Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (1) : 119-126    https://doi.org/10.1007/s11515-012-1242-y
REVIEW
Cytoplasmic dynein-2: from molecules to human diseases
Vidyalakshmi RAJAGOPALAN, Jonathan P. D’AMICO, David E. WILKES()
Department of Biological Sciences, Indiana University South Bend, South Bend, IN 46634-7111, USA
 Download: PDF(339 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The dynein motor protein family is involved in a wide variety of functions in eukaryotic cells. The axonemal dynein class and cytoplasmic dynein-1 subclass have been well characterized. However, the cytoplasmic dynein-2 subclass of the family has only recently begun to be understood. We describe the entire dynein family but focus on cytoplasmic dynein-2. Dynein-2 consists of a heavy, an intermediate, a light intermediate, and a light chain. The complex appears to function primarily as the retrograde motor for intraflagellar transport. This process is important for the formation and maintenance of cilia and flagella. Additionally, dynein-2 has roles in the control of ciliary length and in non-ciliary functions. Mutations in the human dynein-2 heavy chain lead to cilia-related diseases.

Keywords cilia      dynein      flagella      intraflagellar transport      microtubule     
Corresponding Author(s): WILKES David E.,Email:dewilkes@iusb.edu   
Issue Date: 01 February 2013
 Cite this article:   
Vidyalakshmi RAJAGOPALAN,Jonathan P. D’AMICO,David E. WILKES. Cytoplasmic dynein-2: from molecules to human diseases[J]. Front Biol, 2013, 8(1): 119-126.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-012-1242-y
https://academic.hep.com.cn/fib/EN/Y2013/V8/I1/119
Fig.1  Organization of the cytoplasmic dynein complexes. (A) Dynein-1 is composed of a homodimer of the DYH1 heavy chain (blue) that contains the motor activity. The smaller accessory subunits include two copies each of an intermediate chain (IC74), light intermediate chain (D1LIC), and three different light chains (LC7/roadblock, LC8, and Tctex1/rp3). (B) Dynein-2 consists of a homodimer of the DYH2 heavy chain (orange) and two copies each of an intermediate chain (D2IC), light intermediate chain (D2LIC), and light chain (LC8).
Fig.2  Dynein heavy chain sequence motifs define classes and subclasses of the family. Sequences near the ATP binding site of seven of the dynein heavy chains are aligned. The Walker A motif is absolutely conserved (gray box). Cytoplasmic (DYH1and DYH2) heavy chains are distinguished from axonemal (DYHs3-7) heavy chains by an alanine instead of an aspartic acid located five residues (yellow) from the end of the Walker A motif. Dynein-2 heavy chain sequences across species contain an AGK (blue) insertion approximately 100 residues from the Walker A motif.
Fig.3  Basic model of intraflagellar transport.Ciliary component proteins are synthesized in the cell body. These cargoes are attached to IFT particletrains at the base of the cilium and are transported to the growing tip, their site ofincorporation. Kinesin-II drives anterograde movement along the outer doublet microtubules. Inactive dynein-2 is also carried as a cargo by the kinesin-II motor in theanterograde direction. Dynein-2 carries the inactive kinesin-II and turnover products in the retrograde direction back to the cell body to be recycled.
1 Adhiambo C, Forney J D, Asai D J, LeBowitz J H (2005). The two cytoplasmic dynein-2 isoforms in Leishmania mexicana perform separate functions. Mol Biochem Parasitol , 143(2): 216–225
doi: 10.1016/j.molbiopara.2005.04.017 pmid:16054709
2 Asai D J, Beckwith S M, Kandl K A, Keating H H, Tjandra H, Forney J D (1994). The dynein genes of Paramecium tetraurelia. Sequences adjacent to the catalytic P-loop identify cytoplasmic and axonemal heavy chain isoforms. J Cell Sci , 107(Pt 4): 839–847
pmid:8056840
3 Asai D J, Brokaw C J (1993). Dynein heavy chain isoforms and axonemal motility. Trends Cell Biol , 3(11): 398–402
doi: 10.1016/0962-8924(93)90090-N pmid:14731658
4 Asai D J, Rajagopalan V, Wilkes D E (2009). Dynein-2 and ciliogenesis in Tetrahymena. Cell Motil Cytoskeleton , 66(8): 673–677
doi: 10.1002/cm.20397 pmid:19562737
5 Bae Y K, Lyman-Gingerich J, Barr M M, Knobel K M (2008). Identification of genes involved in the ciliary trafficking of C. elegans PKD-2. Dev Dyn , 237(8): 2021–2029
doi: 10.1002/dvdy.21531 pmid:18407554
6 Blacque O E, Cevik S, Kaplan O I (2008). Intraflagellar transport: from molecular characterisation to mechanism. Front Biosci , 13(13): 2633–2652
doi: 10.2741/2871 pmid:17981739
7 Brokaw C J (1994). Control of flagellar bending: a new agenda based on dynein diversity. Cell Motil Cytoskeleton , 28(3): 199–204
doi: 10.1002/cm.970280303 pmid:7954848
8 Brokaw C J, Kamiya R (1987). Bending patterns of Chlamydomonas flagella: IV. Mutants with defects in inner and outer dynein arms indicate differences in dynein arm function. Cell Motil Cytoskeleton , 8(1): 68–75
doi: 10.1002/cm.970080110 pmid:2958145
9 Bruno K S, Tinsley J H, Minke P F, Plamann M (1996). Genetic interactions among cytoplasmic dynein, dynactin, and nuclear distribution mutants of Neurospora crassa. Proc Natl Acad Sci U S A , 93(10): 4775–4780
doi: 10.1073/pnas.93.10.4775 pmid:8643479
10 Burgess S A, Walker M L, Sakakibara H, Knight P J, Oiwa K (2003). Dynein structure and power stroke. Nature , 421(6924): 715–718
doi: 10.1038/nature01377 pmid:12610617
11 Burkhardt J K, Echeverri C J, Nilsson T, Vallee R B (1997). Overexpression of the dynamitin (p50) subunit of the dynactin complex disrupts dynein-dependent maintenance of membrane organelle distribution. J Cell Biol , 139(2): 469–484
doi: 10.1083/jcb.139.2.469 pmid:9334349
12 Criswell P S, Ostrowski L E, Asai D J (1996). A novel cytoplasmic dynein heavy chain: expression of DHC1b in mammalian ciliated epithelial cells. J Cell Sci , 109(Pt 7): 1891–1898
pmid:8832411
13 Dagoneau N, Goulet M, Geneviève D, Sznajer Y, Martinovic J, Smithson S, Huber C, Baujat G, Flori E, Tecco L, Cavalcanti D, Delezoide A L, Serre V, Le Merrer M, Munnich A, Cormier-Daire V (2009). DYNC2H1 mutations cause asphyxiating thoracic dystrophy and short rib-polydactyly syndrome, type III. Am J Hum Genet , 84(5): 706–711
doi: 10.1016/j.ajhg.2009.04.016 pmid:19442771
14 Dutcher S K (1995). Flagellar assembly in two hundred and fifty easy-to-follow steps. Trends Genet , 11(10): 398–404
doi: 10.1016/S0168-9525(00)89123-4 pmid:7482766
15 Eberl D F, Hardy R W, Kernan M J (2000). Genetically similar transduction mechanisms for touch and hearing in Drosophila. J Neurosci , 20(16): 5981–5988
pmid:10934246
16 Echeverri C J, Paschal B M, Vaughan K T, Vallee R B (1996). Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J Cell Biol , 132(4): 617–633
doi: 10.1083/jcb.132.4.617 pmid:8647893
17 Ferkol T W, Leigh M W (2012). Ciliopathies: the central role of cilia in a spectrum of pediatric disorders. J Pediatr , 160(3): 366–371
doi: 10.1016/j.jpeds.2011.11.024 pmid:22177992
18 Fridolfsson H N, Starr D A (2010). Kinesin-1 and dynein at the nuclear envelope mediate the bidirectional migrations of nuclei. J Cell Biol , 191(1): 115–128
doi: 10.1083/jcb.201004118 pmid:20921138
19 Gibbons B H, Asai D J, Tang W J, Hays T S, Gibbons I R (1994). Phylogeny and expression of axonemal and cytoplasmic dynein genes in sea urchins. Mol Biol Cell , 5(1): 57–70
pmid:8186465
20 Gibbons B H, Gibbons I R (1973). The effect of partial extraction of dynein arms on the movement of reactivated sea-urchin sperm. J Cell Sci , 13(2): 337–357
pmid:4760590
21 Gibbons B H, Gibbons I R (1976). Functional recombination of dynein 1 with demembranated sea urchin sperm partially extracted with KC1. Biochem Biophys Res Commun , 73(1): 1–6
doi: 10.1016/0006-291X(76)90488-5 pmid:136965
22 Gibbons I R (1963). Studies on the protein components of cilia from Tetrahymena pyriformis. Proc Natl Acad Sci U S A , 50(5): 1002–1010
doi: 10.1073/pnas.50.5.1002 pmid:14082342
23 Gibbons I R, Rowe A J (1965). Dynein: A protein with adenosine triphosphatase activity from cilia. Science , 149(3682): 424–426
doi: 10.1126/science.149.3682.424 pmid:17809406
24 Grissom P M, Vaisberg E A, McIntosh J R (2002). Identification of a novel light intermediate chain (D2LIC) for mammalian cytoplasmic dynein 2. Mol Biol Cell , 13(3): 817–829
doi: 10.1091/mbc.01-08-0402 pmid:11907264
25 Gross S P, Welte M A, Block S M, Wieschaus E F (2000). Dynein-mediated cargo transport in vivo. A switch controls travel distance. J Cell Biol , 148(5): 945–956
doi: 10.1083/jcb.148.5.945 pmid:10704445
26 Harada A, Takei Y, Kanai Y, Tanaka Y, Nonaka S, Hirokawa N (1998). Golgi vesiculation and lysosome dispersion in cells lacking cytoplasmic dynein. J Cell Biol , 141(1): 51–59
doi: 10.1083/jcb.141.1.51 pmid:9531547
27 Hildebrandt F, Benzing T, Katsanis N (2011). Ciliopathies. N Engl J Med , 364(16): 1533–1543
pmid:21506742
28 Hirokawa N, Sato-Yoshitake R, Yoshida T, Kawashima T (1990). Brain dynein (MAP1C) localizes on both anterogradely and retrogradely transported membranous organelles in vivo. J Cell Biol , 111(3): 1027–1037
doi: 10.1083/jcb.111.3.1027 pmid:2143999
29 Hou Y, Pazour G J, Witman G B (2004). A dynein light intermediate chain, D1bLIC, is required for retrograde intraflagellar transport. Mol Biol Cell , 15(10): 4382–4394
doi: 10.1091/mbc.E04-05-0377 pmid:15269286
30 Huangfu D, Anderson K V (2005). Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci U S A , 102(32): 11325–11330
doi: 10.1073/pnas.0505328102 pmid:16061793
31 Ichikawa M, Watanabe Y, Murayama T, Toyoshima Y Y (2011). Recombinant human cytoplasmic dynein heavy chain 1 and 2: observation of dynein-2 motor activity in vitro. FEBS Lett , 585(15): 2419–2423
doi: 10.1016/j.febslet.2011.06.026 pmid:21723285
32 Itin C, Ulitzur N, Mühlbauer B, Pfeffer S R (1999). Mapmodulin, cytoplasmic dynein, and microtubules enhance the transport of mannose 6-phosphate receptors from endosomes to the trans-golgi network. Mol Biol Cell , 10(7): 2191–2197
pmid:10397758
33 Kim J, Kato M, Beachy P A (2009). Gli2 trafficking links Hedgehog-dependent activation of Smoothened in the primary cilium to transcriptional activation in the nucleus. Proc Natl Acad Sci U S A , 106(51): 21666–21671
doi: 10.1073/pnas.0912180106 pmid:19996169
34 King S J, Bonilla M, Rodgers M E, Schroer T A (2002). Subunit organization in cytoplasmic dynein subcomplexes. Protein Sci , 11(5): 1239–1250
pmid:11967380
35 Koonce M P, Samsó M (1996). Overexpression of cytoplasmic dynein’s globular head causes a collapse of the interphase microtubule network in Dictyostelium. Mol Biol Cell , 7(6): 935–948
pmid:8816999
36 Krock B L, Mills-Henry I, Perkins B D (2009). Retrograde intraflagellar transport by cytoplasmic dynein-2 is required for outer segment extension in vertebrate photoreceptors but not arrestin translocation. Invest Ophthalmol Vis Sci , 50(11): 5463–5471
doi: 10.1167/iovs.09-3828 pmid:19474410
37 Lee E, Sivan-Loukianova E, Eberl D F, Kernan M J (2008). An IFT-A protein is required to delimit functionally distinct zones in mechanosensory cilia. Curr Biol , 18(24): 1899–1906
doi: 10.1016/j.cub.2008.11.020 pmid:19097904
38 Lee S W, Wisniewski J C, Dentler W L, Asai D J (1999). Gene knockouts reveal separate functions for two cytoplasmic dyneins in Tetrahymena thermophila. Mol Biol Cell , 10(3): 771–784
pmid:10069817
39 Ma S, Trivi?os-Lagos L, Gr?f R, Chisholm R L (1999). Dynein intermediate chain mediated dynein-dynactin interaction is required for interphase microtubule organization and centrosome replication and separation in Dictyostelium. J Cell Biol , 147(6): 1261–1274
doi: 10.1083/jcb.147.6.1261 pmid:10601339
40 Merrill A E, Merriman B, Farrington-Rock C, Camacho N, Sebald E T, Funari V A, Schibler M J, Firestein M H, Cohn Z A, Priore M A, Thompson A K, Rimoin D L, Nelson S F, Cohn D H, Krakow D (2009). Ciliary abnormalities due to defects in the retrograde transport protein DYNC2H1 in short-rib polydactyly syndrome. Am J Hum Genet , 84(4): 542–549
doi: 10.1016/j.ajhg.2009.03.015 pmid:19361615
41 Mikami A, Tynan S H, Hama T, Luby-Phelps K, Saito T, Crandall J E, Besharse J C, Vallee R B (2002). Molecular structure of cytoplasmic dynein 2 and its distribution in neuronal and ciliated cells. J Cell Sci , 115(Pt 24): 4801–4808
doi: 10.1242/jcs.00168 pmid:12432068
42 Nishiura M, Kon T, Shiroguchi K, Ohkura R, Shima T, Toyoshima Y Y, Sutoh K (2004). A single-headed recombinant fragment of Dictyostelium cytoplasmic dynein can drive the robust sliding of microtubules. J Biol Chem , 279(22): 22799–22802
doi: 10.1074/jbc.M313362200 pmid:15051717
43 Ocbina P J, Anderson K V (2008). Intraflagellar transport, cilia, and mammalian Hedgehog signaling: analysis in mouse embryonic fibroblasts. Dev Dyn , 237(8): 2030–2038
doi: 10.1002/dvdy.21551 pmid:18488998
44 Ocbina P J, Eggenschwiler J T, Moskowitz I, Anderson K V (2011). Complex interactions between genes controlling trafficking in primary cilia. Nat Genet , 43(6): 547–553
doi: 10.1038/ng.832 pmid:21552265
45 Palmer K J, Hughes H, Stephens D J (2009). Specificity of cytoplasmic dynein subunits in discrete membrane-trafficking steps. Mol Biol Cell , 20(12): 2885–2899
doi: 10.1091/mbc.E08-12-1160 pmid:19386764
46 Palmer K J, MacCarthy-Morrogh L, Smyllie N, Stephens D J (2011). A role for Tctex-1 (DYNLT1) in controlling primary cilium length. Eur J Cell Biol , 90(10): 865–871
doi: 10.1016/j.ejcb.2011.05.003 pmid:21700358
47 Paschal B M, Shpetner H S, Vallee R B (1987). MAP 1C is a microtubule-activated ATPase which translocates microtubules in vitro and has dynein-like properties. J Cell Biol , 105(3): 1273–1282
doi: 10.1083/jcb.105.3.1273 pmid:2958482
48 Pazour G J, Dickert B L, Witman G B (1999). The DHC1b (DHC2) isoform of cytoplasmic dynein is required for flagellar assembly. J Cell Biol , 144(3): 473–481
doi: 10.1083/jcb.144.3.473 pmid:9971742
49 Pazour G J, Wilkerson C G, Witman G B (1998). A dynein light chain is essential for the retrograde particle movement of intraflagellar transport (IFT). J Cell Biol , 141(4): 979–992
doi: 10.1083/jcb.141.4.979 pmid:9585416
50 Perrone C A, Tritschler D, Taulman P, Bower R, Yoder B K, Porter M E (2003). A novel dynein light intermediate chain colocalizes with the retrograde motor for intraflagellar transport at sites of axoneme assembly in Chlamydomonas and Mammalian cells. Mol Biol Cell , 14(5): 2041–2056
doi: 10.1091/mbc.E02-10-0682 pmid:12802074
51 Pfister K K, Shah P R, Hummerich H, Russ A, Cotton J, Annuar A A, King S M, Fisher E M (2006). Genetic analysis of the cytoplasmic dynein subunit families. PLoS Genet , 2(1): e1
doi: 10.1371/journal.pgen.0020001 pmid:16440056
52 Porter M E (1996). Axonemal dyneins: assembly, organization, and regulation. Curr Opin Cell Biol , 8(1): 10–17
doi: 10.1016/S0955-0674(96)80042-1 pmid:8791407
53 Porter M E, Bower R, Knott J A, Byrd P, Dentler W (1999). Cytoplasmic dynein heavy chain 1b is required for flagellar assembly in Chlamydomonas. Mol Biol Cell , 10(3): 693–712
pmid:10069812
54 Rajagopalan V, Subramanian A, Wilkes D E, Pennock D G, Asai D J (2009). Dynein-2 affects the regulation of ciliary length but is not required for ciliogenesis in Tetrahymena thermophila. Mol Biol Cell , 20(2): 708–720
doi: 10.1091/mbc.E08-07-0746 pmid:19019986
55 Rana A A, Barbera J P, Rodriguez T A, Lynch D, Hirst E, Smith J C, Beddington R S (2004). Targeted deletion of the novel cytoplasmic dynein mD2LIC disrupts the embryonic organiser, formation of the body axes and specification of ventral cell fates. Development , 131(20): 4999–5007
doi: 10.1242/dev.01389 pmid:15371312
56 Reck-Peterson S L, Yildiz A, Carter A P, Gennerich A, Zhang N, Vale R D (2006). Single-molecule analysis of dynein processivity and stepping behavior. Cell , 126(2): 335–348
doi: 10.1016/j.cell.2006.05.046 pmid:16873064
57 Rompolas P, Pedersen L B, Patel-King R S, King S M (2007). Chlamydomonas FAP133 is a dynein intermediate chain associated with the retrograde intraflagellar transport motor. J Cell Sci , 120(Pt 20): 3653–3665
doi: 10.1242/jcs.012773 pmid:17895364
58 Rosenbaum J L, Witman G B (2002). Intraflagellar transport. Nat Rev Mol Cell Biol , 3(11): 813–825
doi: 10.1038/nrm952 pmid:12415299
59 Sakato M, King S M (2004). Design and regulation of the AAA+ microtubule motor dynein. J Struct Biol , 146(1-2): 58–71
doi: 10.1016/j.jsb.2003.09.026 pmid:15037237
60 Salina D, Bodoor K, Eckley D M, Schroer T A, Rattner J B, Burke B (2002). Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell , 108(1): 97–107
doi: 10.1016/S0092-8674(01)00628-6 pmid:11792324
61 Schafer J C, Haycraft C J, Thomas J H, Yoder B K, Swoboda P (2003). XBX-1 encodes a dynein light intermediate chain required for retrograde intraflagellar transport and cilia assembly in Caenorhabditis elegans. Mol Biol Cell , 14(5): 2057–2070
doi: 10.1091/mbc.E02-10-0677 pmid:12802075
62 Schnapp B J, Reese T S (1989). Dynein is the motor for retrograde axonal transport of organelles. Proc Natl Acad Sci U S A , 86(5): 1548–1552
doi: 10.1073/pnas.86.5.1548 pmid:2466291
63 Scholey J M (2003). Intraflagellar transport. Annu Rev Cell Dev Biol , 19(1): 423–443
doi: 10.1146/annurev.cellbio.19.111401.091318 pmid:14570576
64 Signor D, Wedaman K P, Orozco J T, Dwyer N D, Bargmann C I, Rose L S, Scholey J M (1999). Role of a class DHC1b dynein in retrograde transport of IFT motors and IFT raft particles along cilia, but not dendrites, in chemosensory neurons of living Caenorhabditis elegans. J Cell Biol , 147(3): 519–530
doi: 10.1083/jcb.147.3.519 pmid:10545497
65 S?hle J, Machuy N, Smailbegovic E, Holtzmann U, Gr?nniger E, Wenck H, St?b F, Winnefeld M (2012). Identification of new genes involved in human adipogenesis and fat storage. PLoS One , 7(2): e31193
doi: 10.1371/journal.pone.0031193 pmid:22384002
66 Thiel C, Kessler K, Giessl A, Dimmler A, Shalev S A, von der Haar S, Zenker M, Zahnleiter D, St?ss H, Beinder E, Abou Jamra R, Ekici A B, Schr?der-Kress N, Aigner T, Kirchner T, Reis A, Brandst?tter J H, Rauch A (2011). NEK1 mutations cause short-rib polydactyly syndrome type majewski. Am J Hum Genet , 88(1): 106–114
doi: 10.1016/j.ajhg.2010.12.004 pmid:21211617
67 Vaisberg E A, Grissom P M, McIntosh J R (1996). Mammalian cells express three distinct dynein heavy chains that are localized to different cytoplasmic organelles. J Cell Biol , 133(4): 831–842
doi: 10.1083/jcb.133.4.831 pmid:8666668
68 Vale R D (2003). The molecular motor toolbox for intracellular transport. Cell , 112(4): 467–480
doi: 10.1016/S0092-8674(03)00111-9 pmid:12600311
69 Wicks S R, de Vries C J, van Luenen H G, Plasterk R H (2000). CHE-3, a cytosolic dynein heavy chain, is required for sensory cilia structure and function in Caenorhabditis elegans. Dev Biol , 221(2): 295–307
doi: 10.1006/dbio.2000.9686 pmid:10790327
70 Wilkie G S, Davis I (2001). Drosophila wingless and pair-rule transcripts localize apically by dynein-mediated transport of RNA particles. Cell , 105(2): 209–219
doi: 10.1016/S0092-8674(01)00312-9 pmid:11336671
71 Willemsen M H, Vissers L E, Willemsen M A, van Bon B W, Kroes T, de Ligt J, de Vries B B, Schoots J, Lugtenberg D, Hamel B C, van Bokhoven H, Brunner H G, Veltman J A, Kleefstra T (2012). Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects. J Med Genet , 49(3): 179–183
doi: 10.1136/jmedgenet-2011-100542 pmid:22368300
72 Wo?niak M J, Bola B, Brownhill K, Yang Y C, Levakova V, Allan V J (2009). Role of kinesin-1 and cytoplasmic dynein in endoplasmic reticulum movement in VERO cells. J Cell Sci , 122(Pt 12): 1979–1989
doi: 10.1242/jcs.041962 pmid:19454478
73 Xiang X, Beckwith S M, Morris N R (1994). Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc Natl Acad Sci U S A , 91(6): 2100–2104
doi: 10.1073/pnas.91.6.2100 pmid:8134356
74 Zheng Y, Wildonger J, Ye B, Zhang Y, Kita A, Younger S H, Zimmerman S, Jan L Y, Jan Y N (2008). Dynein is required for polarized dendritic transport and uniform microtubule orientation in axons. Nat Cell Biol , 10(10): 1172–1180
doi: 10.1038/ncb1777 pmid:18758451
[1] Alexandra K. SUCHOWERSKA,Thomas FATH. Cytoskeletal changes in diseases of the nervous system[J]. Front. Biol., 2014, 9(1): 5-17.
[2] Sneha RAO, Shaoyu GE, Maya SHELLY. Centrosome positioning and primary cilia assembly orchestrate neuronal development[J]. Front Biol, 2012, 7(5): 412-427.
[3] Xuan YE, Aimin LIU. Hedgehog signaling: mechanisms and evolution[J]. Front Biol, 2011, 6(6): 504-521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed