Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2010, Vol. 5 Issue (6) : 507-515    https://doi.org/10.1007/s11515-010-0760-8
REVIEW
Cross-talking between autophagy and viral infection in mammalian cells
Hongya HAN, Lishu ZHANG(), Xinxian DAI, Yanpeng ZHENG
College of Life Sciences & Bioengineering, Beijing Jiaotong University, Beijing 100044, China
 Download: PDF(307 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Autophagy is a cellular process in degradation of long-lived proteins and organelles in the cytosol for maintaining cellular homeostasis, which has been linked to a wide range of human health and disease states, including viral infection. The viral infected cells exhibit a complicated cross-talking between autophagy and virus. It has been shown that autophagy interacts with both adaptive and innate immunity. For adaptive immunity, viral antigens can be processed in autophagosomes by acidic proteases before major histocompatibility complex (MHC) class II presentation. For innate immunity, autophagy may assist in the delivery of viral nucleic acids to endosomal TLRs and also functions as a part of the TLR-or-PKR-downstream responses. Autophagy was also reported to suppress the magnitude of host innate antiviral immunity in certain cases. On the other hand, viruses has evolved many strategies to combat or utilize the host autophagy for their own benefit. In this review we discussed recent advances toward clarifying the cross-talking between autophagy and viral infection in mammalian cells.

Keywords cross-talking      autophagy      viral infection     
Corresponding Author(s): ZHANG Lishu,Email:lshzhang@bjtu.edu.cn   
Issue Date: 01 December 2010
 Cite this article:   
Hongya HAN,Lishu ZHANG,Xinxian DAI, et al. Cross-talking between autophagy and viral infection in mammalian cells[J]. Front Biol, 2010, 5(6): 507-515.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-010-0760-8
https://academic.hep.com.cn/fib/EN/Y2010/V5/I6/507
Fig.1  The cross-talking between viruses and host cells. A: Beclin1 is a component PI3K/Beclin1 complex which acts an important role in the initial stage of autophagy. UVRAG is a part of the PI3K/Beclin1 complex and representing an important signaling checkpoint in autophagy, while BCL-2 is able to inhibit autophagy by interacting with Beclin 1 as a negative regulator. It is because the essential roles of PI3K/Beclin1 complex, several viruses evolve some strategies to combat or employ it for their own benefits. HSV-1 expresses protein ICP34.5, HIV-1 has Nef, Kaposi's sarcoma-associated herpesvirus (KSHV) produces vBCL-2 and the murine γ-herpesvirus 68 encodes protein M11, as well as HBV express protein HBx to suppress autophagy by blocking the Beclin1. B: mTOR is known as the key down-regulator of autophagy induction, which can be inhibited by rapamycin and activated by amino acids. Class I PI3K/Akt lies on the upstream of mTOR and acts positively on it to inhibit autophagy, whereas the phosphatase and tension homolog (PTEN) acts antagonistically to the class I PI3K to induce autophagy indirectly. Besides, the ULK-Atg13-FIP200 complexe is a direct target of mTOR and important regulator of autophagy in response to mTOR signaling. Additionally, mTOR activity inhibits p73, which is the inducer of cellular autophagy, and in TNFα-treated cell, mTOR is necessary for NF-κB activation mediated repression of autophagy. In HCMV infected cells, mTOR can be activated to suppress autophagy for its own benefits. C: When viruses replicating in cells, the viral dsRNA activates PKR to phosphorylate eIF2α and then mediate viruses degradation through autophagy. However, HSV-1 has possibility encoding ICP34.5 to suppress cellular autophagy by dephosphorylating eIF2α in PKR pathway. In pDCs, the autophagic vesicles can wrap the replication intermediate of escaped VSV in cytoplasmic and then fuse with endosome who contain TLR7 to recognize viral replication intermediate to produce IFN- α. As we know, the viral dsRNA also stimulates IFN-α production via RIG-1 and ISP-1. Interestingly, in mouse embryonic fibroblasts (MEFs), the IFN-α production can be down-regulated in response to VSV by Atg5-Atg12 direct association with both RIG-I and IPS-1 through the caspase recruitment domains. For adaptive immunity, autophagy can deliver antigens into autophagosomes for processing by acidic proteases before MHC class II presentation. For example, autophagy helps presentation of endogenous EBNA-1 to T cells in EBV infected cells. D: Besides, TLR3, TLR4 and TLR7 are able to induce autophagy in certain cells. MHV, Poliovirus and CVB3 as well as HCV are capable inducing autophagosomes to generate sites and support their replication. Besides, HCV and CVB3 can suppress autophagic protein degradation by blocking the fusion of autophagosome and lysosome. Certain viruses such as enterovirus 71, influenza A virus, BVDV, human parvovirus B19 and dengue virus-2 are able to activate autophagy to enhance the efficiency of viral replication, but detail mechanisms are still unclear. More interestingly, Env of HIV is able to induce autophagy and accumulate the Beclin 1 in uninfected cells via CXCR4
Fig.1  The cross-talking between viruses and host cells. A: Beclin1 is a component PI3K/Beclin1 complex which acts an important role in the initial stage of autophagy. UVRAG is a part of the PI3K/Beclin1 complex and representing an important signaling checkpoint in autophagy, while BCL-2 is able to inhibit autophagy by interacting with Beclin 1 as a negative regulator. It is because the essential roles of PI3K/Beclin1 complex, several viruses evolve some strategies to combat or employ it for their own benefits. HSV-1 expresses protein ICP34.5, HIV-1 has Nef, Kaposi's sarcoma-associated herpesvirus (KSHV) produces vBCL-2 and the murine γ-herpesvirus 68 encodes protein M11, as well as HBV express protein HBx to suppress autophagy by blocking the Beclin1. B: mTOR is known as the key down-regulator of autophagy induction, which can be inhibited by rapamycin and activated by amino acids. Class I PI3K/Akt lies on the upstream of mTOR and acts positively on it to inhibit autophagy, whereas the phosphatase and tension homolog (PTEN) acts antagonistically to the class I PI3K to induce autophagy indirectly. Besides, the ULK-Atg13-FIP200 complexe is a direct target of mTOR and important regulator of autophagy in response to mTOR signaling. Additionally, mTOR activity inhibits p73, which is the inducer of cellular autophagy, and in TNFα-treated cell, mTOR is necessary for NF-κB activation mediated repression of autophagy. In HCMV infected cells, mTOR can be activated to suppress autophagy for its own benefits. C: When viruses replicating in cells, the viral dsRNA activates PKR to phosphorylate eIF2α and then mediate viruses degradation through autophagy. However, HSV-1 has possibility encoding ICP34.5 to suppress cellular autophagy by dephosphorylating eIF2α in PKR pathway. In pDCs, the autophagic vesicles can wrap the replication intermediate of escaped VSV in cytoplasmic and then fuse with endosome who contain TLR7 to recognize viral replication intermediate to produce IFN- α. As we know, the viral dsRNA also stimulates IFN-α production via RIG-1 and ISP-1. Interestingly, in mouse embryonic fibroblasts (MEFs), the IFN-α production can be down-regulated in response to VSV by Atg5-Atg12 direct association with both RIG-I and IPS-1 through the caspase recruitment domains. For adaptive immunity, autophagy can deliver antigens into autophagosomes for processing by acidic proteases before MHC class II presentation. For example, autophagy helps presentation of endogenous EBNA-1 to T cells in EBV infected cells. D: Besides, TLR3, TLR4 and TLR7 are able to induce autophagy in certain cells. MHV, Poliovirus and CVB3 as well as HCV are capable inducing autophagosomes to generate sites and support their replication. Besides, HCV and CVB3 can suppress autophagic protein degradation by blocking the fusion of autophagosome and lysosome. Certain viruses such as enterovirus 71, influenza A virus, BVDV, human parvovirus B19 and dengue virus-2 are able to activate autophagy to enhance the efficiency of viral replication, but detail mechanisms are still unclear. More interestingly, Env of HIV is able to induce autophagy and accumulate the Beclin 1 in uninfected cells via CXCR4
1 Ait-Goughoulte M, Kanda T, Meyer K, Ryerse J S, Ray R B, Ray R (2008). Hepatitis C virus genotype 1a growth and induction of autophagy. J Virol , 82(5): 2241–2249
doi: 10.1128/JVI.02093-07 pmid:18077704
2 Alexander D E, Ward S L, Mizushima N, Levine B, Leib D A (2007). Analysis of the role of autophagy in replication of herpes simplex virus in cell culture. J Virol , 81(22): 12128–12134
doi: 10.1128/JVI.01356-07 pmid:17855538
3 Boya P, Mellén M A, de la Rosa E J (2008). How autophagy is related to programmed cell death during the development of the nervous system. Biochem Soc Trans , 36(Pt 5): 813–817
doi: 10.1042/BST0360813 pmid:18793142
4 Bursch W, Ellinger A (2005). Autophagy—a basic mechanism and a potential role for neurodegeneration. Folia Neuropathol , 43(4): 297–310
pmid:16416394
5 Cecconi F, Levine B (2008). The role of autophagy in mammalian development: cell makeover rather than cell death. Dev Cell , 15(3): 344–357
doi: 10.1016/j.devcel.2008.08.012 pmid:18804433
6 Chaumorcel M, Souquère S, Pierron G, Codogno P, Esclatine A (2008). Human cytomegalovirus controls a new autophagy-dependent cellular antiviral defense mechanism. Autophagy , 4(1): 46–53
pmid:18340111
7 Choi B H, Choi M, Jeon H Y, Rho H M (2001). Hepatitis B viral X protein overcomes inhibition of E2F1 activity by pRb on the human Rb gene promoter. DNA Cell Biol , 20(2): 75–80
doi: 10.1089/104454901750070274 pmid:11244564
8 Chou J, Kern E R, Whitley R J, Roizman B (1990). Mapping of herpes simplex virus-1 neurovirulence to gamma 134.5, a gene nonessential for growth in culture. Science , 250(4985): 1262–1266
doi: 2173860" target="_blank">10.1126/science. pmid:2173860 pmid:2173860
9 Chou J, Roizman B (1986). The terminal a sequence of the herpes simplex virus genome contains the promoter of a gene located in the repeat sequences of the L component. J Virol , 57(2): 629–637
pmid:3003394
10 Chou J, Roizman B (1992). The gamma 1(34.5) gene of herpes simplex virus 1 precludes neuroblastoma cells from triggering total shutoff of protein synthesis characteristic of programed cell death in neuronal cells. Proc Natl Acad Sci USA , 89(8): 3266–3270
doi: 10.1073/pnas.89.8.3266 pmid:1314384
11 Chou J, Roizman B (1994). Herpes simplex virus 1 gamma(1)34.5 gene function, which blocks the host response to infection, maps in the homologous domain of the genes expressed during growth arrest and DNA damage. Proc Natl Acad Sci USA , 91(12): 5247–5251
doi: 10.1073/pnas.91.12.5247 pmid:8202476
12 Cuervo A M (2004). Autophagy: many paths to the same end. Mol Cell Biochem , 263(1–2): 55–72
doi: 10.1023/B:MCBI.0000041848.57020.57 pmid:15524167
13 Dales S, Eggers H J, Tamm I, Palade G E (1965). Electron microscopic study of the formation of poliovirus. Virology , 26(3): 379–389
doi: 10.1016/0042-6822(65)90001-2 pmid:14319710
14 Dan H C, Cooper M J, Cogswell P C, Duncan J A, Ting J P, Baldwin A S (2008). Akt-dependent regulation of NF-kappaB is controlled by mTOR and Raptor in association with IKK. Genes Dev , 22(11): 1490–1500
doi: 10.1101/gad.1662308
15 Delgado M A, Elmaoued R A, Davis A S, Kyei G, Deretic V (2008). Toll-like receptors control autophagy. EMBO J , 27(7): 1110–1121
doi: 10.1038/emboj.2008.31 pmid:18337753
16 Denizot M, Varbanov M, Espert L, Robert-Hebmann V, Sagnier S, Garcia E, Curriu M, Mamoun R, Blanco J, Biard-Piechaczyk M (2008). HIV-1 gp41 fusogenic function triggers autophagy in uninfected cells. Autophagy , 4(8): 998–1008
pmid:18818518
17 Dreux M, Chisari F V (2009). Autophagy proteins promote hepatitis C virus replication. Autophagy , 5(8): 1224–1225
doi: 10.4161/auto.5.8.10219 pmid:19844160
18 Dreux M, Gastaminza P, Wieland S F, Chisari F V (2009). The autophagy machinery is required to initiate hepatitis C virus replication. Proc Natl Acad Sci USA , 106(33): 14046–14051
doi: 10.1073/pnas.0907344106 pmid:19666601
19 Espert L, Denizot M, Grimaldi M, Robert-Hebmann V, Gay B, Varbanov M, Codogno P, Biard-Piechaczyk M (2006). Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J Clin Invest , 116(8): 2161–2172
doi: 10.1172/JCI26185 pmid:16886061
20 Fricke J, Voss C, Thumm M, Meyers G (2004). Processing of a pestivirus protein by a cellular protease specific for light chain 3 of microtubule-associated proteins. J Virol , 78(11): 5900–5912
doi: 10.1128/JVI.78.11.5900-5912.2004 pmid:15140988
21 Gajewska M, Sobolewska A, Kozlowski M, Motyl T (2008). Role of autophagy in mammary gland development. J Physiol Pharmacol , 59(Suppl 9): 237–249
pmid:19261983
22 Hara T, Takamura A, Kishi C, Iemura S, Natsume T, Guan J L, Mizushima N (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J Cell Biol , 181(3): 497–510
doi: 10.1083/jcb.200712064 pmid:18443221
23 Heymann D (2006). Autophagy: A protective mechanism in response to stress and inflammation. Curr Opin Investig Drugs , 7(5): 443–450
pmid:16729721
24 Huang S C, Chang C L, Wang P S, Tsai Y, Liu H S (2009). Enterovirus 71-induced autophagy detected in vitro and in vivo promotes viral replication. J Med Virol , 81(7): 1241–1252
doi: 10.1002/jmv.21502 pmid:19475621
25 Jaakkola P M, Pursiheimo J P (2009). p62 degradation by autophagy: another way for cancer cells to survive under hypoxia. Autophagy , 5(3): 410–412
doi: 10.4161/auto.5.3.7823 pmid:19197142
26 Jaboin J J, Hwang M, Lu B (2009). Autophagy in lung cancer. Methods Enzymol , 453: 287–304
doi: 10.1016/S0076-6879(08)04014-7 pmid:19216912
27 Jackson W T, Giddings T H Jr, Taylor M P, Mulinyawe S, Rabinovitch M, Kopito R R, Kirkegaard K (2005). Subversion of cellular autophagosomal machinery by RNA viruses. PLoS Biol , 3(5): e156
doi: 10.1371/journal.pbio.0030156 pmid:15884975
28 Jounai N, Takeshita F, Kobiyama K, Sawano A, Miyawaki A, Xin K Q, Ishii K J, Kawai T, Akira S, Suzuki K, Okuda K (2007). The Atg5 Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci USA , 104(35): 14050–14055
doi: 10.1073/pnas.0704014104 pmid:17709747
29 Kadowaki M, Karim M R, Carpi A, Miotto G (2006). Nutrient control of macroautophagy in mammalian cells. Mol Aspects Med , 27(5–6): 426–443
doi: 10.1016/j.mam.2006.08.010 pmid:16999992
30 Kaisho T, Akira S (2006). Toll-like receptor function and signaling. J Allergy Clin Immunol , 117(5): 979–987, quiz 988
doi: 10.1016/j.jaci.2006.02.023 pmid:16675322
31 Kihara A, Kabeya Y, Ohsumi Y, Yoshimori T (2001). Beclin-phosphatidylinositol 3-kinase complex functions at the trans-Golgi network. EMBO Rep , 2(4): 330–335
doi: 10.1093/embo-reports/kve061 pmid:11306555
32 Kirkegaard K, Jackson W T (2005). Topology of double-membraned vesicles and the opportunity for non-lytic release of cytoplasm. Autophagy , 1(3): 182–184
doi: 10.4161/auto.1.3.2065 pmid:16874042
33 Kirkegaard K, Taylor M P, Jackson W T (2004). Cellular autophagy: surrender, avoidance and subversion by microorganisms. Nat Rev Microbiol , 2(4): 301–314
doi: 10.1038/nrmicro865 pmid:15031729
34 Klionsky D J (2005a). Autophagy. Curr Biol , 15(8): R282–R283
doi: 10.1016/j.cub.2005.04.013 pmid:15854889
35 Klionsky D J (2005b). The molecular machinery of autophagy: unanswered questions. J Cell Sci , 118(Pt 1): 7–18
doi: 10.1242/jcs.01620 pmid:15615779
36 Komatsu M, Kominami E, Tanaka K (2006a). Autophagy and neurodegeneration. Autophagy , 2(4): 315–317
pmid:16874063
37 Komatsu M, Waguri S, Chiba T, Murata S, Iwata J, Tanida I, Ueno T, Koike M, Uchiyama Y, Kominami E, Tanaka K (2006b). Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature , 441(7095): 880–884
doi: 10.1038/nature04723 pmid:16625205
38 Kundu M, Thompson C B (2008). Autophagy: basic principles and relevance to disease. Annu Rev Pathol , 3(1): 427–455
doi: 10.1146/annurev.pathmechdis.2.010506.091842 pmid:18039129
39 Kunz J B, Schwarz H, Mayer A (2004). Determination of four sequential stages during microautophagy in vitro. J Biol Chem , 279(11): 9987–9996
doi: 10.1074/jbc.M307905200 pmid:14679207
40 Kyei G B, Dinkins C, Davis A S, Roberts E, Singh S B, Dong C, Wu L, Kominami E, Ueno T, Yamamoto A, Federico M, Panganiban A, Vergne I, Deretic V (2009). Autophagy pathway intersects with HIV-1 biosynthesis and regulates viral yields in macrophages. J Cell Biol , 186(2): 255–268
doi: 10.1083/jcb.200903070 pmid:19635843
41 Lee H K, Lund J M, Ramanathan B, Mizushima N, Iwasaki A (2007). Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science , 315(5817): 1398–1401
doi: 10.1126/science.1136880 pmid:17272685
42 Lee Y R, Lei H Y, Liu M T, Wang J R, Chen S H, Jiang-Shieh Y F, Lin Y S, Yeh T M, Liu C C, Liu H S (2008). Autophagic machinery activated by dengue virus enhances virus replication. Virology , 374(2): 240–248
doi: 10.1016/j.virol.2008.02.016 pmid:18353420
43 Leib D A, Machalek M A, Williams B R, Silverman R H, Virgin H W (2000). Specific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proc Natl Acad Sci USA , 97(11): 6097–6101
doi: 10.1073/pnas.100415697 pmid:10801979
44 Levine B (2007). Cell biology: autophagy and cancer. Nature , 446(7137): 745–747
doi: 10.1038/446745a pmid:17429391
45 Levine B, Klionsky D J (2004). Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell , 6(4): 463–477
doi: 10.1016/S1534-5807(04)00099-1 pmid:15068787
46 Liang C, Feng P, Ku B, Dotan I, Canaani D, Oh B H, Jung J U (2006). Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG. Nat Cell Biol , 8(7): 688–698
doi: 10.1038/ncb1426 pmid:16799551
47 Liang X H, Kleeman L K, Jiang H H, Gordon G, Goldman J E, Berry G, Herman B, Levine B (1998). Protection against fatal Sindbis virus encephalitis by beclin, a novel Bcl-2-interacting protein. J Virol , 72(11): 8586–8596
pmid:9765397
48 Massey A C, Zhang C, Cuervo A M (2006). Chaperone-mediated autophagy in aging and disease. Curr Top Dev Biol , 73: 205–235
doi: 10.1016/S0070-2153(05)73007-6 pmid:16782460
49 Mathew R, Karantza-Wadsworth V, White E (2007). Role of autophagy in cancer. Nat Rev Cancer , 7(12): 961–967
doi: 10.1038/nrc2254 pmid:17972889
50 Morita E, Sugamura K (2002). Human parvovirus B19-induced cell cycle arrest and apoptosis. Springer Semin Immunopathol , 24(2): 187–199
doi: 10.1007/s00281-002-0099-6 pmid:12503064
51 Nakashima A, Tanaka N, Tamai K, Kyuuma M, Ishikawa Y, Sato H, Yoshimori T, Saito S, Sugamura K (2006). Survival of parvovirus B19-infected cells by cellular autophagy. Virology , 349(2): 254– 263
doi: 10.1016/j.virol.2006.03.029 pmid:16643977
52 Orvedahl A, Alexander D, Tallóczy Z, Sun Q, Wei Y, Zhang W, Burns D, Leib D A, Levine B (2007). HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe , 1(1): 23–35
doi: 10.1016/j.chom.2006.12.001 pmid:18005679
53 Paludan C, Schmid D, Landthaler M, Vockerodt M, Kube D, Tuschl T, Münz C (2005). Endogenous MHC class II processing of a viral nuclear antigen after autophagy. Science , 307(5709): 593–596
doi: 10.1126/science.1104904 pmid:15591165
54 Pattingre S, Tassa A, Qu X, Garuti R, Liang X H, Mizushima N, Packer M, Schneider M D, Levine B (2005). Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell , 122(6): 927–939
doi: 10.1016/j.cell.2005.07.002 pmid:16179260
55 Prentice E, Jerome W G, Yoshimori T, Mizushima N, Denison M R (2004). Coronavirus replication complex formation utilizes components of cellular autophagy. J Biol Chem , 279(11): 10136–10141
doi: 10.1074/jbc.M306124200 pmid:14699140
56 Py B F, Boyce M, Yuan J (2009). A critical role of eEF-2K in mediating autophagy in response to multiple cellular stresses. Autophagy , 5(3): 393–396
doi: 10.4161/auto.5.3.7762 pmid:19221463
57 Rosenbluth J M, Pietenpol J A (2009). mTOR regulates autophagy-associated genes downstream of p73. Autophagy , 5(1): 114–116
doi: 10.4161/auto.5.1.7294 pmid:19001857
58 Schmid D, Pypaert M, Münz C (2007). Antigen-loading compartments for major histocompatibility complex class II molecules continuously receive input from autophagosomes. Immunity , 26(1): 79–92
doi: 10.1016/j.immuni.2006.10.018 pmid:17182262
59 Shi C S, Kehrl J H (2008). MyD88 and Trif target Beclin 1 to trigger autophagy in macrophages. J Biol Chem , 283(48): 33175–33182
doi: 10.1074/jbc.M804478200 pmid:18772134
60 Sir D, Chen W L, Choi J, Wakita T, Yen T S, Ou J H (2008a). Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology , 48(4): 1054–1061
doi: 10.1002/hep.22464 pmid:18688877
61 Sir D, Liang C, Chen W L, Jung J U, Ou J H (2008b). Perturbation of autophagic pathway by hepatitis C virus. Autophagy , 4(6): 830–831
pmid:18635950
62 Snijder E J, van der Meer Y, Zevenhoven-Dobbe J, Onderwater J J, van der Meulen J, Koerten H K, Mommaas A M (2006). Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol , 80(12): 5927–5940
doi: 10.1128/JVI.02501-05 pmid:16731931
63 Strawbridge A B, Blum J S (2007). Autophagy in MHC class II antigen processing. Curr Opin Immunol , 19(1): 87–92
doi: 10.1016/j.coi.2006.11.009 pmid:17129719
64 Suhy D A, Giddings T H Jr, Kirkegaard K (2000). Remodeling the endoplasmic reticulum by poliovirus infection and by individual viral proteins: an autophagy-like origin for virus-induced vesicles. J Virol , 74(19): 8953–8965
doi: 10.1128/JVI.74.19.8953-8965.2000 pmid:10982339
65 Takeuchi O, Akira S (2007). Recognition of viruses by innate immunity. Immunol Rev , 220(1): 214–224
doi: 10.1111/j.1600-065X.2007.00562.x pmid:17979849
66 Tallóczy Z, Jiang W, Virgin H W 4th, Leib D A, Scheuner D, Kaufman R J, Eskelinen E L, Levine B (2002). Regulation of starvation- and virus-induced autophagy by the eIF2α kinase signaling pathway. Proc Natl Acad Sci USA , 99(1): 190–195
doi: 10.1073/pnas.012485299 pmid:11756670
67 Tallóczy Z, Virgin H W 4th, Levine B (2006). PKR-dependent autophagic degradation of herpes simplex virus type 1. Autophagy , 2(1): 24–29
pmid:16874088
68 Tang H, Da L, Mao Y, Li Y, Li D, Xu Z, Li F, Wang Y, Tiollais P, Li T, Zhao M (2009). Hepatitis B virus X protein sensitizes cells to starvation-induced autophagy via up-regulation of beclin 1 expression. Hepatology , 49(1): 60–71
doi: 10.1002/hep.22581
69 Taylor M P, Kirkegaard K (2007). Modification of cellular autophagy protein LC3 by poliovirus. J Virol , 81(22): 12543–12553
doi: 10.1128/JVI.00755-07 pmid:17804493
70 Tsukamoto S, Kuma A, Murakami M, Kishi C, Yamamoto A, Mizushima N (2008). Autophagy is essential for preimplantation development of mouse embryos. Science , 321(5885): 117–120
doi: 10.1126/science.1154822 pmid:18599786
71 Wang C W, Klionsky D J (2003). The molecular mechanism of autophagy. Mol Med , 9(3–4): 65–76
pmid:12865942
72 Wong J, Zhang J, Si X, Gao G, Mao I, McManus B M, Luo H (2008). Autophagosome supports coxsackievirus B3 replication in host cells. J Virol , 82(18): 9143–9153
doi: 10.1128/JVI.00641-08 pmid:18596087
73 Yang Y P, Liang Z Q, Gu Z L, Qin Z H (2005). Molecular mechanism and regulation of autophagy. Acta Pharmacol Sin , 26(12): 1421–1434
doi: 10.1111/j.1745-7254.2005.00235.x pmid:16297339
74 Yin V P, Thummel C S (2005). Mechanisms of steroid-triggered programmed cell death in Drosophila. Semin Cell Dev Biol , 16(2): 237–243
doi: 10.1016/j.semcdb.2004.12.007 pmid:15797834
75 Zeng X, Overmeyer J H, Maltese W A (2006). Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci , 119(Pt 2): 259–270
doi: 10.1242/jcs.02735 pmid:16390869
76 Zhou Z, Jiang X, Liu D, Fan Z,Hu X, Yan J, Wang M, Gao G F (2009). Autophagy is involved in influenza A virus replication. Autophagy , 5(3): 321–328
doi: 10.4161/auto.5.3.7406 pmid:19066474
[1] Yanan Sun,Jie Yang,Zhenyi Ma. Functions of the adaptor protein p66Shc in solid tumors[J]. Front. Biol., 2015, 10(6): 487-494.
[2] Altea Rocchi,Congcong He. Emerging roles of autophagy in metabolism and metabolic disorders[J]. Front. Biol., 2015, 10(2): 154-164.
[3] Leon H. CHEW,Calvin K. YIP. Structural biology of the macroautophagy machinery[J]. Front. Biol., 2014, 9(1): 18-34.
[4] Noor GAMMOH,Simon WILKINSON. Autophagy in cancer biology and therapy[J]. Front. Biol., 2014, 9(1): 35-50.
[5] Xiaoyan LIU, Jozsef GAL, Haining ZHU. Sequestosome 1/p62: a multi-domain protein with multi-faceted functions[J]. Front Biol, 2012, 7(3): 189-201.
[6] MU Junjie, YAO Xue, CHEN Qimin, GENG Yunqi, QIAO Wentao. MicroRNAs and their role in viral infection[J]. Front. Biol., 2007, 2(1): 15-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed