|
|
Cross-talking between autophagy and viral infection in mammalian cells |
Hongya HAN, Lishu ZHANG( ), Xinxian DAI, Yanpeng ZHENG |
College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing 100044, China |
|
|
Abstract Autophagy is a cellular process in degradation of long-lived proteins and organelles in the cytosol for maintaining cellular homeostasis, which has been linked to a wide range of human health and disease states, including viral infection. The viral infected cells exhibit a complicated cross-talking between autophagy and virus. It has been shown that autophagy interacts with both adaptive and innate immunity. For adaptive immunity, viral antigens can be processed in autophagosomes by acidic proteases before major histocompatibility complex (MHC) class II presentation. For innate immunity, autophagy may assist in the delivery of viral nucleic acids to endosomal TLRs and also functions as a part of the TLR-or-PKR-downstream responses. Autophagy was also reported to suppress the magnitude of host innate antiviral immunity in certain cases. On the other hand, viruses has evolved many strategies to combat or utilize the host autophagy for their own benefit. In this review we discussed recent advances toward clarifying the cross-talking between autophagy and viral infection in mammalian cells.
|
Keywords
cross-talking
autophagy
viral infection
|
Corresponding Author(s):
ZHANG Lishu,Email:lshzhang@bjtu.edu.cn
|
Issue Date: 01 December 2010
|
|
1 |
Ait-Goughoulte M, Kanda T, Meyer K, Ryerse J S, Ray R B, Ray R (2008). Hepatitis C virus genotype 1a growth and induction of autophagy. J Virol , 82(5): 2241–2249 doi: 10.1128/JVI.02093-07 pmid:18077704
|
2 |
Alexander D E, Ward S L, Mizushima N, Levine B, Leib D A (2007). Analysis of the role of autophagy in replication of herpes simplex virus in cell culture. J Virol , 81(22): 12128–12134 doi: 10.1128/JVI.01356-07 pmid:17855538
|
3 |
Boya P, Mellén M A, de la Rosa E J (2008). How autophagy is related to programmed cell death during the development of the nervous system. Biochem Soc Trans , 36(Pt 5): 813–817 doi: 10.1042/BST0360813 pmid:18793142
|
4 |
Bursch W, Ellinger A (2005). Autophagy—a basic mechanism and a potential role for neurodegeneration. Folia Neuropathol , 43(4): 297–310 pmid:16416394
|
5 |
Cecconi F, Levine B (2008). The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell , 15(3): 344–357 doi: 10.1016/j.devcel.2008.08.012 pmid:18804433
|
6 |
Chaumorcel M, Souquère S, Pierron G, Codogno P, Esclatine A (2008). Human cytomegalovirus controls a new autophagy-dependent cellular antiviral defense mechanism. Autophagy , 4(1): 46–53 pmid:18340111
|
7 |
Choi B H, Choi M, Jeon H Y, Rho H M (2001). Hepatitis B viral X protein overcomes inhibition of E2F1 activity by pRb on the human Rb gene promoter. DNA Cell Biol , 20(2): 75–80 doi: 10.1089/104454901750070274 pmid:11244564
|
8 |
Chou J, Kern E R, Whitley R J, Roizman B (1990). Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science , 250(4985): 1262–1266 doi: 2173860" target="_blank">10.1126/science. pmid:2173860 pmid:2173860
|
9 |
Chou J, Roizman B (1986). The terminal a sequence of the herpes simplex virus genome contains the promoter of a gene located in the repeat sequences of the L component. J Virol , 57(2): 629–637 pmid:3003394
|
10 |
Chou J, Roizman B (1992). The gamma 1(34.5) gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programed cell death in neuronal cells. Proc Natl Acad Sci USA , 89(8): 3266–3270 doi: 10.1073/pnas.89.8.3266 pmid:1314384
|
11 |
Chou J, Roizman B (1994). Herpes simplex virus 1 gamma(1)34.5 gene function, which blocks the host response to infection, maps in the homologous domain of the genes expressed during growth arrest and DNA damage. Proc Natl Acad Sci USA , 91(12): 5247–5251 doi: 10.1073/pnas.91.12.5247 pmid:8202476
|
12 |
Cuervo A M (2004). Autophagy: many paths to the same end. Mol Cell Biochem , 263(1–2): 55–72 doi: 10.1023/B:MCBI.0000041848.57020.57 pmid:15524167
|
13 |
Dales S, Eggers H J, Tamm I, Palade G E (1965). Electron microscopic study of the formation of poliovirus. Virology , 26(3): 379–389 doi: 10.1016/0042-6822(65)90001-2 pmid:14319710
|
14 |
Dan H C, Cooper M J, Cogswell P C, Duncan J A, Ting J P, Baldwin A S (2008). Akt-dependent regulation of NF-kappaB is controlled by mTOR and Raptor in association with IKK. Genes Dev , 22(11): 1490–1500 doi: 10.1101/gad.1662308
|
15 |
Delgado M A, Elmaoued R A, Davis A S, Kyei G, Deretic V (2008). Toll-like receptors control autophagy. EMBO J , 27(7): 1110–1121 doi: 10.1038/emboj.2008.31 pmid:18337753
|
16 |
Denizot M, Varbanov M, Espert L, Robert-Hebmann V, Sagnier S, Garcia E, Curriu M, Mamoun R, Blanco J, Biard-Piechaczyk M (2008). HIV-1 gp41 fusogenic function triggers autophagy in uninfected cells. Autophagy , 4(8): 998–1008 pmid:18818518
|
17 |
Dreux M, Chisari F V (2009). Autophagy proteins promote hepatitis C virus replication. Autophagy , 5(8): 1224–1225 doi: 10.4161/auto.5.8.10219 pmid:19844160
|
18 |
Dreux M, Gastaminza P, Wieland S F, Chisari F V (2009). The autophagy machinery is required to initiate hepatitis C virus replication. Proc Natl Acad Sci USA , 106(33): 14046–14051 doi: 10.1073/pnas.0907344106 pmid:19666601
|
19 |
Espert L, Denizot M, Grimaldi M, Robert-Hebmann V, Gay B, Varbanov M, Codogno P, Biard-Piechaczyk M (2006). Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J Clin Invest , 116(8): 2161–2172 doi: 10.1172/JCI26185 pmid:16886061
|
20 |
Fricke J, Voss C, Thumm M, Meyers G (2004). Processing of a pestivirus protein by a cellular protease specific for light chain 3 of microtubule-associated proteins. J Virol , 78(11): 5900–5912 doi: 10.1128/JVI.78.11.5900-5912.2004 pmid:15140988
|
21 |
Gajewska M, Sobolewska A, Kozlowski M, Motyl T (2008). Role of autophagy in mammary gland development. J Physiol Pharmacol , 59(Suppl 9): 237–249 pmid:19261983
|
22 |
Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan J L, Mizushima N (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol , 181(3): 497–510 doi: 10.1083/jcb.200712064 pmid:18443221
|
23 |
Heymann D (2006). Autophagy: A protective mechanism in response to stress and inflammation. Curr Opin Investig Drugs , 7(5): 443–450 pmid:16729721
|
24 |
Huang S C, Chang C L, Wang P S, Tsai Y, Liu H S (2009). Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication. J Med Virol , 81(7): 1241–1252 doi: 10.1002/jmv.21502 pmid:19475621
|
25 |
Jaakkola P M, Pursiheimo J P (2009). p62 degradation by autophagy: another way for cancer cells to survive under hypoxia. Autophagy , 5(3): 410–412 doi: 10.4161/auto.5.3.7823 pmid:19197142
|
26 |
Jaboin J J, Hwang M, Lu B (2009). Autophagy in lung cancer. Methods Enzymol , 453: 287–304 doi: 10.1016/S0076-6879(08)04014-7 pmid:19216912
|
27 |
Jackson W T, Giddings T H Jr, Taylor M P, Mulinyawe S, Rabinovitch M, Kopito R R, Kirkegaard K (2005). Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol , 3(5): e156 doi: 10.1371/journal.pbio.0030156 pmid:15884975
|
28 |
Jounai N, Takeshita F, Kobiyama K, Sawano A, Miyawaki A, Xin K Q, Ishii K J, Kawai T, Akira S, Suzuki K, Okuda K (2007). The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci USA , 104(35): 14050–14055 doi: 10.1073/pnas.0704014104 pmid:17709747
|
29 |
Kadowaki M, Karim M R, Carpi A, Miotto G (2006). Nutrient control of macroautophagy in mammalian cells. Mol Aspects Med , 27(5–6): 426–443 doi: 10.1016/j.mam.2006.08.010 pmid:16999992
|
30 |
Kaisho T, Akira S (2006). Toll-like receptor function and signaling. J Allergy Clin Immunol , 117(5): 979–987, quiz 988 doi: 10.1016/j.jaci.2006.02.023 pmid:16675322
|
31 |
Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T (2001). Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep , 2(4): 330–335 doi: 10.1093/embo-reports/kve061 pmid:11306555
|
32 |
Kirkegaard K, Jackson W T (2005). Topology of double-membraned vesicles and the opportunity for non-lytic release of cytoplasm. Autophagy , 1(3): 182–184 doi: 10.4161/auto.1.3.2065 pmid:16874042
|
33 |
Kirkegaard K, Taylor M P, Jackson W T (2004). Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol , 2(4): 301–314 doi: 10.1038/nrmicro865 pmid:15031729
|
34 |
Klionsky D J (2005a). Autophagy. Curr Biol , 15(8): R282–R283 doi: 10.1016/j.cub.2005.04.013 pmid:15854889
|
35 |
Klionsky D J (2005b). The molecular machinery of autophagy: unanswered questions. J Cell Sci , 118(Pt 1): 7–18 doi: 10.1242/jcs.01620 pmid:15615779
|
36 |
Komatsu M, Kominami E, Tanaka K (2006a). Autophagy and neurodegeneration. Autophagy , 2(4): 315–317 pmid:16874063
|
37 |
Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006b). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature , 441(7095): 880–884 doi: 10.1038/nature04723 pmid:16625205
|
38 |
Kundu M, Thompson C B (2008). Autophagy: basic principles and relevance to disease. Annu Rev Pathol , 3(1): 427–455 doi: 10.1146/annurev.pathmechdis.2.010506.091842 pmid:18039129
|
39 |
Kunz J B, Schwarz H, Mayer A (2004). Determination of four sequential stages during microautophagy in vitro. J Biol Chem , 279(11): 9987–9996 doi: 10.1074/jbc.M307905200 pmid:14679207
|
40 |
Kyei G B, Dinkins C, Davis A S, Roberts E, Singh S B, Dong C, Wu L, Kominami E, Ueno T, Yamamoto A, Federico M, Panganiban A, Vergne I, Deretic V (2009). Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol , 186(2): 255–268 doi: 10.1083/jcb.200903070 pmid:19635843
|
41 |
Lee H K, Lund J M, Ramanathan B, Mizushima N, Iwasaki A (2007). Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science , 315(5817): 1398–1401 doi: 10.1126/science.1136880 pmid:17272685
|
42 |
Lee Y R, Lei H Y, Liu M T, Wang J R, Chen S H, Jiang-Shieh Y F, Lin Y S, Yeh T M, Liu C C, Liu H S (2008). Autophagic machinery activated by dengue virus enhances virus replication. Virology , 374(2): 240–248 doi: 10.1016/j.virol.2008.02.016 pmid:18353420
|
43 |
Leib D A, Machalek M A, Williams B R, Silverman R H, Virgin H W (2000). Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proc Natl Acad Sci USA , 97(11): 6097–6101 doi: 10.1073/pnas.100415697 pmid:10801979
|
44 |
Levine B (2007). Cell biology: autophagy and cancer. Nature , 446(7137): 745–747 doi: 10.1038/446745a pmid:17429391
|
45 |
Levine B, Klionsky D J (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell , 6(4): 463–477 doi: 10.1016/S1534-5807(04)00099-1 pmid:15068787
|
46 |
Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh B H, Jung J U (2006). Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol , 8(7): 688–698 doi: 10.1038/ncb1426 pmid:16799551
|
47 |
Liang X H, Kleeman L K, Jiang H H, Gordon G, Goldman J E, Berry G, Herman B, Levine B (1998). Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol , 72(11): 8586–8596 pmid:9765397
|
48 |
Massey A C, Zhang C, Cuervo A M (2006). Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol , 73: 205–235 doi: 10.1016/S0070-2153(05)73007-6 pmid:16782460
|
49 |
Mathew R, Karantza-Wadsworth V, White E (2007). Role of autophagy in cancer. Nat Rev Cancer , 7(12): 961–967 doi: 10.1038/nrc2254 pmid:17972889
|
50 |
Morita E, Sugamura K (2002). Human parvovirus B19-induced cell cycle arrest and apoptosis. Springer Semin Immunopathol , 24(2): 187–199 doi: 10.1007/s00281-002-0099-6 pmid:12503064
|
51 |
Nakashima A, Tanaka N, Tamai K, Kyuuma M, Ishikawa Y, Sato H, Yoshimori T, Saito S, Sugamura K (2006). Survival of parvovirus B19-infected cells by cellular autophagy. Virology , 349(2): 254– 263 doi: 10.1016/j.virol.2006.03.029 pmid:16643977
|
52 |
Orvedahl A, Alexander D, Tallóczy Z, Sun Q, Wei Y, Zhang W, Burns D, Leib D A, Levine B (2007). HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe , 1(1): 23–35 doi: 10.1016/j.chom.2006.12.001 pmid:18005679
|
53 |
Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, Münz C (2005). Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science , 307(5709): 593–596 doi: 10.1126/science.1104904 pmid:15591165
|
54 |
Pattingre S, Tassa A, Qu X, Garuti R, Liang X H, Mizushima N, Packer M, Schneider M D, Levine B (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell , 122(6): 927–939 doi: 10.1016/j.cell.2005.07.002 pmid:16179260
|
55 |
Prentice E, Jerome W G, Yoshimori T, Mizushima N, Denison M R (2004). Coronavirus replication complex formation utilizes components of cellular autophagy. J Biol Chem , 279(11): 10136–10141 doi: 10.1074/jbc.M306124200 pmid:14699140
|
56 |
Py B F, Boyce M, Yuan J (2009). A critical role of eEF-2K in mediating autophagy in response to multiple cellular stresses. Autophagy , 5(3): 393–396 doi: 10.4161/auto.5.3.7762 pmid:19221463
|
57 |
Rosenbluth J M, Pietenpol J A (2009). mTOR regulates autophagy-associated genes downstream of p73. Autophagy , 5(1): 114–116 doi: 10.4161/auto.5.1.7294 pmid:19001857
|
58 |
Schmid D, Pypaert M, Münz C (2007). Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity , 26(1): 79–92 doi: 10.1016/j.immuni.2006.10.018 pmid:17182262
|
59 |
Shi C S, Kehrl J H (2008). MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J Biol Chem , 283(48): 33175–33182 doi: 10.1074/jbc.M804478200 pmid:18772134
|
60 |
Sir D, Chen W L, Choi J, Wakita T, Yen T S, Ou J H (2008a). Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology , 48(4): 1054–1061 doi: 10.1002/hep.22464 pmid:18688877
|
61 |
Sir D, Liang C, Chen W L, Jung J U, Ou J H (2008b). Perturbation of autophagic pathway by hepatitis C virus. Autophagy , 4(6): 830–831 pmid:18635950
|
62 |
Snijder E J, van der Meer Y, Zevenhoven-Dobbe J, Onderwater J J, van der Meulen J, Koerten H K, Mommaas A M (2006). Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol , 80(12): 5927–5940 doi: 10.1128/JVI.02501-05 pmid:16731931
|
63 |
Strawbridge A B, Blum J S (2007). Autophagy in MHC class II antigen processing. Curr Opin Immunol , 19(1): 87–92 doi: 10.1016/j.coi.2006.11.009 pmid:17129719
|
64 |
Suhy D A, Giddings T H Jr, Kirkegaard K (2000). Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J Virol , 74(19): 8953–8965 doi: 10.1128/JVI.74.19.8953-8965.2000 pmid:10982339
|
65 |
Takeuchi O, Akira S (2007). Recognition of viruses by innate immunity. Immunol Rev , 220(1): 214–224 doi: 10.1111/j.1600-065X.2007.00562.x pmid:17979849
|
66 |
Tallóczy Z, Jiang W, Virgin H W 4th, Leib D A, Scheuner D, Kaufman R J, Eskelinen E L, Levine B (2002). Regulation of starvation- and virus-induced autophagy by the eIF2α kinase signaling pathway. Proc Natl Acad Sci USA , 99(1): 190–195 doi: 10.1073/pnas.012485299 pmid:11756670
|
67 |
Tallóczy Z, Virgin H W 4th, Levine B (2006). PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy , 2(1): 24–29 pmid:16874088
|
68 |
Tang H, Da L, Mao Y, Li Y, Li D, Xu Z, Li F, Wang Y, Tiollais P, Li T, Zhao M (2009). Hepatitis B virus X protein sensitizes cells to starvation-induced autophagy via up-regulation of beclin 1 expression. Hepatology , 49(1): 60–71 doi: 10.1002/hep.22581
|
69 |
Taylor M P, Kirkegaard K (2007). Modification of cellular autophagy protein LC3 by poliovirus. J Virol , 81(22): 12543–12553 doi: 10.1128/JVI.00755-07 pmid:17804493
|
70 |
Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N (2008). Autophagy is essential for preimplantation development of mouse embryos. Science , 321(5885): 117–120 doi: 10.1126/science.1154822 pmid:18599786
|
71 |
Wang C W, Klionsky D J (2003). The molecular mechanism of autophagy. Mol Med , 9(3–4): 65–76 pmid:12865942
|
72 |
Wong J, Zhang J, Si X, Gao G, Mao I, McManus B M, Luo H (2008). Autophagosome supports coxsackievirus B3 replication in host cells. J Virol , 82(18): 9143–9153 doi: 10.1128/JVI.00641-08 pmid:18596087
|
73 |
Yang Y P, Liang Z Q, Gu Z L, Qin Z H (2005). Molecular mechanism and regulation of autophagy. Acta Pharmacol Sin , 26(12): 1421–1434 doi: 10.1111/j.1745-7254.2005.00235.x pmid:16297339
|
74 |
Yin V P, Thummel C S (2005). Mechanisms of steroid-triggered programmed cell death in Drosophila. Semin Cell Dev Biol , 16(2): 237–243 doi: 10.1016/j.semcdb.2004.12.007 pmid:15797834
|
75 |
Zeng X, Overmeyer J H, Maltese W A (2006). Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci , 119(Pt 2): 259–270 doi: 10.1242/jcs.02735 pmid:16390869
|
76 |
Zhou Z, Jiang X, Liu D, Fan Z,Hu X, Yan J, Wang M, Gao G F (2009). Autophagy is involved in influenza A virus replication. Autophagy , 5(3): 321–328 doi: 10.4161/auto.5.3.7406 pmid:19066474
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|