Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2009, Vol. 3 Issue (4) : 379-383     DOI: 10.1007/s11684-009-0073-y
Research articles |
Effect of PRAK gene knockout on the proliferation of mouse embryonic fibroblasts
Xiaowei GONG MD, PhD1,Xiaoyan MING MD1,Xu WANG MM1,Daan WANG MD1,Peng DENG MM1,Yong JIANG MD, PhD1,Aihua LIU MD, PhD2,
1.Department of Pathophysiology, Key Laboratory of Proteomics of Guangdong Province, Southern Medical University, Guangzhou 510515, China; 2.Department of Respiratory Diseases, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China;
Download: PDF(148 KB)  
Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract  p38 regulated/activated protein kinase (PRAK) plays a key role in cell senescence and tumor suppression. The aim of this study was to investigate if PRAK had effect on cell proliferation. The growth of PRAK+/+ and PRAK−/− mouse embryonic fibroblast (MEF) cells was measured by methylthiazoletetrazolium (MTT) colorimetric assay, and the proportion of the cell number in different phases of the cell cycle was analyzed by flow cytometry. The growth curves showed that the growth rate was notably decreased, and cell double time was elongated in PRAK−/− cells; moreover, the number of PRAK−/− cells was decreased by 44.5% compared with that of PRAK+/+ cells cultured for 96h, suggesting that G2/M transition is inhibited in PRAK−/− cells. Meanwhile, G1/S transition was also inhibited in PRAK−/− cells, observed with flow cytometry analysis. The ratios of G0/G1, G2/M, and S phases of PRAK+/+ cells were 44.9%, 12.2%, and 42.9%, respectively, while those of PRAK−/− cells were 55.3%, 7.3%, and 37.4%, respectively. There were 23.1% increase and 12.7% decrease of the number of PRAK−/− cells in G1 and S phases comparison with that of PRAK+/+ cells, respectively. Taken together, PRAK gene knockout in MEF cells leads to cell cycle arrest and proliferation inhibition.
Keywords p38 regulated/activated protein kinase      gene knockout      cell cycle      cell proliferation      
Issue Date: 05 December 2009
URL:  
http://academic.hep.com.cn/fmd/EN/10.1007/s11684-009-0073-y     OR     http://academic.hep.com.cn/fmd/EN/Y2009/V3/I4/379
Johnson G L, Lapadat R. Mitogen-activatedprotein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 2002, 298(5600): 1911―1912

doi: 10.1126/science.1072682
Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation,function and role in human diseases. BiochimBiophys Acta, 2007, 1773(8): 1358―1375

doi: 10.1016/j.bbamcr.2007.03.010
Han J, Sun P. The pathways to tumor suppressionvia route p38. Trends Biochem Sci, 2007, 32(8): 364―371

doi: 10.1016/j.tibs.2007.06.007
Halawani D, Mondeh R, Stanton L A, Beier F. p38 MAP kinasesignaling is necessary for rat chondrosarcoma cell proliferation. Oncogene, 2004, 23(20): 3726―3731

doi: 10.1038/sj.onc.1207422
Bulavin D V, Higashimoto Y, Popoff I J, Gaarde W A, Basrur V, Potapova O, Appella E, Fornace A J Jr. Initiation of a G2/M checkpointafter ultraviolet radiation requires p38 kinase.Nature, 2001, 411(6833): 102―107

doi: 10.1038/35075107
Gong X W, Wei J, Li Y S, Cheng W W, Deng P, Jiang Y. Effectof p38 mitogen-activated protein kinase gene knockout on cell proliferationof embryonic fibroblasts in mice. ChinCrit Care Med, 2008, 20(9): 527―529
Hui L, Bakiri L, Stepniak E, Wagner E F. p38alpha: a suppressor of cell proliferation and tumorigenesis. Cell Cycle, 2007, 6(20): 2429―2433
Bradham C, McClay D R. p38 MAPK in development andcancer.Cell Cycle, 2006, 5(8): 824-828
New L, Jiang Y, Zhao M, Liu K, Zhu W, Flood L J, Kato Y, Parry G C, Han J. PRAK, a novelprotein kinase regulated by the p38 MAP kinase. EMBO J, 1998, 17(12): 3372-3384

doi: 10.1093/emboj/17.12.3372
Seternes O M, Mikalsen T, Johansen B, Michaelsen E, Armstrong C G, Morrice N A, Turgeon B, Meloche S, Moens U, Keyse S M. Activationof MK5/PRAK by the atypical MAP kinase ERK3 defines a novel signaltransduction pathway. EMBO J, 2004, 23(24): 4780―4791

doi: 10.1038/sj.emboj.7600489
Aberg E, Perander M, Johansen B, Julien C, Meloche S, Keyse S M, Seternes O M. Regulation of MAPK-activated protein kinase 5 activity and subcellularlocalization by the atypical MAPK ERK4/MAPK4. J Biol Chem, 2006, 281(46): 35499―35510

doi: 10.1074/jbc.M606225200
Perander M, Aberg E, Johansen B, Dreyer B, Guldvik I J, Outzen H, Keyse S M, Seternes O M. The Ser(186) phospho-acceptorsite within ERK4 is essential for its ability to interact with andactivate PRAK/MK5. Biochem J, 2008, 411(3): 613―622

doi: 10.1042/BJ20071369
Aberg E, Torgersen K M, Johansen B, Keyse S M, Perander M, Seternes O M. Docking of PRAK/MK5 to the atypical MAPKs ERK3 and ERK4 defines anovel MAPK interaction motif. J Biol Chem, 2009, 284(29): 19392―19401

doi: 10.1074/jbc.M109.023283
Li Q, Zhang N, Zhang D, Wang Y, Lin T, Wang Y, Zhou H, Ye Z, Zhang F, Lin S C, Han J. Determinantsthat control the distinct subcellular localization of p38alpha-PRAKand p38beta-PRAK complexes. J Biol Chem, 2008, 283(16): 11014―11023

doi: 10.1074/jbc.M709682200
Sun P, Yoshizuka N, New L, Moser B A, Li Y, Liao R, Xie C, Chen J, Deng Q, Yamout M, Dong M Q, Frangou C G, Yates J R 3rd, Wright P E, Han J. PRAK is essential for ras-inducedsenescence and tumor suppression. Cell, 2007, 128(2): 295―308

doi: 10.1016/j.cell.2006.11.050
New L, Jiang Y, Han J. Regulation of PRAK subcellular location by p38 MAP kinases. Mol Biol Cell, 2003, 14(6): 2603―2616

doi: 10.1091/mbc.E02-08-0538
Chen G, Hitomi M, Han J, Stacey D W. The p38pathway provides negative feedback for Ras proliferative signaling. J Biol Chem, 2000, 275(50): 38973―38980

doi: 10.1074/jbc.M002856200
Khiem D, Cyster J G, Schwarz J J, Black B L. A p38 MAPK-MEF2Cpathway regulates B-cell proliferation. Proc Natl Acad Sci U S A, 2008, 105(44): 17067―17072

doi: 10.1073/pnas.0804868105
Thornton T M, Rincon M. Non-classical p38 map kinasefunctions: cell cycle checkpoints and survival. Int J Biol Sci, 2009, 5(1): 44―51
Adler H S, Kubsch S, Graulich E, Ludwig S, Knop J, Steinbrink K. Activation of MAP kinase p38 is critical for the cell-cycle-controlledsuppressor function of regulatory T cells. Blood, 2007, 109(10): 4351―4359

doi: 10.1182/blood-2006-09-047563
Pedraza-Alva G, Koulnis M, Charland C, Thornton T, Clements J L, Schlissel M S, Rincón M. Activation of p38 MAP kinase by DNA double-strand breaks in V(D)Jrecombination induces a G2/M cell cycle checkpoint. EMBO J, 2006, 25(4): 763―773

doi: 10.1038/sj.emboj.7600972
Hallstrom T C, Nevins J R. Balancing the decision ofcell proliferation and cell fate. CellCycle, 2009, 8(4): 532-535
Yaswen P, Campisi J. Oncogene-induced senescencepathways weave an intricate tapestry. Cell, 2007, 128(2): 233―234

doi: 10.1016/j.cell.2007.01.005
[1] Hui XIAO PhD, Ming TIAN MM, Junna GE MM, Xin Wei MD, Zhaoming LI MM, Xiaolan LI MS, Deding TAO PhD, Junbo HU MD, Jianping GONG MD, . The role of CDK1 siRNA interference in cell cycle and cell apoptosis[J]. Front. Med., 2009, 3(4): 384-389.
[2] Gang WANG. NADPH oxidase and reactive oxygen species as signaling molecules in carcinogenesis[J]. Front Med Chin, 2009, 3(1): 1-7.
[3] JIN Qiumei, LI Yan, SUN Zengrong. Estrogenic activities of di-2-ethylhexyl phthalate[J]. Front. Med., 2008, 2(3): 303-308.
[4] SU Yuan, JIN Yang, ZHANG Xiaoju, ZHOU Qiong, BAI Ming, ZHU Liping. Impact of siRNA targeting pirh2 on proliferation and cell cycle control of the lung adenocarcinoma cell line A549[J]. Front. Med., 2007, 1(4): 359-363.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed