Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front. Biol.    2015, Vol. 10 Issue (3) : 279-286    https://doi.org/10.1007/s11515-015-1344-4
RESEARCH ARTICLE
Comparative study of oxidative stress induced by sand flower and schistose nanosized layered double hydroxides in N2a cells
Yu Lu1,Biao Yan1,Xudong Liu1,Yuchao Zhang1,Shibi Zeng2,Hao Hu2,Rong Xiang3,Yu Xu3,Ying Yu2,Xu Yang1,*()
1. Hubei Key Laboratory of Genetic Regulation and Integrative Biology College of Life Science, Central China Normal University, Wuhan 430079, China
2. Institute of Nanoscience and Nanotechnology, Central China Normal University, Wuhan 430079, China
3. Department of Otolaryngology, Head & Neck Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China
 Download: PDF(904 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Magnesium–aluminum layered double hydroxide (Mg/Al–LDH) nanoparticles have strong potential application as drug delivery systems because of their low toxicity and suitable biocompatibility. However, few studies have described the morphological effects of these hydroxides on nerve cells. The present study compares the oxidative stress induced by different concentrations (i.e., 0, 50, 100, 200, 400, and 800 μg/mL) of sand flower and flake nano-Mg/Al–LDHs in mouse neuroblastoma cells (N2a) when these cells were exposed for 24 and 48 h. Cell viability was detected by MTT assay, and production of reactive oxygen species (ROS), glutathione (GSH), and malondialdehyde (MDA) were monitored to evaluate oxidative damage. Results suggested that sand flower nano-LDHs, at the appropriate concentrations (less than 200 μg/mL), especially those of about 100–200 nm in size, induce no harmful effects on N2a cells.

Keywords magnesium–aluminum layered double hydroxide      mouse neuroblastoma cell      oxidative stress      reactive oxygen species     
Corresponding Author(s): Xu Yang   
Just Accepted Date: 06 March 2015   Online First Date: 17 April 2015    Issue Date: 23 June 2015
 Cite this article:   
Yuchao Zhang,Shibi Zeng,Hao Hu, et al. Comparative study of oxidative stress induced by sand flower and schistose nanosized layered double hydroxides in N2a cells[J]. Front. Biol., 2015, 10(3): 279-286.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-015-1344-4
https://academic.hep.com.cn/fib/EN/Y2015/V10/I3/279
Fig.1  Scanning electron microscopic images of synthesized nano-LDHs. (A) Sand flower nano-LDHs and (B) schistose nano-LDHs.
Fig.2  Morphological images of N2a cells exposed to nano-LDHs (stained with Hoechst 33258). The images are shown at 40× magnification. Row (A) shows N2a cells of the blank group. Row (B) shows images of N2a cells exposed to sand flower nano-LDHs at different concentrations (50, 100, 200, 400, and 800 μg/mL-). Row (C) shows images of N2a cells exposed to schistose nano-LDHs at different concentrations (50, 100, 200, 400, and 800 μg/mL).
Fig.3  Effects of nano-LDHs on the viability of N2a cells (n = 5). * or #, p<0.05. ** or ##, p<0.01, compared with the control. &, p<0.05; &&, p<0.01, each sand flower nano-LDH group compared with the corresponding schistose nano-LDH group.
Fig.4  ROS levels in N2a cells (n = 5). (A) DCF fluorescence intensities induced by different concentrations of nano-LDH at 24 h. (B) DCF fluorescence intensities induced by different concentrations of nano-LDH at 48 h. * or #, p<0.05; ** or ##, p<0.01, compared with the control; &, p<0.05, each sand flower nano-LDH group compared with the corresponding schistose nano-LDH group.
Fig.5  GSH levels in N2a cells (n = 5). (A) GSH contents induced by different concentrations of nano-LDHs at 24 h. (B) GSH contents induced by different concentrations of nano-LDHs at 48 h. * or #, p<0.05; ** or ##, p<0.01, compared with the control.
Fig.6  MDA levels in N2a cells (n = 5). (A) MDA contents induced by different concentrations of nano-LDHs at 24 h. * or #, p<0.05, compared with the control. (B) MDA contents induced by different concentrations of nano-LDHs at 48 h. * or #, p<0.05; ** or ##, p<0.01, compared with the control. &&, p<0.01, each sand flower nano-LDH group compared with the corresponding schistose nano-LDH group.
1 Akhter S, Ahmad I, Ahmad M Z, Ramazani F, Singh A, Rahman Z, Ahmad F J, Storm G, Kok R J (2013). Nanomedicines as cancer therapeutics: current status. Curr Cancer Drug Targets, 13(4): 362-378
https://doi.org/10.2174/1568009611313040002 pmid: 23517593
2 Anderson M E (1985). Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol, 113: 548-555
https://doi.org/10.1016/S0076-6879(85)13073-9 pmid: 4088074
3 Chakraborty J, Roychowdhury S, Sengupta S, Ghosh S (2013). Mg-Al layered double hydroxide-methotrexate nanohybrid drug delivery system: evaluation of efficacy. Mater Sci Eng C Mater Biol Appl, 33(4): 2168-2174
https://doi.org/10.1016/j.msec.2013.01.047 pmid: 23498245
4 Chakraborty M, Dasgupta S, Sengupta S, Chakraborty J, Ghosh S, Ghosh J, Mitra M K, Mishra A, Mandal T K, Basu D (2012). A facile synthetic strategy for Mg-Al layered double hydroxide material as nanocarrier for methotrexate. Ceram Int, 38(2): 941-949
https://doi.org/10.1016/j.ceramint.2011.08.014
5 De Jong W H, Borm P J (2008). Drug delivery and nanoparticles:applications and hazards. Int J Nanomedicine, 3(2): 133-149
https://doi.org/10.2147/IJN.S596 pmid: 18686775
6 Del Hoyo C (2007). Layered double hydroxides and human health: an overview. Appl Clay Sci, 36(1): 103-121
https://doi.org/10.1016/j.clay.2006.06.010
7 Hesse D, Badar M, Bleich A, Smoczek A, Glage S, Kieke M, Behrens P, Müller P P, Esser K H, Stieve M, Prenzler N K (2013). Layered double hydroxides as efficient drug delivery system of ciprofloxacin in the middle ear: an animal study in rabbits. J Mater Sci Mater Med, 24(1): 129-136
https://doi.org/10.1007/s10856-012-4769-1 pmid: 23053799
8 Kim I S, Baek M, Choi S J (2010). Comparative cytotoxicity of Al2O3, CeO2, TiO2 and ZnO nanoparticles to human lung cells. J Nanosci Nanotechnol, 10(5): 3453-3458
https://doi.org/10.1166/jnn.2010.2340 pmid: 20358977
9 Kwak S Y, Jeong Y J, Park J S, Choy J H (2002). Bio-LDH nanohybrid for gene therapy. Solid State Ion, 151(1): 229-234
https://doi.org/10.1016/S0167-2738(02)00714-2
10 Ladewig K, Xu Z P, Lu G Q (2009). Layered double hydroxide nanoparticles in gene and drug delivery. Expert Opin Drug Deliv, 6(9): 907-922
https://doi.org/10.1517/17425240903130585 pmid: 19686052
11 Li B, He J, Evans G (2004). Inorganic layered double hydroxides as a drug delivery system—intercalation and in vitro release of fenbufen. Appl Clay Sci, 27(3): 199-207
https://doi.org/10.1016/j.clay.2004.07.002
12 Li Y, Liu D, Ai H, Chang Q, Liu D, Xia Y, Liu S, Peng N, Xi Z, Yang X (2010). Biological evaluation of layered double hydroxides as efficient drug vehicles. Nanotechnology, 21(10): 105101
https://doi.org/10.1088/0957-4484/21/10/105101 pmid: 20154371
13 Ma P, Luo Q, Chen J, Gan Y, Du J, Ding S, Xi Z, Yang X (2012). Intraperitoneal injection of magnetic Fe?O?-nanoparticle induces hepatic and renal tissue injury via oxidative stress in mice. Int J Nanomedicine, 7: 4809-4818
pmid: 22973100
14 Ma P, Yan B, Zeng Q, Liu X, Wu Y, Jiao M, Liu C, Wu J, Yang X (2014). Oral exposure of Kunming mice to diisononyl phthalate induces hepatic and renal tissue injury through the accumulation of ROS. Protective effect of melatonin. Food Chem Toxicol, 68: 247-256
https://doi.org/10.1016/j.fct.2014.03.027 pmid: 24685826
15 Nel A, Xia T, M?dler L, Li N (2006). Toxic potential of materials at the nanolevel. Science, 311(5761): 622-627
https://doi.org/10.1126/science.1114397 pmid: 16456071
16 Rives V (2002). Characterisation of layered double hydroxides and their decomposition products. Mater Chem Phys, 75(1-3): 19-25
https://doi.org/10.1016/S0254-0584(02)00024-X
17 Roualdes O, Duclos M E, Gutknecht D, Frappart L, Chevalier J, Hartmann D J (2010). In vitro and in vivo evaluation of an alumina-zirconia composite for arthroplasty applications. Biomaterials, 31(8): 2043-2054
https://doi.org/10.1016/j.biomaterials.2009.11.107 pmid: 20053439
18 Tyner K M, Schiffman S R, Giannelis E P (2004). Nanobiohybrids as delivery vehicles for camptothecin. J Control Release, 95(3): 501-514
https://doi.org/10.1016/j.jconrel.2003.12.027 pmid: 15023461
19 Wang A Z, Langer R, Farokhzad O C (2012). Nanoparticle delivery of cancer drugs. Annu Rev Med, 63(1): 185-198
https://doi.org/10.1146/annurev-med-040210-162544 pmid: 21888516
20 Wen H, Zhong J, Shen B, Gan T, Fu C, Zhu Z, Li R, Yang X (2013). Comparative study of the cytotoxicity of the nanosized and microsized tellurium powders on HeLa cells. Front Biol, 8(4): 444-450
https://doi.org/10.1007/s11515-013-1266-y
21 Zeng S, Xu X, Wang S, Gong Q, Liu R, Yu Y (2013). Sand flower layered double hydroxides synthesized by co-precipitation for CO2 capture: Morphology evolution mechanism, agitation effect and stability. Mater Chem Phys, 140(1): 159-167
https://doi.org/10.1016/j.matchemphys.2013.03.015
22 Zhang Y F, Phila M, Zheng Y F, Qin L (2011). A comprehensive biological evaluation of ceramic nanoparticles as wear debris. Nanotechnology. Biol Med (Paris), 7(6): 975-982
[1] Hanane Gourine, Hadria Grar, Wafaa Dib, Nabila Mehedi, Ahmed Boualga, Djamel Saidi, Omar Kheroua. Effect of a normal protein diet on oxidative stress and organ damage in malnourished rats[J]. Front. Biol., 2018, 13(5): 366-375.
[2] Volodymyr Padalko, Viktoriya Dzyuba, Olena Kozlova, Hanna Sheremet, Olena Protsenko. Zingiber officinale extends Drosophila melanogaster life span in xenobiotic-induced oxidative stress conditions[J]. Front. Biol., 2018, 13(2): 130-136.
[3] Vadim V. Davydov, Alexander V. Shestopalov, Evgenya R. Grabovetskaya. Physiological significance of oxidative stress and its role in adaptation of the human body to deleterious factors[J]. Front. Biol., 2018, 13(1): 19-27.
[4] Bharti Chaudhary, Sonam Agarwal, Renu Bist. Invulnerability of bromelain against oxidative degeneration and cholinergic deficits imposed by dichlorvos in mice brains[J]. Front. Biol., 2018, 13(1): 56-62.
[5] Jian Zou,Jinbo Yu,Yuqing Zhu,Jiali Zhu,Jing Du,Xu Yang. Application of glutathione to antagonize H2O2-induced oxidative stress in rat tracheal epithelial cells[J]. Front. Biol., 2016, 11(1): 59-63.
[6] Zhuo Wu,Jingquan Li,Ping Ma,Baizhan Li,Yang Xu. Long-term dermal exposure to diisononyl phthalate exacerbates atopic dermatitis through oxidative stress in an FITC-induced mouse model[J]. Front. Biol., 2015, 10(6): 537-545.
[7] Jacqueline A. GLEAVE,Peter D. PERRI,Joanne E. NASH. Mitochondrial dysfunction in Parkinson’s disease: a possible target for neuroprotection[J]. Front. Biol., 2014, 9(6): 489-503.
[8] Yongli WANG, Nian QIN, Shan CHEN, Jingyun ZHAO, Xu YANG. Oxidative-damage effect of Fe3O4 nanoparticles on mouse hepatic and brain cells in vivo[J]. Front Biol, 2013, 8(5): 549-555.
[9] Huanan WEN, Jiaxin ZHONG, Bei SHEN, Tao GAN, Chao FU, Zhihong ZHU, Rui LI, Xu YANG. Comparative study of the cytotoxicity of the nanosized and microsized tellurium powders on HeLa cells[J]. Front Biol, 2013, 8(4): 444-450.
[10] Mahandranauth A. CHETRAM, Cimona V. HINTON. ROS-mediated regulation of CXCR4 in cancer[J]. Front Biol, 2013, 8(3): 273-278.
[11] Abiodun AJAYI, Xin YU, Anna-Lena STR?M. The role of NADPH oxidase (NOX) enzymes in neurodegenerative disease[J]. Front Biol, 2013, 8(2): 175-188.
[12] Zhaohui FENG, Rui WU, Meihua LIN, Wenwei HU. Tumor suppressor p53: new functions of an old protein[J]. Front Biol, 2011, 06(01): 58-68.
[13] Weiguo DONG, Fang HUANG, Hongwen HE. Melatonin and mitochondria in aging[J]. Front Biol, 2010, 5(6): 532-539.
[14] Jing WANG, Xuequn LIU, Guanghui YU, . Identification of superoxide dismutase isoenzymes in tobacco pollen[J]. Front. Biol., 2009, 4(4): 442-445.
[15] Wu Yu, Wang Jihong, Cui Xiuyun, Zhao Peng, Xu Yuefei, Zhao Baochang. Anti-oxidative effect of ribonuclease inhibitor by site-directed mutagenesis and expression in Pichia pastoris[J]. Front. Biol., 2006, 1(2): 99-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed