MazzarinoM C, CandidoS, LibraM, BäseckeJ, MijatovicS, Maksimovic-IvanicD, MilellaM, TafuriA, CoccoL, EvangelistiC, ChiariniF, MartelliA M (2012). Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget, 3(9): 954–987 pmid: 23006971
|
45 |
McDuffF K, TurnerS D (2011). Jailbreak: oncogene-induced senescence and its evasion. Cell Signal, 23(1): 6–13 doi: 10.1016/j.cellsig.2010.07.004 pmid: 20633638
|
46 |
MebratuY, TesfaigziY (2009). How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle, 8(8): 1168–1175 doi: 10.4161/cc.8.8.8147 pmid: 19282669
|
47 |
MichaloglouC, VredeveldL C, SoengasM S, DenoyelleC, KuilmanT, van der HorstC M, MajoorD M, ShayJ W, MooiW J, PeeperD S (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature, 436(7051): 720–724 doi: 10.1038/nature03890 pmid: 16079850
|
48 |
MooiW J, PeeperD S (2006). Oncogene-induced cell senescence—halting on the road to cancer. N Engl J Med, 355(10): 1037–1046 doi: 10.1056/NEJMra062285 pmid: 16957149
|
49 |
NadeauV, GuillemetteS, BélangerL F, JacobO, RoyS, CharronJ (2009). Map2k1 and Map2k2 genes contribute to the normal development of syncytiotrophoblasts during placentation. Development, 136(8): 1363–1374 doi: 10.1242/dev.031872 pmid: 19304888
|
50 |
NakagawaT, MabryM, de BustrosA, IhleJ N, NelkinB D, BaylinS B (1987). Introduction of v-Ha-ras oncogene induces differentiation of cultured human medullary thyroid carcinoma cells. Proc Natl Acad Sci USA, 84(16): 5923–5927 doi: 10.1073/pnas.84.16.5923 pmid: 3112776
|
51 |
OlsenC L, GardieB, YaswenP, StampferM R (2002). Raf-1-induced growth arrest in human mammary epithelial cells is p16-independent and is overcome in immortal cells during conversion. Oncogene, 21(41): 6328–6339 doi: 10.1038/sj.onc.1205780 pmid: 12214273
|
52 |
PagèsG, GuérinS, GrallD, BoninoF, SmithA, AnjuereF, AubergerP, PouysségurJ (1999). Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science, 286(5443): 1374–1377 doi: 10.1126/science.286.5443.1374 pmid: 10558995
|
53 |
PagèsG, LenormandP, L’AllemainG, ChambardJ C, MelocheS, PouysségurJ (1993). Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci USA, 90(18): 8319–8323 doi: 10.1073/pnas.90.18.8319 pmid: 8397401
|
54 |
ParkJ I, PowersJ F, TischlerA S, StrockC J, BallD W, NelkinB D (2005b). GDNF-induced leukemia inhibitory factor can mediate differentiation via the MEK/ERK pathway in pheochromocytoma cells derived from nf1-heterozygous knockout mice. Exp Cell Res, 303(1): 79–88 pmid: 15572029
|
55 |
ParkJ I, StrockC J, BallD W, NelkinB D (2003). The Ras/Raf/MEK/extracellular signal-regulated kinase pathway induces autocrine-paracrine growth inhibition via the leukemia inhibitory factor/JAK/STAT pathway. Mol Cell Biol, 23(2): 543–554 doi: 10.1128/MCB.23.2.543-554.2003 pmid: 12509453
|
56 |
ParkJ I, StrockC J, BallD W, NelkinB D (2005a). Interleukin-1beta can mediate growth arrest and differentiation via the leukemia inhibitory factor/JAK/STAT pathway in medullary thyroid carcinoma cells. Cytokine, 29(3): 125–134 doi: 10.1016/j.cyto.2004.10.005 pmid: 15613280
|
57 |
PearsonG, RobinsonF, Beers GibsonT, XuB E, KarandikarM, BermanK, CobbM H (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev, 22(2): 153–183 pmid: 11294822
|
58 |
PinchotS N, KunnimalaiyaanM, SippelR S, ChenH (2009). Medullary thyroid carcinoma: targeted therapies and future directions. J Oncol, 2009: 183031 doi: 10.1155/2009/183031 pmid: 20069043
|
59 |
PritchardC A, SamuelsM L, BoschE, McMahonM (1995). Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol Cell Biol, 15(11): 6430–6442 pmid: 7565795
|
60 |
RadtkeS, MilanovicM, RosséC, De RyckerM, LachmannS, HibbertA, KermorgantS, ParkerP J (2013). ERK2 but not ERK1 mediates HGF-induced motility in non-small cell lung carcinoma cell lines. J Cell Sci, 126(Pt 11): 2381–2391 doi: 10.1242/jcs.115832 pmid: 23549785
|
61 |
RaviR K, McMahonM, YangangZ, WilliamsJ R, DillehayL E, NelkinB D, MabryM (1999b). Raf-1-induced cell cycle arrest in LNCaP human prostate cancer cells. J Cell Biochem, 72(4): 458–469 doi: 10.1002/(SICI)1097-4644(19990315)72:4<458::AID-JCB2>3.0.CO;2-C pmid: 10022606
|
62 |
RaviR K, ThiagalingamA, WeberE, McMahonM, NelkinB D, MabryM (1999a). Raf-1 causes growth suppression and alteration of neuroendocrine markers in DMS53 human small-cell lung cancer cells. Am J Respir Cell Mol Biol, 20(4): 543–549 doi: 10.1165/ajrcmb.20.4.3406 pmid: 10100985
|
63 |
RaviR K, WeberE, McMahonM, WilliamsJ R, BaylinS, MalA, HarterM L, DillehayL E, ClaudioP P, GiordanoA, NelkinB D, MabryM (1998). Activated Raf-1 causes growth arrest in human small cell lung cancer cells. J Clin Invest, 101(1): 153–159 doi: 10.1172/JCI831 pmid: 9421477
|
64 |
RobbinsD J, ZhenE, OwakiH, VanderbiltC A, EbertD, GeppertT D, CobbM H (1993). Regulation and properties of extracellular signal-regulated protein kinases 1 and 2 in vitro. J Biol Chem, 268(7): 5097–5106 pmid: 8444886
|
65 |
RobertsP J, DerC J (2007). Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 26(22): 3291–3310 doi: 10.1038/sj.onc.1210422 pmid: 17496923
|
66 |
RodríguezJ, CalvoF, GonzálezJ M, CasarB, AndrésV, CrespoP (2010). ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma-lamin A complexes. J Cell Biol, 191(5): 967–979 doi: 10.1083/jcb.201004067 pmid: 21115804
|
67 |
RodríguezJ, CrespoP (2011). Working without kinase activity: phosphotransfer-independent functions of extracellular signal-regulated kinases. Sci Signal, 4(196): re3 doi: 10.1126/scisignal.2002324 pmid: 22028468
|
68 |
RoperE, WeinbergW, WattF M, LandH (2001). p19ARF-independent induction of p53 and cell cycle arrest by Raf in murine keratinocytes. EMBO Rep, 2(2): 145–150 doi: 10.1093/embo-reports/kve020 pmid: 11258707
|
69 |
RoskoskiR Jr (2012). ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res, 66(2): 105–143 doi: 10.1016/j.phrs.2012.04.005 pmid: 22569528
|
70 |
RossomandoA J, WuJ, MichelH, ShabanowitzJ, HuntD F, WeberM J, SturgillT W (1992). Identification of Tyr-185 as the site of tyrosine autophosphorylation of recombinant mitogen-activated protein kinase p42mapk. Proc Natl Acad Sci USA, 89(13): 5779–5783 doi: 10.1073/pnas.89.13.5779 pmid: 1378617
|
71 |
Saba-El-LeilM K, VellaF D, VernayB, VoisinL, ChenL, LabrecqueN, AngS L, MelocheS (2003). An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep, 4(10): 964–968 doi: 10.1038/sj.embor.embor939 pmid: 14502223
|
72 |
SamuelsM L, WeberM J, BishopJ M, McMahonM (1993). Conditional transformation of cells and rapid activation of the mitogen-activated protein kinase cascade by an estradiol-dependent human raf-1 protein kinase. Mol Cell Biol, 13(10): 6241–6252 pmid: 8413224
|
73 |
SchaefferH J, CatlingA D, EblenS T, CollierL S, KraussA, WeberM J (1998). MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science, 281(5383): 1668–1671 doi: 10.1126/science.281.5383.1668 pmid: 9733512
|
74 |
SchollF A, DumesicP A, BarraganD I, HaradaK, CharronJ, KhavariP A (2009). Selective role for Mek1 but not Mek2 in the induction of epidermal neoplasia. Cancer Res, 69(9): 3772–3778 doi: 10.1158/0008-5472.CAN-08-1963 pmid: 19383924
|
75 |
SerranoM, LinA W, McCurrachM E, BeachD, LoweS W (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88(5): 593–602 doi: 10.1016/S0092-8674(00)81902-9 pmid: 9054499
|
76 |
ShapiroP S, WhalenA M, TolwinskiN S, WilsbacherJ, Froelich-AmmonS J, GarciaM, OsheroffN, AhnN G (1999). Extracellular signal-regulated kinase activates topoisomerase IIalpha through a mechanism independent of phosphorylation. Mol Cell Biol, 19(5): 3551–3560 pmid: 10207078
|
77 |
ShaulY D, GiborG, PlotnikovA, SegerR (2009). Specific phosphorylation and activation of ERK1c by MEK1b: a unique route in the ERK cascade. Genes Dev, 23(15): 1779–1790 doi: 10.1101/gad.523909 pmid: 19651986
|
78 |
ShaulY D, SegerR (2007). The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta, 1773(8): 1213–1226 doi: 10.1016/j.bbamcr.2006.10.005 pmid: 17112607
|
79 |
ShinJ, YangJ, LeeJ C, BaekK H (2013). Depletion of ERK2 but not ERK1 abrogates oncogenic Ras-induced senescence. Cell Signal, 25(12): 2540–2547 doi: 10.1016/j.cellsig.2013.08.014 pmid: 23993963
|
80 |
ShinS, DimitriC A, YoonS O, DowdleW, BlenisJ (2010). ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Mol Cell, 38(1): 114–127 doi: 10.1016/j.molcel.2010.02.020 pmid: 20385094
|
81 |
SippelR S, CarpenterJ E, KunnimalaiyaanM, LagerholmS, ChenH (2003). Raf-1 activation suppresses neuroendocrine marker and hormone levels in human gastrointestinal carcinoid cells. Am J Physiol Gastrointest Liver Physiol, 285(2): G245–G254 pmid: 12851216
|
82 |
StarenkiD, SinghN K, JensenD R, PetersonF C, ParkJ I (2013). Recombinant leukemia inhibitory factor suppresses human medullary thyroid carcinoma cell line xenografts in mice. Cancer Lett, 339(1): 144–151 doi: 10.1016/j.canlet.2013.07.006 pmid: 23856028
|
83 |
SubramaniamS, UnsickerK (2010). ERK and cell death: ERK1/2 in neuronal death. FEBS J, 277: 22–29 pmid: 19843173
|
84 |
TakahashiC, ContrerasB, IwanagaT, TakegamiY, BakkerA, BronsonR T, NodaM, LodaM, HuntJ L, EwenM E (2006). Nras loss induces metastatic conversion of Rb1-deficient neuroendocrine thyroid tumor. Nat Genet, 38(1): 118–123 doi: 10.1038/ng1703 pmid: 16369533
|
85 |
TaylorJ R, LehmannB D, ChappellW H, AbramsS L, SteelmanL S, McCubreyJ A (2011). Cooperative effects of Akt-1 and Raf-1 on the induction of cellular senescence in doxorubicin or tamoxifen treated breast cancer cells. Oncotarget, 2(8): 610–626 pmid: 21881167
|
86 |
VaccaroA, ChenH, KunnimalaiyaanM (2006). In-vivo activation of Raf-1 inhibits tumor growth and development in a xenograft model of human medullary thyroid cancer. Anticancer Drugs, 17(7): 849–853 doi: 10.1097/01.cad.0000217424.36961.47 pmid: 16926634
|
87 |
VantaggiatoC, FormentiniI, BondanzaA, BoniniC, NaldiniL, BrambillaR (2006). ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially. J Biol, 5(5): 14 doi: 10.1186/jbiol38 pmid: 16805921
|
88 |
VoisinL, JulienC, DuhamelS, GopalbhaiK, ClaveauI, Saba-El-LeilM K, Rodrigue-GervaisI G, GabouryL, LamarreD, BasikM, MelocheS (2008). Activation of MEK1 or MEK2 isoform is sufficient to fully transform intestinal epithelial cells and induce the formation of metastatic tumors. BMC Cancer, 8(1): 337 doi: 10.1186/1471-2407-8-337 pmid: 19014680
|
89 |
VoisinL, Saba-El-LeilM K, JulienC, FréminC, MelocheS (2010). Genetic demonstration of a redundant role of extracellular signal-regulated kinase 1 (ERK1) and ERK2 mitogen-activated protein kinases in promoting fibroblast proliferation. Mol Cell Biol, 30(12): 2918–2932 doi: 10.1128/MCB.00131-10 pmid: 20368360
|
90 |
von ThunA, BirtwistleM, KalnaG, GrindlayJ, StrachanD, KolchW, von KriegsheimA, NormanJ C (2012). ERK2 drives tumour cell migration in three-dimensional microenvironments by suppressing expression of Rab17 and liprin-β2. J Cell Sci, 125(Pt 6): 1465–1477 doi: 10.1242/jcs.092916 pmid: 22328529
|
91 |
WoodK W, QiH, D’ArcangeloG, ArmstrongR C, RobertsT M, HalegouaS (1993). The cytoplasmic raf oncogene induces a neuronal phenotype in PC12 cells: a potential role for cellular raf kinases in neuronal growth factor signal transduction. Proc Natl Acad Sci USA, 90(11): 5016–5020 doi: 10.1073/pnas.90.11.5016 pmid: 8389463
|
92 |
WoodsD, ParryD, CherwinskiH, BoschE, LeesE, McMahonM (1997). Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol, 17(9): 5598–5611 pmid: 9271435
|
93 |
WortzelI, SegerR (2011). The ERK Cascade: Distinct Functions within Various Subcellular Organelles. Genes Cancer, 2(3): 195–209 doi: 10.1177/1947601911407328 pmid: 21779493
|
94 |
WuP K, HongS K, VeerankiS, KarkhanisM, StarenkiD, PlazaJ A, ParkJ I (2013). A mortalin/HSPA9-mediated switch in tumor-suppressive signaling of Raf/MEK/extracellular signal-regulated kinase. Mol Cell Biol, 33(20): 4051–4067 doi: 10.1128/MCB.00021-13 pmid: 23959801
|
95 |
WuX, NohS J, ZhouG, DixonJ E, GuanK L (1996). Selective activation of MEK1 but not MEK2 by A-Raf from epidermal growth factor-stimulated Hela cells. J Biol Chem, 271(6): 3265–3271 doi: 10.1074/jbc.271.6.3265 pmid: 8621729
|
96 |
YoonS, SegerR (2006). The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors, 24(1): 21–44 doi: 10.1080/02699050500284218 pmid: 16393692
|
97 |
ZhuJ, WoodsD, McMahonM, BishopJ M (1998). Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev, 12(19): 2997–3007 doi: 10.1101/gad.12.19.2997 pmid: 9765202
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|