Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2014, Vol. 9 Issue (2) : 95-103    https://doi.org/10.1007/s11515-014-1299-x
REVIEW
Growth arrest signaling of the Raf/MEK/ERK pathway in cancer
Jong-In PARK()
Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
 Download: PDF(220 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The Raf/MEK/extracellular signal-regulated kinase (ERK) pathway has a pivotal role in facilitating cell proliferation, and its deregulated activation is a central signature of many epithelial cancers. However paradoxically, sustained activity of Raf/MEK/ERK can also result in growth arrest in many different cell types. This anti-proliferative Raf/MEK/ERK signaling also has physiological significance, as exemplified by its potential as a tumor suppressive mechanism. Therefore, significant questions include in which cell types and by what mechanisms this pathway can mediate such an opposing context of signaling. Particularly, our understating of the role of ERK1 and ERK2, the focal points of pathway signaling, in growth arrest signaling is still limited. This review discusses these aspects of Raf/MEK/ERK-mediated growth arrest signaling.

Keywords Raf      MEK1/2      ERK1/2      proliferation      growth arrest      non-kinase effect     
Corresponding Author(s): Jong-In PARK   
Issue Date: 13 May 2014
 Cite this article:   
Jong-In PARK. Growth arrest signaling of the Raf/MEK/ERK pathway in cancer[J]. Front. Biol., 2014, 9(2): 95-103.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-014-1299-x
https://academic.hep.com.cn/fib/EN/Y2014/V9/I2/95
Fig.1  A conceptual model for tumor suppressive signaling of Raf/MEK/ERK. Oncogenic alterations leading to aberrant activation of Raf/MEK/ERK can direct the pathway signaling to mediate growth arrest. Progression of tumorigenesis requires inactivation of this tumor suppressive response. In the absence of this mechanism, deregulated Raf/MEK/ERK activity is exploited to stimulate uncontrolled cell growth.
Fig.2  Two different thresholds of Raf/MEK/ERK activity determine cell fate to proliferation or growth arrest. In this model, not only too low but also too high Raf/MEK/ERK activity restricts cell proliferation. Different cell types may maintain different extent of pathway activity between these thresholds, displaying heterogeneous sensitivity to pathway activity.
Fig.3  Regulation of p21CIP1 contrasts ERK1/2 function in the opposing contexts of Raf/MEK/ERK signaling, i.e., proliferation versus growth arrest. To promote cell proliferation, ERK2 phosphorylates Thr57 and Ser130 of p21CIP1, which induces p21CIP1 ubiquitination and subsequent proteasomal degradation. In contrast, to promote growth arrest, ERK1/2 upregulates p21CIP1 levels in cells for which ERK1/2 has non-kinase effects. These kinase versus non-kinase effects of ERK1/2 on p21CIP1 highlight different mode of ERK1/2 signaling for the opposing physiological outputs.
1 ArthanD, HongS K, ParkJ I (2010). Leukemia inhibitory factor can mediate Ras/Raf/MEK/ERK-induced growth inhibitory signaling in medullary thyroid cancer cells. Cancer Lett, 297(1): 31–41
doi: 10.1016/j.canlet.2010.04.021 pmid: 20570039
2 BalkS P, KnudsenK E (2008). AR, the cell cycle, and prostate cancer. Nucl Recept Signal, 6: e001
pmid: 18301781
3 BélangerL F, RoyS, TremblayM, BrottB, SteffA M, MouradW, HugoP, EriksonR, CharronJ (2003). Mek2 is dispensable for mouse growth and development. Mol Cell Biol, 23(14): 4778–4787
doi: 10.1128/MCB.23.14.4778-4787.2003 pmid: 12832465
4 BessardA, FréminC, EzanF, FautrelA, GailhousteL, BaffetG (2008). RNAi-mediated ERK2 knockdown inhibits growth of tumor cells in vitro and in vivo. Oncogene, 27(40): 5315–5325
doi: 10.1038/onc.2008.163 pmid: 18521085
5 BinétruyB, HeasleyL, BostF, CaronL, AouadiM (2007). Concise review: regulation of embryonic stem cell lineage commitment by mitogen-activated protein kinases. Stem Cells, 25(5): 1090–1095
doi: 10.1634/stemcells.2006-0612 pmid: 17218395
6 BoultonT G, YancopoulosG D, GregoryJ S, SlaughterC, MoomawC, HsuJ, CobbM H (1990). An insulin-stimulated protein kinase similar to yeast kinases involved in cell cycle control. Science, 249(4964): 64–67
doi: 10.1126/science. pmid: 2164259
7 BraigM, LeeS, LoddenkemperC, RudolphC, PetersA H, SchlegelbergerB, SteinH, DörkenB, JenuweinT, SchmittC A (2005). Oncogene-induced senescence as an initial barrier in lymphoma development. Nature, 436(7051): 660–665
doi: 10.1038/nature03841 pmid: 16079837
8 BurkhardK A, ChenF, ShapiroP (2011). Quantitative analysis of ERK2 interactions with substrate proteins: roles for kinase docking domains and activity in determining binding affinity. J Biol Chem, 286(4): 2477–2485
doi: 10.1074/jbc.M110.177899 pmid: 21098038
9 CagnolS, ChambardJ C (2010). ERK and cell death: mechanisms of ERK-induced cell death—apoptosis, autophagy and senescence. FEBS J, 277(1): 2–21
doi: 10.1111/j.1742-4658.2009.07366.x pmid: 19843174
10 CarsonE B, McMahonM, BaylinS B, NelkinB D (1995). Ret gene silencing is associated with Raf-1-induced medullary thyroid carcinoma cell differentiation. Cancer Res, 55(10): 2048–2052
pmid: 7743500
11 Carson-WalterE B, SmithD P, PonderB A, BaylinS B, NelkinB D (1998). Post-transcriptional silencing of RET occurs, but is not required, during raf-1 mediated differentiation of medullary thyroid carcinoma cells. Oncogene, 17(3): 367–376
doi: 10.1038/sj.onc.1201938 pmid: 9690518
12 CasarB, PintoA, CrespoP (2008). Essential role of ERK dimers in the activation of cytoplasmic but not nuclear substrates by ERK-scaffold complexes. Mol Cell, 31(5): 708–721
doi: 10.1016/j.molcel.2008.07.024 pmid: 18775330
13 ChenJ, FujiiK, ZhangL, RobertsT, FuH (2001). Raf-1 promotes cell survival by antagonizing apoptosis signal-regulating kinase 1 through a MEK-ERK independent mechanism. Proc Natl Acad Sci USA, 98(14): 7783–7788
doi: 10.1073/pnas.141224398 pmid: 11427728
14 CheungM, SharmaA, MadhunapantulaS V, RobertsonG P (2008). Akt3 and mutant V600E B-Raf cooperate to promote early melanoma development. Cancer Res, 68(9): 3429–3439
doi: 10.1158/0008-5472.CAN-07-5867 pmid: 18451171
15 ColladoM, GilJ, EfeyanA, GuerraC, SchuhmacherA J, BarradasM, BenguríaA, ZaballosA, FloresJ M, BarbacidM, BeachD, SerranoM (2005). Tumour biology: senescence in premalignant tumours. Nature, 436(7051): 642
doi: 10.1038/436642a pmid: 16079833
16 CourchesneW E, KunisawaR, ThornerJ (1989). A putative protein kinase overcomes pheromone-induced arrest of cell cycling in S. cerevisiae. Cell, 58(6): 1107–1119
doi: 10.1016/0092-8674(89)90509-6 pmid: 2673544
17 Courtois-CoxS, JonesS L, CichowskiK (2008). Many roads lead to oncogene-induced senescence. Oncogene, 27(20): 2801–2809
doi: 10.1038/sj.onc.1210950 pmid: 18193093
18 DhillonA S, HaganS, RathO, KolchW (2007). MAP kinase signalling pathways in cancer. Oncogene, 26(22): 3279–3290
doi: 10.1038/sj.onc.1210421 pmid: 17496922
19 DhillonA S, MeikleS, PeyssonnauxC, GrindlayJ, KaiserC, SteenH, ShawP E, MischakH, EychèneA, KolchW (2003). A Raf-1 mutant that dissociates MEK/extracellular signal-regulated kinase activation from malignant transformation and differentiation but not proliferation. Mol Cell Biol, 23(6): 1983–1993
doi: 10.1128/MCB.23.6.1983-1993.2003 pmid: 12612072
20 DuhamelS, HébertJ, GabouryL, BouchardA, SimonR, SauterG, BasikM, MelocheS (2012). Sef downregulation by Ras causes MEK1/2 to become aberrantly nuclear localized leading to polyploidy and neoplastic transformation. Cancer Res, 72(3): 626–635
doi: 10.1158/0008-5472.CAN-11-2126 pmid: 22298595
21 EblenS T, Slack-DavisJ K, TarcsafalviA, ParsonsJ T, WeberM J, CatlingA D (2004). Mitogen-activated protein kinase feedback phosphorylation regulates MEK1 complex formation and activation during cellular adhesion. Mol Cell Biol, 24(6): 2308–2317
doi: 10.1128/MCB.24.6.2308-2317.2004 pmid: 14993270
22 FantonC P, McMahonM, PieperR O (2001). Dual growth arrest pathways in astrocytes and astrocytic tumors in response to Raf-1 activation. J Biol Chem, 276(22): 18871–18877
doi: 10.1074/jbc.M011514200 pmid: 11278920
23 FerrellJ E Jr (1996). Tripping the switch fantastic: how a protein kinase cascade can convert graded inputs into switch-like outputs. Trends Biochem Sci, 21(12): 460–466
doi: 10.1016/S0968-0004(96)20026-X pmid: 9009826
24 FischerA M, KatayamaC D, PagèsG, PouysségurJ, HedrickS M (2005). The role of erk1 and erk2 in multiple stages of T cell development. Immunity, 23(4): 431–443
doi: 10.1016/j.immuni.2005.08.013 pmid: 16226508
25 FukudaM, GotohY, NishidaE (1997). Interaction of MAP kinase with MAP kinase kinase: its possible role in the control of nucleocytoplasmic transport of MAP kinase. EMBO J, 16(8): 1901–1908
doi: 10.1093/emboj/16.8.1901 pmid: 9155016
26 GirouxS, TremblayM, BernardD, Cardin-GirardJ F, AubryS, LaroucheL, RousseauS, HuotJ, LandryJ, JeannotteL, CharronJ (1999). Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr Biol, 9(7): 369–372
doi: 10.1016/S0960-9822(99)80164-X pmid: 10209122
27 GuéganJ P, EzanF, GailhousteL, LangouëtS, BaffetG (2013b). MEK1/2 Overactivation can Promote Growth Arrest by Mediating ERK1/2-Dependent Phosphorylation of p70S6K. J Cell Physiol: doi: 10.1002/jcp.24521
pmid: 24501087
28 GuéganJ P, EzanF, ThéretN, LangouëtS, BaffetG (2013a). MAPK signaling in cisplatin-induced death: predominant role of ERK1 over ERK2 in human hepatocellular carcinoma cells. Carcinogenesis, 34(1): 38–47
doi: 10.1093/carcin/bgs317 pmid: 23042098
29 GuptaR, WajapeyeeN (2013). Induction of cellular senescence by oncogenic RAS. Methods Mol Biol, 1048: 127–133
doi: 10.1007/978-1-62703-556-9_10 pmid: 23929102
30 HamiltonW B, KajiK, KunathT (2013). ERK2 suppresses self-renewal capacity of embryonic stem cells, but is not required for multi-lineage commitment. PLoS ONE, 8(4): e60907
doi: 10.1371/journal.pone.0060907 pmid: 23613754
31 HongS K, KimJ H, LinM F, ParkJ I (2011). The Raf/MEK/extracellular signal-regulated kinase 1/2 pathway can mediate growth inhibitory and differentiation signaling via androgen receptor downregulation in prostate cancer cells. Exp Cell Res, 317(18): 2671–2682
doi: 10.1016/j.yexcr.2011.08.008 pmid: 21871886
32 HongS K, YoonS, MoellingC, ArthanD, ParkJ I (2009). Noncatalytic function of ERK1/2 can promote Raf/MEK/ERK-mediated growth arrest signaling. J Biol Chem, 284(48): 33006–33018
doi: 10.1074/jbc.M109.012591 pmid: 19805545
33 HuS, XieZ, OnishiA, YuX, JiangL, LinJ, RhoH S, WoodardC, WangH, JeongJ S, LongS, HeX, WadeH, BlackshawS, QianJ, ZhuH (2009). Profiling the human protein-DNA interactome reveals ERK2 as a transcriptional repressor of interferon signaling. Cell, 139(3): 610–622
doi: 10.1016/j.cell.2009.08.037 pmid: 19879846
34 HwangC Y, LeeC, KwonK S (2009). Extracellular signal-regulated kinase 2-dependent phosphorylation induces cytoplasmic localization and degradation of p21Cip1. Mol Cell Biol, 29(12): 3379–3389
doi: 10.1128/MCB.01758-08 pmid: 19364816
35 KimE J, ParkJ I, NelkinB D (2005). IFI16 is an essential mediator of growth inhibition, but not differentiation, induced by the leukemia inhibitory factor/JAK/STAT pathway in medullary thyroid carcinoma cells. J Biol Chem, 280(6): 4913–4920
doi: 10.1074/jbc.M410542200 pmid: 15572361
36 KortenjannM, ThomaeO, ShawP E (1994). Inhibition of v-raf-dependent c-fos expression and transformation by a kinase-defective mutant of the mitogen-activated protein kinase Erk2. Mol Cell Biol, 14(7): 4815–4824
pmid: 8007980
37 KrensS F, HeS, LamersG E, MeijerA H, BakkersJ, SchmidtT, SpainkH P, Snaar-JagalskaB E (2008). Distinct functions for ERK1 and ERK2 in cell migration processes during zebrafish gastrulation. Dev Biol, 319(2): 370–383
doi: 10.1016/j.ydbio.2008.04.032 pmid: 18514184
38 KucharskaA, RushworthL K, StaplesC, MorriceN A, KeyseS M (2009). Regulation of the inducible nuclear dual-specificity phosphatase DUSP5 by ERK MAPK. Cell Signal, 21(12): 1794–1805
doi: 10.1016/j.cellsig.2009.07.015 pmid: 19666109
39 LawrenceM C, JivanA, ShaoC, DuanL, GoadD, ZaganjorE, OsborneJ, McGlynnK, StippecS, EarnestS, ChenW, CobbM H (2008). The roles of MAPKs in disease. Cell Res, 18(4): 436–442
doi: 10.1038/cr.2008.37 pmid: 18347614
40 LeflochR, PouysségurJ, LenormandP (2008). Single and combined silencing of ERK1 and ERK2 reveals their positive contribution to growth signaling depending on their expression levels. Mol Cell Biol, 28(1): 511–527
doi: 10.1128/MCB.00800-07 pmid: 17967895
41 LinA W, BarradasM, StoneJ C, van AelstL, SerranoM, LoweS W (1998). Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev, 12(19): 3008–3019
doi: 10.1101/gad.12.19.3008 pmid: 9765203
42 MabryM, NakagawaT, BaylinS, PettengillO, SorensonG, NelkinB (1989). Insertion of the v-Ha-ras oncogene induces differentiation of calcitonin-producing human small cell lung cancer. J Clin Invest, 84(1): 194–199
doi: 10.1172/JCI114140 pmid: 2544624
43 MansourS J, CandiaJ M, GloorK K, AhnN G (1996). Constitutively active mitogen-activated protein kinase kinase 1 (MAPKK1) and MAPKK2 mediate similar transcriptional and morphological responses. Cell Growth Differ, 7(2): 243–250
pmid: 8822208
44 McCubreyJ A, SteelmanL S, ChappellW H, AbramsS L, MontaltoG, CervelloM, NicolettiF, FagoneP, MalaponteG, MazzarinoM C, CandidoS, LibraM, BäseckeJ, MijatovicS, Maksimovic-IvanicD, MilellaM, TafuriA, CoccoL, EvangelistiC, ChiariniF, MartelliA M (2012). Mutations and deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascades which alter therapy response. Oncotarget, 3(9): 954–987
pmid: 23006971
45 McDuffF K, TurnerS D (2011). Jailbreak: oncogene-induced senescence and its evasion. Cell Signal, 23(1): 6–13
doi: 10.1016/j.cellsig.2010.07.004 pmid: 20633638
46 MebratuY, TesfaigziY (2009). How ERK1/2 activation controls cell proliferation and cell death: Is subcellular localization the answer? Cell Cycle, 8(8): 1168–1175
doi: 10.4161/cc.8.8.8147 pmid: 19282669
47 MichaloglouC, VredeveldL C, SoengasM S, DenoyelleC, KuilmanT, van der HorstC M, MajoorD M, ShayJ W, MooiW J, PeeperD S (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature, 436(7051): 720–724
doi: 10.1038/nature03890 pmid: 16079850
48 MooiW J, PeeperD S (2006). Oncogene-induced cell senescence—halting on the road to cancer. N Engl J Med, 355(10): 1037–1046
doi: 10.1056/NEJMra062285 pmid: 16957149
49 NadeauV, GuillemetteS, BélangerL F, JacobO, RoyS, CharronJ (2009). Map2k1 and Map2k2 genes contribute to the normal development of syncytiotrophoblasts during placentation. Development, 136(8): 1363–1374
doi: 10.1242/dev.031872 pmid: 19304888
50 NakagawaT, MabryM, de BustrosA, IhleJ N, NelkinB D, BaylinS B (1987). Introduction of v-Ha-ras oncogene induces differentiation of cultured human medullary thyroid carcinoma cells. Proc Natl Acad Sci USA, 84(16): 5923–5927
doi: 10.1073/pnas.84.16.5923 pmid: 3112776
51 OlsenC L, GardieB, YaswenP, StampferM R (2002). Raf-1-induced growth arrest in human mammary epithelial cells is p16-independent and is overcome in immortal cells during conversion. Oncogene, 21(41): 6328–6339
doi: 10.1038/sj.onc.1205780 pmid: 12214273
52 PagèsG, GuérinS, GrallD, BoninoF, SmithA, AnjuereF, AubergerP, PouysségurJ (1999). Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science, 286(5443): 1374–1377
doi: 10.1126/science.286.5443.1374 pmid: 10558995
53 PagèsG, LenormandP, L’AllemainG, ChambardJ C, MelocheS, PouysségurJ (1993). Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc Natl Acad Sci USA, 90(18): 8319–8323
doi: 10.1073/pnas.90.18.8319 pmid: 8397401
54 ParkJ I, PowersJ F, TischlerA S, StrockC J, BallD W, NelkinB D (2005b). GDNF-induced leukemia inhibitory factor can mediate differentiation via the MEK/ERK pathway in pheochromocytoma cells derived from nf1-heterozygous knockout mice. Exp Cell Res, 303(1): 79–88
pmid: 15572029
55 ParkJ I, StrockC J, BallD W, NelkinB D (2003). The Ras/Raf/MEK/extracellular signal-regulated kinase pathway induces autocrine-paracrine growth inhibition via the leukemia inhibitory factor/JAK/STAT pathway. Mol Cell Biol, 23(2): 543–554
doi: 10.1128/MCB.23.2.543-554.2003 pmid: 12509453
56 ParkJ I, StrockC J, BallD W, NelkinB D (2005a). Interleukin-1beta can mediate growth arrest and differentiation via the leukemia inhibitory factor/JAK/STAT pathway in medullary thyroid carcinoma cells. Cytokine, 29(3): 125–134
doi: 10.1016/j.cyto.2004.10.005 pmid: 15613280
57 PearsonG, RobinsonF, Beers GibsonT, XuB E, KarandikarM, BermanK, CobbM H (2001). Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev, 22(2): 153–183
pmid: 11294822
58 PinchotS N, KunnimalaiyaanM, SippelR S, ChenH (2009). Medullary thyroid carcinoma: targeted therapies and future directions. J Oncol, 2009: 183031
doi: 10.1155/2009/183031 pmid: 20069043
59 PritchardC A, SamuelsM L, BoschE, McMahonM (1995). Conditionally oncogenic forms of the A-Raf and B-Raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol Cell Biol, 15(11): 6430–6442
pmid: 7565795
60 RadtkeS, MilanovicM, RosséC, De RyckerM, LachmannS, HibbertA, KermorgantS, ParkerP J (2013). ERK2 but not ERK1 mediates HGF-induced motility in non-small cell lung carcinoma cell lines. J Cell Sci, 126(Pt 11): 2381–2391
doi: 10.1242/jcs.115832 pmid: 23549785
61 RaviR K, McMahonM, YangangZ, WilliamsJ R, DillehayL E, NelkinB D, MabryM (1999b). Raf-1-induced cell cycle arrest in LNCaP human prostate cancer cells. J Cell Biochem, 72(4): 458–469
doi: 10.1002/(SICI)1097-4644(19990315)72:4<458::AID-JCB2>3.0.CO;2-C pmid: 10022606
62 RaviR K, ThiagalingamA, WeberE, McMahonM, NelkinB D, MabryM (1999a). Raf-1 causes growth suppression and alteration of neuroendocrine markers in DMS53 human small-cell lung cancer cells. Am J Respir Cell Mol Biol, 20(4): 543–549
doi: 10.1165/ajrcmb.20.4.3406 pmid: 10100985
63 RaviR K, WeberE, McMahonM, WilliamsJ R, BaylinS, MalA, HarterM L, DillehayL E, ClaudioP P, GiordanoA, NelkinB D, MabryM (1998). Activated Raf-1 causes growth arrest in human small cell lung cancer cells. J Clin Invest, 101(1): 153–159
doi: 10.1172/JCI831 pmid: 9421477
64 RobbinsD J, ZhenE, OwakiH, VanderbiltC A, EbertD, GeppertT D, CobbM H (1993). Regulation and properties of extracellular signal-regulated protein kinases 1 and 2 in vitro. J Biol Chem, 268(7): 5097–5106
pmid: 8444886
65 RobertsP J, DerC J (2007). Targeting the Raf-MEK-ERK mitogen-activated protein kinase cascade for the treatment of cancer. Oncogene, 26(22): 3291–3310
doi: 10.1038/sj.onc.1210422 pmid: 17496923
66 RodríguezJ, CalvoF, GonzálezJ M, CasarB, AndrésV, CrespoP (2010). ERK1/2 MAP kinases promote cell cycle entry by rapid, kinase-independent disruption of retinoblastoma-lamin A complexes. J Cell Biol, 191(5): 967–979
doi: 10.1083/jcb.201004067 pmid: 21115804
67 RodríguezJ, CrespoP (2011). Working without kinase activity: phosphotransfer-independent functions of extracellular signal-regulated kinases. Sci Signal, 4(196): re3
doi: 10.1126/scisignal.2002324 pmid: 22028468
68 RoperE, WeinbergW, WattF M, LandH (2001). p19ARF-independent induction of p53 and cell cycle arrest by Raf in murine keratinocytes. EMBO Rep, 2(2): 145–150
doi: 10.1093/embo-reports/kve020 pmid: 11258707
69 RoskoskiR Jr (2012). ERK1/2 MAP kinases: structure, function, and regulation. Pharmacol Res, 66(2): 105–143
doi: 10.1016/j.phrs.2012.04.005 pmid: 22569528
70 RossomandoA J, WuJ, MichelH, ShabanowitzJ, HuntD F, WeberM J, SturgillT W (1992). Identification of Tyr-185 as the site of tyrosine autophosphorylation of recombinant mitogen-activated protein kinase p42mapk. Proc Natl Acad Sci USA, 89(13): 5779–5783
doi: 10.1073/pnas.89.13.5779 pmid: 1378617
71 Saba-El-LeilM K, VellaF D, VernayB, VoisinL, ChenL, LabrecqueN, AngS L, MelocheS (2003). An essential function of the mitogen-activated protein kinase Erk2 in mouse trophoblast development. EMBO Rep, 4(10): 964–968
doi: 10.1038/sj.embor.embor939 pmid: 14502223
72 SamuelsM L, WeberM J, BishopJ M, McMahonM (1993). Conditional transformation of cells and rapid activation of the mitogen-activated protein kinase cascade by an estradiol-dependent human raf-1 protein kinase. Mol Cell Biol, 13(10): 6241–6252
pmid: 8413224
73 SchaefferH J, CatlingA D, EblenS T, CollierL S, KraussA, WeberM J (1998). MP1: a MEK binding partner that enhances enzymatic activation of the MAP kinase cascade. Science, 281(5383): 1668–1671
doi: 10.1126/science.281.5383.1668 pmid: 9733512
74 SchollF A, DumesicP A, BarraganD I, HaradaK, CharronJ, KhavariP A (2009). Selective role for Mek1 but not Mek2 in the induction of epidermal neoplasia. Cancer Res, 69(9): 3772–3778
doi: 10.1158/0008-5472.CAN-08-1963 pmid: 19383924
75 SerranoM, LinA W, McCurrachM E, BeachD, LoweS W (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88(5): 593–602
doi: 10.1016/S0092-8674(00)81902-9 pmid: 9054499
76 ShapiroP S, WhalenA M, TolwinskiN S, WilsbacherJ, Froelich-AmmonS J, GarciaM, OsheroffN, AhnN G (1999). Extracellular signal-regulated kinase activates topoisomerase IIalpha through a mechanism independent of phosphorylation. Mol Cell Biol, 19(5): 3551–3560
pmid: 10207078
77 ShaulY D, GiborG, PlotnikovA, SegerR (2009). Specific phosphorylation and activation of ERK1c by MEK1b: a unique route in the ERK cascade. Genes Dev, 23(15): 1779–1790
doi: 10.1101/gad.523909 pmid: 19651986
78 ShaulY D, SegerR (2007). The MEK/ERK cascade: from signaling specificity to diverse functions. Biochim Biophys Acta, 1773(8): 1213–1226
doi: 10.1016/j.bbamcr.2006.10.005 pmid: 17112607
79 ShinJ, YangJ, LeeJ C, BaekK H (2013). Depletion of ERK2 but not ERK1 abrogates oncogenic Ras-induced senescence. Cell Signal, 25(12): 2540–2547
doi: 10.1016/j.cellsig.2013.08.014 pmid: 23993963
80 ShinS, DimitriC A, YoonS O, DowdleW, BlenisJ (2010). ERK2 but not ERK1 induces epithelial-to-mesenchymal transformation via DEF motif-dependent signaling events. Mol Cell, 38(1): 114–127
doi: 10.1016/j.molcel.2010.02.020 pmid: 20385094
81 SippelR S, CarpenterJ E, KunnimalaiyaanM, LagerholmS, ChenH (2003). Raf-1 activation suppresses neuroendocrine marker and hormone levels in human gastrointestinal carcinoid cells. Am J Physiol Gastrointest Liver Physiol, 285(2): G245–G254
pmid: 12851216
82 StarenkiD, SinghN K, JensenD R, PetersonF C, ParkJ I (2013). Recombinant leukemia inhibitory factor suppresses human medullary thyroid carcinoma cell line xenografts in mice. Cancer Lett, 339(1): 144–151
doi: 10.1016/j.canlet.2013.07.006 pmid: 23856028
83 SubramaniamS, UnsickerK (2010). ERK and cell death: ERK1/2 in neuronal death. FEBS J, 277: 22–29
pmid: 19843173
84 TakahashiC, ContrerasB, IwanagaT, TakegamiY, BakkerA, BronsonR T, NodaM, LodaM, HuntJ L, EwenM E (2006). Nras loss induces metastatic conversion of Rb1-deficient neuroendocrine thyroid tumor. Nat Genet, 38(1): 118–123
doi: 10.1038/ng1703 pmid: 16369533
85 TaylorJ R, LehmannB D, ChappellW H, AbramsS L, SteelmanL S, McCubreyJ A (2011). Cooperative effects of Akt-1 and Raf-1 on the induction of cellular senescence in doxorubicin or tamoxifen treated breast cancer cells. Oncotarget, 2(8): 610–626
pmid: 21881167
86 VaccaroA, ChenH, KunnimalaiyaanM (2006). In-vivo activation of Raf-1 inhibits tumor growth and development in a xenograft model of human medullary thyroid cancer. Anticancer Drugs, 17(7): 849–853
doi: 10.1097/01.cad.0000217424.36961.47 pmid: 16926634
87 VantaggiatoC, FormentiniI, BondanzaA, BoniniC, NaldiniL, BrambillaR (2006). ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially. J Biol, 5(5): 14
doi: 10.1186/jbiol38 pmid: 16805921
88 VoisinL, JulienC, DuhamelS, GopalbhaiK, ClaveauI, Saba-El-LeilM K, Rodrigue-GervaisI G, GabouryL, LamarreD, BasikM, MelocheS (2008). Activation of MEK1 or MEK2 isoform is sufficient to fully transform intestinal epithelial cells and induce the formation of metastatic tumors. BMC Cancer, 8(1): 337
doi: 10.1186/1471-2407-8-337 pmid: 19014680
89 VoisinL, Saba-El-LeilM K, JulienC, FréminC, MelocheS (2010). Genetic demonstration of a redundant role of extracellular signal-regulated kinase 1 (ERK1) and ERK2 mitogen-activated protein kinases in promoting fibroblast proliferation. Mol Cell Biol, 30(12): 2918–2932
doi: 10.1128/MCB.00131-10 pmid: 20368360
90 von ThunA, BirtwistleM, KalnaG, GrindlayJ, StrachanD, KolchW, von KriegsheimA, NormanJ C (2012). ERK2 drives tumour cell migration in three-dimensional microenvironments by suppressing expression of Rab17 and liprin-β2. J Cell Sci, 125(Pt 6): 1465–1477
doi: 10.1242/jcs.092916 pmid: 22328529
91 WoodK W, QiH, D’ArcangeloG, ArmstrongR C, RobertsT M, HalegouaS (1993). The cytoplasmic raf oncogene induces a neuronal phenotype in PC12 cells: a potential role for cellular raf kinases in neuronal growth factor signal transduction. Proc Natl Acad Sci USA, 90(11): 5016–5020
doi: 10.1073/pnas.90.11.5016 pmid: 8389463
92 WoodsD, ParryD, CherwinskiH, BoschE, LeesE, McMahonM (1997). Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol, 17(9): 5598–5611
pmid: 9271435
93 WortzelI, SegerR (2011). The ERK Cascade: Distinct Functions within Various Subcellular Organelles. Genes Cancer, 2(3): 195–209
doi: 10.1177/1947601911407328 pmid: 21779493
94 WuP K, HongS K, VeerankiS, KarkhanisM, StarenkiD, PlazaJ A, ParkJ I (2013). A mortalin/HSPA9-mediated switch in tumor-suppressive signaling of Raf/MEK/extracellular signal-regulated kinase. Mol Cell Biol, 33(20): 4051–4067
doi: 10.1128/MCB.00021-13 pmid: 23959801
95 WuX, NohS J, ZhouG, DixonJ E, GuanK L (1996). Selective activation of MEK1 but not MEK2 by A-Raf from epidermal growth factor-stimulated Hela cells. J Biol Chem, 271(6): 3265–3271
doi: 10.1074/jbc.271.6.3265 pmid: 8621729
96 YoonS, SegerR (2006). The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors, 24(1): 21–44
doi: 10.1080/02699050500284218 pmid: 16393692
97 ZhuJ, WoodsD, McMahonM, BishopJ M (1998). Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev, 12(19): 2997–3007
doi: 10.1101/gad.12.19.2997 pmid: 9765202
[1] Xin Xin Yu,Vimala Bondada,Colin Rogers,Carolyn A. Meyer,Chen Guang Yu. Targeting ERK1/2-calpain 1-NF-κB signal transduction in secondary tissue damage and astrogliosis after spinal cord injury[J]. Front. Biol., 2015, 10(5): 427-438.
[2] Marlen Knobloch,Sebastian Jessberger. Metabolic control of adult neural stem cell behavior[J]. Front. Biol., 2015, 10(2): 100-106.
[3] Claudia A. BERTUCCIO,Daniel C. DEVOR. Intermediate conductance, Ca2+-activated K+ channels: a novel target for chronic renal diseases[J]. Front. Biol., 2015, 10(1): 52-60.
[4] FoSheng HSU, Yuxin MAO. The Sac domain-containing phosphoinositide phosphatases: structure, function, and disease[J]. Front Biol, 2013, 8(4): 395-407.
[5] Mahandranauth A. CHETRAM, Cimona V. HINTON. ROS-mediated regulation of CXCR4 in cancer[J]. Front Biol, 2013, 8(3): 273-278.
[6] Vidyalakshmi RAJAGOPALAN, Jonathan P. D’AMICO, David E. WILKES. Cytoplasmic dynein-2: from molecules to human diseases[J]. Front Biol, 2013, 8(1): 119-126.
[7] Soumyashree DAS, Shiyan YU, Ryotaro SAKAMORI, Ewa Stypulkowski, Nan GAO. Wntless in Wnt secretion: molecular, cellular and genetic aspects[J]. Front Biol, 2012, 7(6): 587-593.
[8] Jia LUO. The role of GSK3beta in the development of the central nervous system[J]. Front Biol, 2012, 7(3): 212-220.
[9] Chen Guang YU. Distinct roles for ERK1 and ERK2 in pathophysiology of CNS[J]. Front Biol, 2012, 7(3): 267-276.
[10] Peter E. ZAGE, Andrew J. BEAN. Growth factor receptor trafficking as a potential therapeutic target in pediatric cancer[J]. Front Biol, 2012, 7(1): 1-13.
[11] Logan BASHLINE, Juan DU, Ying GU. The trafficking and behavior of cellulose synthase and a glimpse of potential cellulose synthesis regulators[J]. Front Biol, 2011, 6(5): 377-383.
[12] Jiani CAO, Zhifeng XIAO, Bing CHEN, Yuan GAO, Chunying SHI, Jinhuan WANG, Jianwu DAI. Differential effects of recombinant fusion proteins TAT-OCT4 and TAT-NANOG on adult human fibroblasts[J]. Front Biol, 2010, 5(5): 424-430.
[13] Yun-Bo GUO, Ya WEN, Wen-Xue GAO, Jing-Chao LI, Peng ZHOU, Zai-Ling BAI, Bo ZHANG, Shi-Qiang WANG, . The formation of Ca 2+ gradients at the cleavage furrows during cytokinesis of Zebrafish embryos[J]. Front. Biol., 2010, 5(4): 369-377.
[14] ZHOU Yueqin, LI Xuquan, FENG Huiqin, MI Ke, YANG Qingyao, YANG Xiaotong. A comparison of in vitro anticancerous activity and mechanism of ethanolic extracts from different Ganoderma genus[J]. Front. Biol., 2006, 1(3): 275-279.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed