Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2013, Vol. 8 Issue (6) : 557-568    https://doi.org/10.1007/s11515-013-1279-6
REVIEW
Dissection of gene function at clonal level using mosaic analysis with double markers
Simon HIPPENMEYER()
IST Austria (Institute of Science and Technology Austria), Am Campus 1, A-3400 Klosterneuburg, Austria
 Download: PDF(595 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

MADM (Mosaic Analysis with Double Markers) technology offers a genetic approach in mice to visualize and concomitantly manipulate genetically defined cells at clonal level and single cell resolution. MADM employs Cre recombinase/loxP-dependent interchromosomal mitotic recombination to reconstitute two split marker genes—green GFP and red tdTomato — and can label sparse clones of homozygous mutant cells in one color and wild-type cells in the other color in an otherwise unlabeled background. At present, major MADM applications include lineage tracing, single cell labeling, conditional knockouts in small populations of cells and induction of uniparental chromosome disomy to assess effects of genomic imprinting. MADM can be applied universally in the mouse with the sole limitation being the specificity of the promoter controlling Cre recombinase expression. Here I review recent developments and extensions of the MADM technique and give an overview of the major discoveries and progresses enabled by the implementation of the novel genetic MADM tools.

Keywords MADM      genetic mosaic      clonal analysis      lineage tracing      neural development      genomic imprinting     
Corresponding Author(s): HIPPENMEYER Simon,Email:simon.hippenmeyer@ist.ac.at   
Issue Date: 01 December 2013
 Cite this article:   
Simon HIPPENMEYER. Dissection of gene function at clonal level using mosaic analysis with double markers[J]. Front Biol, 2013, 8(6): 557-568.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-013-1279-6
https://academic.hep.com.cn/fib/EN/Y2013/V8/I6/557
Fig.1  The MADM principle. MADM utilizes Cre/LoxP-dependent interchromosomal recombination to generate distinctly labeled homozygous mutant cells in an otherwise heterozygous background in mice. For MADM, two reciprocal chimeric marker genes – GT and TG – are targeted separately to identical loci on homologous chromosomes. Following recombinase-mediated interchromosomal recombination, functional green and red fluorescent proteins are reconstituted. If recombination occurred at the G2 phase and the two recombinant chromosomes were segregated into different daughter cells (X-Segregation, G2-X events), each daughter cell would express a single fluorescent protein. When a mutation of interest is introduced distal to one MADM cassette, then one of the daughter cells would be homozygous mutant (here the green cell) for the gene of interest, whereas its sibling, labeled by a different color (red), would be homozygous wild-type. In addition to G2-X events, recombination in G2 followed by Z-Segregation (G2-Z events, right branch), G1, or postmitoticrecombinations (not shown) do not alter the heterozygote genotype, but can produce double-labeled (yellow) cells. Adapted with permission from ().
Fig.2  MADM-labeled Neurons in Different Brain Regions.
A-DOverview of MADM-labeled cells in cortex (A), olfactory bulb (B), cerebellum (C) and hippocampus (D).
E-H Examples of excitatory pyramidal cells in cortex (E; MADM/), inhibitory interneurons in cortex (F; MADM/), Purkinje and granule cells in cerebellum (G; MADM/) and CA1 pyramidal cells in hippocampus (H; MADM/). E and G are adapted and modified with permission after ().
Fig.3  Mosaic Generation of Chromosomal Disomy to Probe Genomic Imprinting.
AG2-X MADM events result in near complete uniparental chromosomal disomy labeled in green (GFP) and red (tdT) fluorescent colors, respectively. The GT MADM cassette is inherited from the mother (♀) and the TG MADM cassette from the father (♂), as shown in this schematic, red cells harbor unimaternal chromosomal disomy (♀♀) and green cells unipaternal chromosomal disomy (♂♂). Consequently, maternally expressed genes (Mat, pink) are expressed at twice the normal dose and paternally expressed genes (Pat, blue) are not expressed in red cells with unimaternaldisomy. In contrast, paternally expressed genes are expressed at twice the normal dose and maternally expressed genes are not expressed in green, unipaternaldisomy cells. Thus, genes subject to imprinting are differentially expressed depending on the uniparental chromosomal disomy. Biallelically expressed genes (Bi, black) are not affected.
B-DMADM labeling of Chr.7 UPDs in the liver (B), heart (C) and brain (hippocampus) (D) at P21. The allele was introduced from the mother (pink), and theallele from the father (blue), consequently, the ♂♂ cells are green and ♀♀cells are red. Note the increased number of green ♂♂ cells in the liver (B) but equal number of green ♂♂ and red ♀♀ cells in heart (C) and brain (D). DAPI staining (blue) outline the general organization of the hippocampus. Adapted with permission from ().
1 Armakolas A, Klar A J (2006). Cell type regulates selective segregation of mouse chromosome 7 DNA strands in mitosis. Science , 311(5764): 1146-1149
doi: 10.1126/science.1120519 pmid:16497932
2 Ayala R, Shu T, Tsai L H (2007). Trekking across the brain: the journey of neuronal migration. Cell , 128(1): 29-43
doi: 10.1016/j.cell.2006.12.021 pmid:17218253
3 Badea T C, Wang Y, Nathans J (2003). A noninvasive genetic/pharmacologic strategy for visualizing cell morphology and clonal relationships in the mouse. J Neurosci , 23(6): 2314-2322
4 Barlow D P (2011). Genomic imprinting: a mammalian epigenetic discovery model. Annu Rev Genet , 45(1): 379-403
doi: 10.1146/annurev-genet-110410-132459 pmid:21942369
5 Bartolomei M S, Ferguson-Smith A C (2011). Mammalian genomic imprinting. Cold Spring Harb Perspect Biol , 3(7): 3
doi: 10.1101/cshperspect.a002592 pmid:21576252
6 Bi W, Yan J, Stankiewicz P, Park S S, Walz K, Boerkoel C F, Potocki L, Shaffer L G, Devriendt K, Nowaczyk M J, Inoue K, Lupski J R (2002). Genes in a refined Smith-Magenis syndrome critical deletion interval on chromosome 17p11.2 and the syntenic region of the mouse. Genome Res , 12(5): 713-728
doi: 10.1101/gr.73702 pmid:11997338
7 Blair S S (2003). Genetic mosaic techniques for studying Drosophila development. Development , 130(21): 5065-5072
doi: 10.1242/dev.00774 pmid:12975340
8 Bonaguidi M A, Wheeler M A, Shapiro J S, Stadel R P, Sun G J, Ming G L, Song H (2011). In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell , 145(7): 1142-1155
doi: 10.1016/j.cell.2011.05.024 pmid:21664664
9 Branda C S, Dymecki S M (2004). Talking about a revolution: The impact of site-specific recombinases on genetic analyses in mice. Dev Cell , 6(1): 7-28
doi: 10.1016/S1534-5807(03)00399-X pmid:14723844
10 Brennand K, Huangfu D, Melton D (2007). All beta cells contribute equally to islet growth and maintenance. PLoS Biol , 5(7): e163
doi: 10.1371/journal.pbio.0050163 pmid:17535113
11 Buckingham M E, Meilhac S M (2011). Tracing cells for tracking cell lineage and clonal behavior. Dev Cell , 21(3): 394-409
doi: 10.1016/j.devcel.2011.07.019 pmid:21920310
12 Cajal S R y (1911). Histology of the Nervous System of Man and Vertebrates. Oxford University Press, Inc, Oxford 1995 Translation
13 Cepko C, Ryder E F, Austin C P, Walsh C, Fekete D M (1995). Lineage analysis using retrovirus vectors. Methods Enzymol , 254: 387-419
doi: 10.1016/0076-6879(95)54027-X pmid:8531701
14 Chow B Y, Han X, Boyden E S (2012). Genetically encoded molecular tools for light-driven silencing of targeted neurons. Prog Brain Res , 196: 49-61
doi: 10.1016/B978-0-444-59426-6.00003-3 pmid:22341320
15 Cowan W M (1998). The emergence of modern neuroanatomy and developmental neurobiology. Neuron , 20(3): 413-426
doi: 10.1016/S0896-6273(00)80985-X pmid:9539119
16 De Paola V, Arber S, Caroni P (2003). AMPA receptors regulate dynamic equilibrium of presynaptic terminals in mature hippocampal networks. Nat Neurosci , 6(5): 491-500
pmid:12692557
17 Desgraz R, Herrera P L (2009). Pancreatic neurogenin 3-expressing cells are unipotent islet precursors. Development , 136(21): 3567-3574
doi: 10.1242/dev.039214 pmid:19793886
18 Dessaud E, Yang L L, Hill K, Cox B, Ulloa F, Ribeiro A, Mynett A, Novitch B G, Briscoe J (2007). Interpretation of the sonic hedgehog morphogen gradient by a temporal adaptation mechanism. Nature , 450(7170): 717-720
doi: 10.1038/nature06347 pmid:18046410
19 Dymecki S M, Kim J C (2007). Molecular neuroanatomy’s “Three Gs”: a primer. Neuron , 54(1): 17-34
doi: 10.1016/j.neuron.2007.03.009 pmid:17408575
20 Espinosa J S, Luo L (2008). Timing neurogenesis and differentiation: insights from quantitative clonal analyses of cerebellar granule cells. J Neurosci , 28: 2301-2312
21 Espinosa J S, Wheeler D G, Tsien R W, Luo L (2009). Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B. Neuron , 62(2): 205-217
doi: 10.1016/j.neuron.2009.03.006 pmid:19409266
22 Feil R, Brocard J, Mascrez B, LeMeur M, Metzger D, Chambon P (1996). Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci USA , 93(20): 10887-10890
doi: 10.1073/pnas.93.20.10887 pmid:8855277
23 Feinberg A P (2007). Phenotypic plasticity and the epigenetics of human disease. Nature , 447(7143): 433-440
doi: 10.1038/nature05919 pmid:17522677
24 Feng G, Mellor R H, Bernstein M, Keller-Peck C, Nguyen Q T, Wallace M, Nerbonne J M, Lichtman J W, Sanes J R (2000). Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron , 28(1): 41-51
doi: 10.1016/S0896-6273(00)00084-2 pmid:11086982
25 Foo L C, Allen N J, Bushong E A, Ventura P B, Chung W S, Zhou L, Cahoy J D, Daneman R, Zong H, Ellisman M H, Barres B A (2011). Development of a method for the purification and culture of rodent astrocytes. Neuron , 71(5): 799-811
doi: 10.1016/j.neuron.2011.07.022 pmid:21903074
26 Franco S J, Müller U (2013). Shaping our minds: stem and progenitor cell diversity in the mammalian neocortex. Neuron , 77(1): 19-34
doi: 10.1016/j.neuron.2012.12.022 pmid:23312513
27 Gao P, Sultan K T, Zhang X J, Shi S H (2013). Lineage-dependent circuit assembly in the neocortex. Development , 140(13): 2645-2655
doi: 10.1242/dev.087668 pmid:23757410
28 Gorski J A, Talley T, Qiu M, Puelles L, Rubenstein J L, Jones K R (2002). Cortical excitatory neurons and glia, but not GABAergic neurons, are produced in the Emx1-expressing lineage. J Neurosci , 22: 6309-6314
29 Hallonet M E, Le Douarin N M (1993). Tracing neuroepithelial cells of the mesencephalic and metencephalic alar plates during cerebellar ontogeny in quail-chick chimaeras. Eur J Neurosci , 5(9): 1145-1155
doi: 10.1111/j.1460-9568.1993.tb00969.x pmid:8281319
30 Hayashi S, McMahon A P (2002). Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol , 244(2): 305-318
doi: 10.1006/dbio.2002.0597 pmid:11944939
31 Hegemann P, M?glich A (2011). Channelrhodopsin engineering and exploration of new optogenetic tools. Nat Methods , 8(1): 39-42
doi: 10.1038/nmeth.f.327 pmid:21191371
32 Hippenmeyer S, Johnson R L, Luo L (2013). Mosaic analysis with double markers reveals cell-type-specific paternal growth dominance. Cell Rep , 3: 960-967
33 Hippenmeyer S, Vrieseling E, Sigrist M, Portmann T, Laengle C, Ladle D R, Arber S (2005). A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol , 3(5): e159
doi: 10.1371/journal.pbio.0030159 pmid:15836427
34 Hippenmeyer S, Youn Y H, Moon H M, Miyamichi K, Zong H, Wynshaw-Boris A, Luo L (2010). Genetic mosaic dissection of Lis1 and Ndel1 in neuronal migration. Neuron , 68(4): 695-709
doi: 10.1016/j.neuron.2010.09.027 pmid:21092859
35 Imayoshi I, Ohtsuka T, Metzger D, Chambon P, Kageyama R (2006). Temporal regulation of Cre recombinase activity in neural stem cells. Genesis , 44(5): 233-238
doi: 10.1002/dvg.20212 pmid:16652364
36 Indra A K, Warot X, Brocard J, Bornert J M, Xiao J H, Chambon P, Metzger D (1999). Temporally-controlled site-specific mutagenesis in the basal layer of the epidermis: comparison of the recombinase activity of the tamoxifen-inducible Cre-ER(T) and Cre-ER(T2) recombinases. Nucleic Acids Res , 27(22): 4324-4327
doi: 10.1093/nar/27.22.4324 pmid:10536138
37 Jefferis G S, Livet J (2012). Sparse and combinatorial neuron labelling. Curr Opin Neurobiol , 22(1): 101-110
doi: 10.1016/j.conb.2011.09.010 pmid:22030345
38 Lao Z, Raju G P, Bai C B, Joyner A L (2012). MASTR: a technique for mosaic mutant analysis with spatial and temporal control of recombination using conditional floxed alleles in mice. Cell Rep , 2: 386-396
39 Lee T, Luo L (1999). Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron , 22(3): 451-461
doi: 10.1016/S0896-6273(00)80701-1 pmid:10197526
40 Legué E, Joyner A L (2010). Genetic fate mapping using site-specific recombinases. Methods Enzymol , 477: 153-181
doi: 10.1016/S0076-6879(10)77010-5 pmid:20699142
41 Lehtinen M K, Walsh C A (2011). Neurogenesis at the brain-cerebrospinal fluid interface. Annu Rev Cell Dev Biol , 27(1): 653-679
doi: 10.1146/annurev-cellbio-092910-154026 pmid:21801012
42 Lewandoski M (2001). Conditional control of gene expression in the mouse. Nat Rev Genet , 2(10): 743-755
doi: 10.1038/35093537 pmid:11584291
43 Liang H, Xiao G, Yin H, Hippenmeyer S, Horowitz J M, Ghashghaei H T (2013). Neural development is dependent on the function of specificity protein 2 in cell cycle progression. Development , 140(3): 552-561
doi: 10.1242/dev.085621 pmid:23293287
44 Liu C, Sage J C, Miller M R, Verhaak R G, Hippenmeyer S, Vogel H, Foreman O, Bronson R T, Nishiyama A, Luo L, Zong H (2011). Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell , 146(2): 209-221
doi: 10.1016/j.cell.2011.06.014 pmid:21737130
45 Liu P, Jenkins N A, Copeland N G (2002). Efficient Cre-loxP-induced mitotic recombination in mouse embryonic stem cells. Nat Genet , 30(1): 66-72
doi: 10.1038/ng788 pmid:11740496
46 Lui J H, Hansen D V, Kriegstein A R (2011). Development and evolution of the human neocortex. Cell , 146(1): 18-36
doi: 10.1016/j.cell.2011.06.030 pmid:21729779
47 Luo L (2007). Fly MARCM and mouse MADM: genetic methods of labeling and manipulating single neurons. Brain Res Brain Res Rev , 55(2): 220-227
doi: 10.1016/j.brainresrev.2007.01.012 pmid:17408568
48 Mabb A M, Judson M C, Zylka M J, Philpot B D (2011). Angelman syndrome: insights into genomic imprinting and neurodevelopmental phenotypes. Trends Neurosci , 34(6): 293-303
doi: 10.1016/j.tins.2011.04.001 pmid:21592595
49 Madisen L, Zwingman T A, Sunkin S M, Oh S W, Zariwala H A, Gu H, Ng L L, Palmiter R D, Hawrylycz M J, Jones A R, Lein E S, Zeng H (2010). A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci , 13(1): 133-140
doi: 10.1038/nn.2467 pmid:20023653
50 Marín O, Valiente M, Ge X, Tsai L H (2010). Guiding neuronal cell migrations. Cold Spring Harb Perspect Biol , 2(2): a001834
doi: 10.1101/cshperspect.a001834 pmid:20182622
51 McConnell S K (1988). Fates of visual cortical neurons in the ferret after isochronic and heterochronic transplantation. J Neurosci , 8: 945-974
52 Merkle F T, Mirzadeh Z, Alvarez-Buylla A (2007). Mosaic organization of neural stem cells in the adult brain. Science , 317(5836): 381-384
doi: 10.1126/science.1144914 pmid:17615304
53 Metzger D, Chambon P (2001). Site- and time-specific gene targeting in the mouse. Methods , 24(1): 71-80
doi: 10.1006/meth.2001.1159 pmid:11327805
54 Ming G L, Song H (2011). Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron , 70(4): 687-702
doi: 10.1016/j.neuron.2011.05.001 pmid:21609825
55 Miyoshi G, Hjerling-Leffler J, Karayannis T, Sousa V H, Butt S J, Battiste J, Johnson J E, Machold R P, Fishell G (2010). Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J Neurosci , 30: 1582-1594
56 Morgan T H (1914). Mosaics and gynandromorphs in Drosophila. Proc Soc Exp Biol Med , 11(6): 171-172
doi: 10.3181/00379727-11-105
57 Muzumdar M D, Luo L, Zong H (2007). Modeling sporadic loss of heterozygosity in mice by using mosaic analysis with double markers (MADM). Proc Natl Acad Sci USA , 104(11): 4495-4500
doi: 10.1073/pnas.0606491104 pmid:17360552
58 Nelson S B, Sugino K, Hempel C M (2006). The problem of neuronal cell types: a physiological genomics approach. Trends Neurosci , 29(6): 339-345
doi: 10.1016/j.tins.2006.05.004 pmid:16714064
59 Nicholls R D, Knepper J L (2001). Genome organization, function, and imprinting in Prader-Willi and Angelman syndromes. Annu Rev Genomics Hum Genet , 2(1): 153-175
doi: 10.1146/annurev.genom.2.1.153 pmid:11701647
60 Ninkovic J, Gotz M (2013). Fate specification in the adult brain-lessons for eliciting neurogenesis from glial cells. BioEssays , 35: 242-252
61 Novak A, Guo C, Yang W, Nagy A, Lobe C G (2000). Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis , 28(3-4): 147-155
doi: 10.1002/1526-968X(200011/12)28:3/4<147::AID-GENE90>3.0.CO;2-G pmid:11105057
62 Petersen P H, Zou K, Hwang J K, Jan Y N, Zhong W (2002). Progenitor cell maintenance requires numb and numblike during mouse neurogenesis. Nature , 419(6910): 929-934
doi: 10.1038/nature01124 pmid:12410312
63 Reiner O, Carrozzo R, Shen Y, Wehnert M, Faustinella F, Dobyns W B, Caskey C T, Ledbetter D H (1993). Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature , 364(6439): 717-721
doi: 10.1038/364717a0 pmid:8355785
64 Ross M E, Walsh C A (2001). Human brain malformations and their lessons for neuronal migration. Annu Rev Neurosci , 24(1): 1041-1070
doi: 10.1146/annurev.neuro.24.1.1041 pmid:11520927
65 Sanes J R (1989). Analysing cell lineage with a recombinant retrovirus. Trends Neurosci , 12(1): 21-28
doi: 10.1016/0166-2236(89)90152-5 pmid:2471334
66 Schnütgen F, Doerflinger N, Calléja C, Wendling O, Chambon P, Ghyselinck N B (2003). A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol , 21(5): 562-565
doi: 10.1038/nbt811 pmid:12665802
67 Shaner N C, Campbell R E, Steinbach P A, Giepmans B N, Palmer A E, Tsien R Y (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol , 22(12): 1567-1572
doi: 10.1038/nbt1037 pmid:15558047
68 Smith G B, Fitzpatrick D (2012). Specifying cortical circuits: a role for cell lineage. Neuron , 75(1): 4-5
doi: 10.1016/j.neuron.2012.06.032 pmid:22794254
69 Soriano P (1999). Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet , 21(1): 70-71
doi: 10.1038/5007 pmid:9916792
70 Stern C (1936). Somatic Crossing over and Segregation in Drosophila Melanogaster. Genetics , 21(6): 625-730
pmid:17246815
71 Tasic B, Miyamichi K, Hippenmeyer S, Dani V S, Zeng H, Joo W, Zong H, Chen-Tsai Y, Luo L (2012). Extensions of MADM (mosaic analysis with double markers) in mice. PLoS ONE , 7(3): e33332
doi: 10.1371/journal.pone.0033332 pmid:22479386
72 Tronche F, Kellendonk C, Kretz O, Gass P, Anlag K, Orban P C, Bock R, Klein R, Schütz G (1999). Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet , 23(1): 99-103
doi: 10.1038/12703 pmid:10471508
73 Tsai J W, Chen Y, Kriegstein A R, Vallee R B (2005). LIS1 RNA interference blocks neural stem cell division, morphogenesis, and motility at multiple stages. J Cell Biol , 170(6): 935-945
doi: 10.1083/jcb.200505166 pmid:16144905
74 Walsh C, Cepko C L (1992). Widespread dispersion of neuronal clones across functional regions of the cerebral cortex. Science , 255(5043): 434-440
doi: 1734520" target="_blank">10.1126/science. pmid:1734520 pmid:1734520
75 Wingate R J, Hatten M E (1999). The role of the rhombic lip in avian cerebellum development. Development , 126(20): 4395-4404
pmid:10498676
76 Woodruff A, Xu Q, Anderson S A, Yuste R (2009). Depolarizing effect of neocortical chandelier neurons. Front Neural Circuits 3: 15.
77 Wynshaw-Boris A, Pramparo T, Youn Y H, Hirotsune S (2010). Lissencephaly: mechanistic insights from animal models and potential therapeutic strategies. Semin Cell Dev Biol , 21(8): 823-830
doi: 10.1016/j.semcdb.2010.07.008 pmid:20688183
78 Xu Q, Tam M, Anderson S A (2008). Fate mapping Nkx2.1-lineage cells in the mouse telencephalon. J Comp Neurol , 506(1): 16-29
doi: 10.1002/cne.21529 pmid:17990269
79 Xu T, Rubin G M (1993). Analysis of genetic mosaics in developing and adult Drosophila tissues. Development , 117(4): 1223-1237
pmid:8404527
80 Yang S B, Mclemore K D, Tasic B, Luo L, Jan Y N, Jan L Y (2012). Kv1.1-dependent control of hippocampal neuron number as revealed by mosaic analysis with double markers. J Physiol , 590(Pt 11): 2645-2658
pmid:22411008
81 Yingling J, Toyo-Oka K, Wynshaw-Boris A (2003). Miller-Dieker syndrome: analysis of a human contiguous gene syndrome in the mouse. Am J Hum Genet , 73(3): 475-488
doi: 10.1086/378096 pmid:12905154
82 Yingling J, Youn Y H, Darling D, Toyo-Oka K, Pramparo T, Hirotsune S, Wynshaw-Boris A (2008). Neuroepithelial stem cell proliferation requires LIS1 for precise spindle orientation and symmetric division. Cell , 132(3): 474-486
doi: 10.1016/j.cell.2008.01.026 pmid:18267077
83 Youn Y H, Pramparo T, Hirotsune S, Wynshaw-Boris A (2009). Distinct dose-dependent cortical neuronal migration and neurite extension defects in Lis1 and Ndel1 mutant mice. J Neurosci , 29: 15520-15530
84 Young P, Qiu L, Wang D, Zhao S, Gross J, Feng G (2008). Single-neuron labeling with inducible Cre-mediated knockout in transgenic mice. Nat Neurosci , 11(6): 721-728
doi: 10.1038/nn.2118 pmid:18454144
85 Zhang F, Aravanis A M, Adamantidis A, de Lecea L, Deisseroth K (2007). Circuit-breakers: optical technologies for probing neural signals and systems. Nat Rev Neurosci , 8(8): 577-581
doi: 10.1038/nrn2192 pmid:17643087
86 Zhu X, Bergles D E, Nishiyama A (2008). NG2 cells generate both oligodendrocytes and gray matter astrocytes. Development , 135(1): 145-157
doi: 10.1242/dev.004895 pmid:18045844
87 Zhuo L, Theis M, Alvarez-Maya I, Brenner M, Willecke K, Messing A (2001). hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis , 31(2): 85-94
doi: 10.1002/gene.10008 pmid:11668683
88 Zong H, Espinosa J S, Su H H, Muzumdar M D, Luo L (2005). Mosaic analysis with double markers in mice. Cell , 121(3): 479-492
doi: 10.1016/j.cell.2005.02.012 pmid:15882628
[1] Fatih Semerci,Mirjana Maletic-Savatic. Transgenic mouse models for studying adult neurogenesis[J]. Front. Biol., 2016, 11(3): 151-167.
[2] Daniel A. Berg,Ki-Jun Yoon,Brett Will,Alex Y. Xiao,Nam-Shik Kim,Kimberly M. Christian,Hongjun Song,Guo-li Ming. Tbr2-expressing intermediate progenitor cells in the adult mouse hippocampus are unipotent neuronal precursors with limited amplification capacity under homeostasis[J]. Front. Biol., 2015, 10(3): 262-271.
[3] Gary R. HIME,Nicole SIDDALL,Katja HORVAY,Helen E. ABUD. Analyzing stem cell dynamics: use of cutting edge genetic approaches in model organisms[J]. Front. Biol., 2015, 10(1): 1-10.
[4] Feng C. ZHOU. DNA methylation program during development[J]. Front Biol, 2012, 7(6): 485-494.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed