Please wait a minute...
Frontiers in Biology

ISSN 1674-7984

ISSN 1674-7992(Online)

CN 11-5892/Q

Front Biol    2012, Vol. 7 Issue (6) : 539-547    https://doi.org/10.1007/s11515-012-9248-z
REVIEW
Recent progress in the single-cell C4 photosynthesis in terrestrial plants
Shiu-Cheung LUNG1, Makoto YANAGISAWA2, Simon D. X. CHUONG1()
1. Department of Biology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada; 2. Agronomy Department, Purdue University, West Lafayette, IN 47907-2054, USA
 Download: PDF(519 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Currently, single-cell C4 photosynthesis has been reported in four terrestrial plant species, Bienertia cycloptera, B. sinuspersici, B. kavirense and Suaeda aralocaspica, of family Chenopodiaceae. These species possess novel mechanisms of C4 photosynthesis through spatial partitioning of organelles and key enzymes in distinct cytoplasmic domains within single chlorenchyma cells. Anatomical and biochemical studies have shown that the three Bienertia species and S. aralocaspica utilize biochemical and organellar compartmentation to achieve the equivalent spatial separation of Kranz anatomy but within a single photosynthetic cell. These discoveries have challenged the paradigm for C4 photosynthesis in terrestrial plants which had suggested for more than 40 years that the Kranz feature was indispensably required for its C4 function. In this review, we focus on the recent progress in understanding the cellular and molecular mechanisms that control the spatial relationship of organelles in these unique single-cell C4 systems. The demonstrated interaction of dimorphic chloroplasts with microtubules and actin filaments has shed light on the importance of these cytoskeleton components in the intracellular partitioning of organelles. Future perspectives on the potential function of the cytoskeleton in targeting gene products to specific subcellular compartments are discussed.

Keywords C4 plants      single-cell C4 photosynthesis      Chenopodiaceae      dimorphic chloroplasts      organelle compartmentation      photosynthetic enzymes      cytoskeleton      protein targeting     
Corresponding Author(s): CHUONG Simon D. X.,Email:schuong@uwaterloo.ca   
Issue Date: 01 December 2012
 Cite this article:   
Shiu-Cheung LUNG,Makoto YANAGISAWA,Simon D. X. CHUONG. Recent progress in the single-cell C4 photosynthesis in terrestrial plants[J]. Front Biol, 2012, 7(6): 539-547.
 URL:  
https://academic.hep.com.cn/fib/EN/10.1007/s11515-012-9248-z
https://academic.hep.com.cn/fib/EN/Y2012/V7/I6/539
Fig.1  Simplified schematic diagrams of the C, C and CAM photosynthetic pathways. A: In the C or Calvin-Benson pathway, Rubisco catalyzes the carboxylation of CO to RuBP to generate C acids. Most of the C acids are used for the regeneration of RuBP whereas the remainder is used in sucrose or starch synthesis. B: In the C pathway, CO fixation involves two cell types- the mesophyll (M) and bundle sheath (BS) cells. In the M cell, CO is hydrated to by carbonic anhydrase (CA) which is used to react with phosphoenolpyruvate (PEP) catalyzes by PEP carboxylase (PEPC) producing a C acid. The C acid is transported to the BS cell where it is decarboxylated by NAD-/NADP-malic enzyme (ME) or PEP carboxykinase (PEP-CK) yielding CO and a C acid (pyruvate). The CO is refixed by Rubisco of the Calvin-Benson cycle while the C product moves back to the M cell for the regeneration of PEP by pyruvate phosphate dikinase (PPDK). C: In the CAM pathway, CO is taken up at night when stomata are open and it is hydrated by CA to . PEPC catalyzes the reaction between and PEP to generate a C acid which is stored in the vacuole. During the day when stomata are closed, the stored C acid is released from the vacuole for the decarboxylation reaction and the resulting CO is converted to sucrose or starch by the Calvin-Benson cycle.
Fig.2  General leaf anatomy of (A-C) and (D-F). A: under controlled growth conditions. B: leaf cross section with two layers of chlorenchyma cells (ch) surrounding water storage cells (ws) and vascular tissues (vt). C: A close-up view of chlorenchyma cells showing the nucleus (n) and the central (ccc) and peripheral (pcc) cytoplasmic compartments connected by transvacuolar cytoplasmic strands (tvs; arrows). D: under controlled growth conditions. E: leaf cross section showing a single layer of elongated chlorenchyma cells sandwiched between water storage cells (ws) beneath the epidermis (e). F: A close-up view of chlorenchyma cells depicting the distal (d) and proximal (p) cytoplasmic compartments respectively. Scale bars (A, D) = 1 cm, (B, E) = 150 μm, (C, F) = 50 μm.
Fig.3  Proposed models for the C pathway in the single-cell systems. Confocal microscopy of live (A) and (B) chlorenchyma cells stained with rhodamine 123 showing the partitioning of chloroplasts (red fluorescence) and mitochondria (yellow fluorescence) in distinct cytoplasmic compartments. A: In , the initial fixation of atmospheric CO into C acids occurs in the peripheral compartment, C acids diffuse via cytoplasmic channel to the central compartment for decarboxylation, and the released CO are recaptured by Rubisco. B: In , atmospheric CO enters the distal compartment of the cell where it is fixed in the C cycle, the C acids diffuse to the proximal compartment where they are decarboxylated, and the released CO are refixed by Rubisco.
Fig.4  Transient expression of fluorescent fusion proteins in protoplasts of . Transfected protoplasts were observed under a confocal laser scanning microscope. Merged images showing green fluorescent protein signals (green) and chlorophyll autofluorescence (red) in protoplasts transfected with constructs of protein fusions to: A, talin, an actin binding protein; B, MAP4, a microtubule binding protein; C, Rubisco small-subunit; D, the transit peptide of NAD-malic enzyme; E, a peroxisomal targeting signal, or; F, a nuclear localization signal. Scale bars= 5 μm.
1 Akhani H, Barroca J, Koteeva N K, Voznesenskaya E V, Franceschi V, Edwards G, Ghaffari S, Ziegler H (2005). Bienertia sinuspersici (Chenopodiaceae): A new species from Southwest Asia and discovery of a third terrestrial C4 plant without Kranz anatomy. Syst Bot , 30(2): 290–301
doi: 10.1600/0363644054223684
2 Akhani H, Chatrenoor T, Dehghani M, Khoshravesh R, Mahdavi P, Matinzadeh Z (2012) A new species of Bienertia (Chenopodiaceae) from Iranian salt deserts: A third species of the genus and discovery of a fourth terrestrial C4 plant without Kranz anatomy. Plant Biosys ,
doi: 10.1080/11263504.2012.662921
3 Bashirullah A, Cooperstock R L, Lipshitz H D (1998). RNA localization in development. Annu Rev Biochem , 67(1): 335–394
doi: 10.1146/annurev.biochem.67.1.335 pmid:9759492
4 Chen X, Schnell D J (1999). Protein import into chloroplasts. Trends Cell Biol , 9(6): 222–227
doi: 10.1016/S0962-8924(99)01554-8 pmid:10354568
5 Chuong S D X, Franceschi V R, Edwards G E (2006). The cytoskeleton maintains organelle partitioning required for single-cell C4 photosynthesis in Chenopodiaceae species. Plant Cell , 18(9): 2207–2223
doi: 10.1105/tpc.105.036186 pmid:16905659
6 Chuong S D X, Park N I, Freeman M C, Mullen R T, Muench D G (2005). The peroxisomal multifunctional protein interacts with cortical microtubules in plant cells. BMC Cell Biol , 6(1): 40
doi: 10.1186/1471-2121-6-40 pmid:16313672
7 Collings D A, Lill A W, Himmelspach R, Wasteneys G O (2006). Drug sensitisation studies show actin microfilaments and microtubules interact during root elongation in Arabidopsis thaliana. New Phytol , 170: 275–290
doi: 10.1111/j.1469-8137.2006.01671.x pmid:16608453
8 Crofts A J, Washida H, Okita T W, Satoh M, Ogawa M, Kumamaru T, Satoh H (2005). The role of mRNA and protein sorting in seed storage protein synthesis, transport, and deposition. Biochem Cell Biol , 83(6): 728–737
doi: 10.1139/o05-156 pmid:16333324
9 Edwards G E, Franceschi V R, Voznesenskaya E V (2004). Single cell C4 photosynthesis versus the dual-cell (Kranz) paradigm. Annu Rev Plant Physiol Plant Mol Biol , 55: 173–196
10 Edwards G E, Huber S C (1981). The C4 pathway. In The biochemistry of plants, a comprehensive treatise. Vol.8. Photosynthesis , M.D. Hatch and N.K. Boardman, eds (N.Y., London, Toronto, Sydney, San Francisco: Acad. Press), pp. 237–281 .
11 Edwards G E, Voznesenskaya V E, Smith M, Koteyeva N K, Park Y I, Park J H, Kiirats O, Okita T W, Chuong S D X (2008). Breaking the paradigm in C4 photosynthesis: Does it hold promise for C4 rice? In: Charting New Pathways to C4Rice . Eds Sheehy JE, Mitchell PL and Hardy B. World Scientific Publishing Co . pp. 249–273 .
12 Edwards G E, Walker D A (1983). C3, C4: mechanisms, and cellular and environmental regulation, of photosynthesis. Oxford: Blackwell Scientific Publications
13 Freitag H, Stichler W (2000). A remarkable new leaf type with unusual photosynthetic tissue in a central Asiatic genus of Chenopodeaceae. Plant Biol , 2(2): 154–160
doi: 10.1055/s-2000-9462
14 Hatch M D, Slack C R (1970). Photosynthetic CO2-fixation pathways. Annu Rev Plant Physiol , 21: 141–163 . In: Hatch M D, Osmond C B, Slatyer R O, eds (1971). Mechanism and function of C4 photosynthesis. In: Photosynthesis and Photorespiration . New York: Wiley-Interscience, pp. 139–152 .
15 Hiltbrunner A, Bauer J, Vidi P A, Infanger S, Weibel P, Hohwy M, Kessler F (2001). Targeting of an abundant cytosolic form of the protein import receptor at Toc159 to the outer chloroplast membrane. J Cell Biol , 154(2): 309–316
doi: 10.1083/jcb.200104022 pmid:11470820
16 Hirsch S, Muckel E, Heemeyer F, von Heijne G, Soll J (1994). A receptor component of the chloroplast protein translocation machinery. Science , 266(5193): 1989–1992
doi: 7801125" target="_blank">10.1126/science. pmid:7801125 pmid:7801125
17 Ivanova Y, Smith M D, Chen K, Schnell D J (2004). Members of the Toc159 import receptor family represent distinct pathways for protein targeting to plastids. Mol Biol Cell , 15(7): 3379–3392
doi: 10.1091/mbc.E03-12-0923 pmid:15090618
18 Jansen R P (2001). mRNA localization: message on the move. Nat Rev Mol Cell Biol , 2(4): 247–256
doi: 10.1038/35067016 pmid:11283722
19 Jouhet J, Gray J C (2009). Interaction of actin and the chloroplast protein import apparatus. J Biol Chem , 284(28): 19132–19141
doi: 10.1074/jbc.M109.012831 pmid:19435889
20 Kandasamy M K, Meagher R B (1999). Actin-organelle interaction: association with chloroplast in Arabidopsis leaf mesophyll cells. Cell Motil Cytoskeleton , 44(2): 110–118
doi: 10.1002/(SICI)1097-0169(199910)44:2<110::AID-CM3>3.0.CO;2-O pmid:10506746
21 Kubis S, Patel R, Combe J, Bédard J, Kovacheva S, Lilley K, Biehl A, Leister D, Ríos G, Koncz C, Jarvis P (2004). Functional specialization amongst the Arabidopsis Toc159 family of chloroplast protein import receptors. Plant Cell , 16(8): 2059–2077
doi: 10.1105/tpc.104.023309 pmid:15273297
22 Kwok E Y, Hanson M R (2003). Microfilaments and microtubules control the morphology and movement of non-green plastids and stromules in Nicotiana tabacum. Plant J , 35(1): 16–26
doi: 10.1046/j.1365-313X.2003.01777.x pmid:12834398
23 Lara M V, Offermann S, Smith M, Okita T W, Andreo C S, Edwards G E (2008). Leaf development in the single-cell C4 system in Bienertia sinuspersici: expression of genes and peptide levels for C4 metabolism in relation to chlorenchyma structure under different light conditions. Plant Physiol , 148(1): 593–610
doi: 10.1104/pp.108.124008 pmid:18667722
24 Logan D C, Scott I, Tobin A K (2003). The genetic control of plant mitochondrial morphology and dynamics. Plant J , 36(4): 500–509
doi: 10.1046/j.1365-313X.2003.01894.x pmid:14617080
25 Lung S C, Chuong S D X (2012). A transit peptide-like sorting signal at the C terminus directs the Bienertia sinuspersici preprotein receptor Toc159 to the chloroplast outer membrane. Plant Cell , 24(4): 1560–1578
doi: 10.1105/tpc.112.096248 pmid:22517318
26 Lung S C, Yanagisawa M, Chuong S D X (2011). Protoplast isolation and transient gene expression in the single-cell C4 species, Bienertia sinuspersici. Plant Cell Rep , 30(4): 473–484
doi: 10.1007/s00299-010-0953-2 pmid:21103876
27 Lung S C, Yanagisawa M, Chuong S D X (2012). Isolation of dimorphic chloroplasts from the single-cell C4 species Bienertia sinuspersici. Plant Methods , 8(1): 8
doi: 10.1186/1746-4811-8-8 pmid:22394490
28 Offermann S, Okita T W, Edwards G E (2011). Resolving the compartmentation and function of C4 photosynthesis in the single-cell C4 species Bienertia sinuspersici. Plant Physiol , 155(4): 1612–1628
doi: 10.1104/pp.110.170381 pmid:21263039
29 Park J H, Knoblauch M, Okita T W, Edwards G E (2009). Structural changes in the vacuole and cytoskeleton are key to development of the two cytoplasmic domains supporting single-cell C(4) photosynthesis in Bienertia sinuspersici. Planta , 229(2): 369–382
doi: 10.1007/s00425-008-0836-8 pmid:18972128
30 Park J H, Okita T W, Edwards G E (2010). Expression profiling and proteomic analysis of isolated photosynthetic cells of the non-Kranz C4 species Bienertia sinuspersici. Funct Plant Biol , 37(1): 1–13
doi: 10.1071/FP09074
31 Petrásek J, Schwarzerová K (2009). Actin and microtubule cytoskeleton interactions. Curr Opin Plant Biol , 12(6): 728–734
doi: 10.1016/j.pbi.2009.09.010 pmid:19854097
32 Sage R F (1999). Why C4 photosynthesis? In C4 Plant Biology. Physiological Ecology series , Sage R F and Monson R K, eds (San Diego: Academic Press), pp. 3–16 .
33 Sage R F (2003). Atmospheric CO2, environmental stress and the evolution of C4 photosynthesis. In: Ehleringer J R, Cerling T E, Dearing D, eds. A History of Atmospheric CO2 and its Effects on Plants, Animals and Ecosystems. , Berlin: Springer-Verlag
34 Sampathkumar A, Lindeboom J J, Debolt S, Gutierrez R, Ehrhardt D W, Ketelaar T, Persson S (2011). Live cell imaging reveals structural associations between the actin and microtubule cytoskeleton in Arabidopsis. Plant Cell , 23(6): 2302–2313
doi: 10.1105/tpc.111.087940 pmid:21693695
35 Sato Y, Wada M, Kadota A (2001). Choice of tracks, microtubules and/or actin filaments for chloroplast photo-movement is differentially controlled by phytochrome and a blue light receptor. J Cell Sci , 114(Pt 2): 269–279
pmid:11148129
36 Schnell D J, Kessler F, Blobel G (1994). Isolation of components of the chloroplast protein import machinery. Science , 266(5187): 1007–1012
doi: 7973649" target="_blank">10.1126/science. pmid:7973649 pmid:7973649
37 Smith M D (2006). Protein import into chloroplasts: an ever-evolving story. Can J Bot , 84(4): 531–542
doi: 10.1139/b06-050
38 Smith M D, Rounds C M, Wang F, Chen K, Afitlhile M, Schnell D J (2004). atToc159 is a selective transit peptide receptor for the import of nucleus-encoded chloroplast proteins. J Cell Biol , 165(3): 323–334
doi: 10.1083/jcb.200311074 pmid:15138290
39 Van Gestel K, K?hler R H, Verbelen J P (2002). Plant mitochondria move on F-actin, but their positioning in the cortical cytoplasm depends on both F-actin and microtubules. J Exp Bot , 53(369): 659–667
doi: 10.1093/jexbot/53.369.659 pmid:11886885
40 Voznesenskaya E V, Edwards G E, Kiirats O, Artyusheva E G, Franceschi V R (2003). Development of biochemical specialization and organelle partitioning in the single-cell C4 system in leaves of Borszczowia aralocaspica (Chenopodiaceae). Am J Bot , 90(12): 1669–1680
doi: 10.3732/ajb.90.12.1669 pmid:21653343
41 Voznesenskaya E V, Franceschi V R, Kiirats O, Artyusheva E G, Freitag H, Edwards G E (2002). Proof of C4 photosynthesis without Kranz anatomy in Bienertia cycloptera (Chenopodiaceae). Plant J , 31(5): 649–662
doi: 10.1046/j.1365-313X.2002.01385.x pmid:12207654
42 Voznesenskaya E V, Franceschi V R, Kiirats O, Freitag H, Edwards G E (2001). Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature , 414(6863): 543–546
doi: 10.1038/35107073 pmid:11734854
43 Voznesenskaya E V, Koteyeva N K, Chuong S D X, Akhani H, Edwards G E, Franceschi V R (2005). Differentiation of cellular and biochemical features of the single-cell C4 syndrome during leaf development in Bienertia cycloptera (Chenopodiaceae). Am J Bot , 92(11): 1784–1795
doi: 10.3732/ajb.92.11.1784 pmid:21646096
44 Wada M, Kagawa T, Sato Y (2003). Chloroplast movement. Annu Rev Plant Biol , 54(1): 455–468
doi: 10.1146/annurev.arplant.54.031902.135023 pmid:14502999
45 Wada M, Suetsugu N (2004). Plant organelle positioning. Curr Opin Plant Biol , 7(6): 626–631
doi: 10.1016/j.pbi.2004.09.005 pmid:15491910
46 Winter K, Smith J A C (1996). Crassulacean Acid Metabolism. New York: Spring
[1] Alexandra K. SUCHOWERSKA,Thomas FATH. Cytoskeletal changes in diseases of the nervous system[J]. Front. Biol., 2014, 9(1): 5-17.
[2] Chaohong LIU, Margaret K. FALLEN, Heather MILLER, Arpita UPADHYAYA, Wenxia SONG. The actin cytoskeleton coordinates the signal transduction and antigen processing functions of the B cell antigen receptor[J]. Front Biol, 2013, 8(5): 475-485.
[3] Surajit SARKAR, M. Dhruba SINGH, Renu YADAV, K. P. ARUNKUMAR, Geoffrey W. PITTMAN. Heat shock proteins: Molecules with assorted functions[J]. Front Biol, 2011, 6(4): 312-327.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed