Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front Med Chin    2009, Vol. 3 Issue (1) : 1-7
NADPH oxidase and reactive oxygen species as signaling molecules in carcinogenesis
Gang WANG()
Division of Neurobiology, Department of Neurology and Neuroscience, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
 Download: PDF(146 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks

Reactive oxygen species (ROS) are small molecule metabolites of oxygen that are prone to participate in redox reactions via their high reactivity. Intracellular ROS could be generated in reduced nicotinamide-adenine dinucleotidephosphate (NADPH) oxidase-dependent and/or NADPH oxidase-independent manners. Physiologically, ROS are involved in many signaling cascades that contribute to normal processes. One classical example is that ROS derived from the NADPH oxidase and released in neurotrophils are able to digest invading bacteria. Excessive ROS, however, contribute to pathogenesis of various human diseases including cancer, aging, dimentia and hypertension. As signaling messengers, ROS are able to oxidize many targets such as DNA, proteins and lipids, which may be linked with tumor growth, invasion or metastasis. The present review summarizes recent advances in our comprehensive understanding of ROS-linked signaling pathways in regulation of tumor growth, invasion and metastasis, and focuses on the role of the NADPH oxidase-derived ROS in cancer pathogenesis.

Keywords free radicals      tumor      phox      cell proliferation      cancer therapy     
Corresponding Author(s): WANG Gang,   
Issue Date: 05 March 2009
 Cite this article:   
Gang WANG. NADPH oxidase and reactive oxygen species as signaling molecules in carcinogenesis[J]. Front Med Chin, 2009, 3(1): 1-7.
Fig.1  Metabolism of reactive oxygen species. is considered as the “primary” reactive oxygen species and mainly generated by the mitochondria, the reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase, the cyclooxygenase and the xanthine oxidase. On one hand, can rapidly react with NO to form highly reactive ONOO that can modify protein targets. On the other hand, is dismutated by superoxide dismutase (SOD) to HO, which has three major fates: (1) HO is most efficiently scavenged by catalase, as well as glutathione peroxidase (GPX), into HO; (2) HO is broken down by some transition metals to reactive hydroxyl radical (Fenton reaction), which plays an important role in DNA damage or lipid peroxidation; (3) HO is degraded by myeloperoxidase (MPO) to O and HO, generating HOCl in the presence of chloride (Cl).
Fig.2  Exemplified pathways for activation of the NOX2 NADPH oxidase. One example is the protein kinase C (PKC)-dependent pathway. PKC can phosphorylate the cytosolic regulatory subunit p47. The phosphorylated p47, along with other cytosolic subunits p40 and p67, translocate towards and binds to the plasma membrane-anchored gp91, the catalytic subunit of the NOX2 reduced nicotinamide-adenine dinucleotide phosphate (NADPH) oxidase. This multi-subunit assembly leads to activation of the whole NOX2 NADPH oxidase system, resulting in the generation of reactive oxygen species (ROS). The NADPH oxidase also participates in signaling in response to various hormones and growth factors. A typical example is the response of the NOX2 NADPH oxidase to activation of the epidermal growth factor (EGF) receptor, where PIK, Akt and Rac1 signals are involved in ROS production.
enzymehighly expressed inregulator
NOX1colon epithelium, gastric pit, vascular smooth musclep22phox
NOX2 (gp91phox)phagocytes, lymphocytes, neurons, carotid body, kidney, vascular smooth musclep47phox, Rac1/2, PKC
NOX3fetal tissue and inner ear
NOX4fetal tissue, kidney, pancreas, ovary, testis, neuron
NOX5fetal tissue, spleen, lymphocytes, sperm glands, mammary glands, cerebrum, stomachcalcium
Tab.1  Distribution of human NADPH oxidases
Fig.3  The NADPH oxidase signaling pathways associated with carcinogenesis can be induced by chronic infection/inflammation or peptide growth factors. PKC: protein kinase C; ROS: reactive oxygen species; NADPH: reduced nicotinamide-adenine dinucleotide phosphate; EGF: epidermal growth factor; PDGF: platelet-derived growth factor; TNF: tumor necrosis factor; TGF: tumor growth factor; DPI: diphenyleneiodonium.
1 Lambeth J D. NOX enzymes and the biology of reactive oxygen. Nat Rev Immunol , 2004, 4(3): 181-189
doi: 10.1038/nri1312
2 Wang G. In: Schwab M, eds. Encyclopedia of Cancer: Reactive oxygen species. 2nd ed. Berlin, Heidelberg , New York: Springer-Verlag. 2008,2559-2562
3 Kanofsky J R. Singlet oxygen production by biological systems. Chem Biol Interact , 1989, 70(1--2): 1-28
doi: 10.1016/0009-2797(89)90059-8
4 Quinn M T, Ammons M C, DeLeo F R. The expanding role of NADPH oxidases in health and disease: no longer just agents of death and destruction. Clin Sci , 2006, 111(1): 1-20
doi: 10.1042/CS20060059
5 Hordijk P L. Regulation of NADPH oxidases: the role of Rac proteins. Circ Res , 2006, 98 (4): 453-463
doi: 10.1161/01.RES.0000204727.46710.5e
6 Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda A R. p38α MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell , 2007, 11(2): 191-205
doi: 10.1016/j.ccr.2006.12.013
7 Komatsu D, Kato M, Nakayama J, Miyagawa S, Kamata T. NADPH oxidase 1 plays a critical mediating role in oncogenic Ras-induced vascular endothelial growth factor expression. Oncogene , 2008, 27(34): 4724-4732
doi: 10.1038/onc.2008.102
8 Nakamura H, Nakamura K, Yodoi J. Redox regulation of cellular activation. Ann Rev Immunol , 1997, 15: 351-369
doi: 10.1146/annurev.immunol.15.1.351
9 Valko M, Rhodes C J, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact , 2006, 160(1): 1-40
doi: 10.1016/j.cbi.2005.12.009
10 Wu W S. The signaling mechanism of ROS in tumor progression. Cancer Metast Rev , 2006, 25(4): 695-705
doi: 10.1007/s10555-006-9037-8
11 Xia C, Meng Q, Liu L Z, Rojanasakul Y, Wang X R, Jiang B H. Reactive oxygen species regulate angiogenesis and tumor growth through vascular endothelial growth factor. Cancer Res , 2007, 67(22): 10823-10830
doi: 10.1158/0008-5472.CAN-07-0783
12 Brar S S, Corbin Z, Kennedy T P, Hemendinger R, Thornton L, Bommarius B, Arnold R S, Whorton A R, Sturrock A B, Huecksteadt T P, Quinn M T, Krenitsky K, Ardie K G, Lambeth J D, Hoidal J R. NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells. Am J Physiol Cell Physiol , 2003, 285(2): c353-369
13 Brar S S, Kennedy T P, Sturrock A B, Huecksteadt T P, Quinn M T, Whorton A R, Hoidal J R. An NAD(P)H oxidase regulates growth and transcription in melanoma cells. Am J Physiol Cell Physiol , 2002, 282(6): c1212-1224
14 Ohshima H, Tatemichi M. In: Vainio H U, Hietanen E K, eds. Infections, inflammation and cancer: roles of reactive oxygen and nitrogen species. Berlin, Heidelberg , New York: Springer-Verlag. 2003: 211-222
15 Keyer K, Gort A S, Imlay J A. Superoxide and the production of oxidative DNA damage. J Bacteriol , 1995, 177(23): 6782-6790
16 Moore R J, Owens D M, Stamp G, Arnott C, Burke F, East N, Holdsworth H, Turner L, Rollins B, Pasparakis M, Kollias G, Balkwill F. Mice deficient in tumor necrosis factor-alpha are resis tant to skin carcinogenesis. Nat Med , 1999, 5(7): 828-831
doi: 10.1038/10462
17 Pikarsky E, Porat R M, Stein I, Abramovitch R, Amit S, Kasem S, Gutkovich-Pyest E, Urieli-Shoval S, Galun E, Ben-Neriah Y. NF-kappa B functions as a tumour promoter in inflammation-associated cancer. Nature , 2004, 431(7007): 461-466
doi: 10.1038/nature02924
18 Ohshima H, Tazawa H, Sylla B S, Sawa T. Prevention of human cancer by modulation of chronic inflammatory processes. Mutat Res , 2005, 591(1--2): 110-122
doi: 10.1016/j.mrfmmm.2005.03.030
19 Kim Y, Lee Y S, Choe J, Lee H, Kim Y M, Jeoung D. CD44-epidermal growth factor receptor interaction mediates hyaluronic acid-promoted cell motility by activating protein kinase C signaling involving Akt, Rac1, Phox, reactive oxygen species, focal adhesion kinase, and MMP-2. J Biol Chem , 2008, 283(33): 22513-22528
doi: 10.1074/jbc.M708319200
20 Ushio-Fukai M, Nakamura Y. Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Lett , 2008, 266(1): 37-52
doi: 10.1016/j.canlet.2008.02.044
21 Valko M, Leibfritz D, Moncol J, Cronin M T, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol , 2007, 39(1): 44-84
doi: 10.1016/j.biocel.2006.07.001
22 Warzocha K, Ribeiro P, Bienvenu J, Roy P, Charlot C, Rigal D, Coiffier B, Salles G. Genetic polymorphisms in the tumor necrosis factor locus influence non-Hodgkin's lymphoma outcome. Blood , 1998, 91(10): 3574-3581
23 Nishino H, Tokuda H, Satomi Y, Masuda M, Osaka Y, Yogosawa S, Wada S, Mou X Y, Takayasu J, Murakoshi M, Jinnno K, Yano M. Cancer prevention by antioxidants. Biofactors , 2004, 22(1-4): 57-61
doi: 10.1002/biof.5520220110
24 Lee K T, Tsai S M, Wang S N, Lin S K, Wu S H, Chuang S C, Wu S H, Ma H, Tsai L Y. Glutathione status in the blood and tissues of patients with virus-originated hepatocellular carcinoma. Clin Biochem , 2007, 40(15): 1157-1162
doi: 10.1016/j.clinbiochem.2007.06.012
25 Das S, Khan N, Mukherjee S, Bagchi D, Gurusamy N, Swartz H, Das D K. Redox regulation of resveratrol-mediated switching of death signal into survival signal. Free Radic Biol Med , 2008, 44(1): 82-90
doi: 10.1016/j.freeradbiomed.2007.09.008
26 Shankar S, Ganapathy S, Srivastava R K. Green tea polyphenols: biology and therapeutic implications in cancer. Front Biosci , 2007, 12: 4881-4899
doi: 10.2741/2435
27 Tian B, Xu Z, Sun Z, Lin J, Hua Y. Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochim Biophys Acta , 2007, 1770(6): 902-911
28 Bedard K, Krause K H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev , 2007, 87(1): 245-313
doi: 10.1152/physrev.00044.2005
29 Wang G, Anrather J, Glass M J, Tarsitano M J, Zhou P, Frys K A, Pickel V M, Iadecola C. Nox2, Ca2+ and PKC play a role in angiotensin II-induced free radical production in nucleus tractus solitarius. Hypertension , 2006, 48 (3): 482-489
doi: 10.1161/01.HYP.0000236647.55200.07
30 Wilkinson B L, Landreth G E. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer’s disease. J Neuroinflamm , 2006, 3: 30
doi: 10.1186/1742-2094-3-30
31 Tieu K, Ischiropoulos H, Przedborski S. Nitric oxide and reactive oxygen species in Parkinson's disease. IUBMB Life , 2003, 55(6): 329-335
doi: 10.1080/1521654032000114320
[1] Jing Ma, Shiyu Chen, Lili Hao, Wei Sheng, Weicheng Chen, Xiaojing Ma, Bowen Zhang, Duan Ma, Guoying Huang. Long non-coding RNA SAP30-2:1 is downregulated in congenital heart disease and regulates cell proliferation by targeting HAND2[J]. Front. Med., 2021, 15(1): 91-100.
[2] Anqi Chen, Suhua Zhang, Jixi Li, Chaoneng Ji, Jinzhong Chen, Chengtao Li. Detecting genetic hypermutability of gastrointestinal tumor by using a forensic STR kit[J]. Front. Med., 2020, 14(1): 101-111.
[3] Rui Zhou, Yuanshu Liu, Wenjun Huang, Xitong Dang. Potential functions of esophageal cancer-related gene-4 in the cardiovascular system[J]. Front. Med., 2019, 13(6): 639-645.
[4] Xin Qin, Ping Zhang. ECRG4: a new potential target in precision medicine[J]. Front. Med., 2019, 13(5): 540-546.
[5] Zhao Zhang, Jun Jiang, Xiaodong Wu, Mengyao Zhang, Dan Luo, Renyu Zhang, Shiyou Li, Youwen He, Huijie Bian, Zhinan Chen. Chimeric antigen receptor T cell targeting EGFRvIII for metastatic lung cancer therapy[J]. Front. Med., 2019, 13(1): 57-68.
[6] Min Zhang, Jingwen Yang, Wenjing Hua, Zhong Li, Zenghui Xu, Qijun Qian. Monitoring checkpoint inhibitors: predictive biomarkers in immunotherapy[J]. Front. Med., 2019, 13(1): 32-44.
[7] Yinlong Zhang, Guangna Liu, Jingyan Wei, Guangjun Nie. Platelet membrane-based and tumor-associated platelet- targeted drug delivery systems for cancer therapy[J]. Front. Med., 2018, 12(6): 667-677.
[8] Bin Yang, Yan Yu, Jing Chen, Yan Zhang, Ye Yin, Nan Yu, Ge Chen, Shifei Zhu, Haiyan Huang, Yongqun Yuan, Jihui Ai, Xinyu Wang, Kezhen Li. Possibility of women treated with fertility-sparing surgery for non-epithelial ovarian tumors to safely and successfully become pregnant---a Chinese retrospective cohort study among 148 cases[J]. Front. Med., 2018, 12(5): 509-517.
[9] Lan Yu, Xun Tian, Chun Gao, Ping Wu, Liming Wang, Bei Feng, Xiaomin Li, Hui Wang, Ding Ma, Zheng Hu. Genome editing for the treatment of tumorigenic viral infections and virus-related carcinomas[J]. Front. Med., 2018, 12(5): 497-508.
[10] Sumedha Roy, Yuan Zhuang. Paradoxical role of Id proteins in regulating tumorigenic potential of lymphoid cells[J]. Front. Med., 2018, 12(4): 374-386.
[11] Minhong Shen, Yibin Kang. Complex interplay between tumor microenvironment and cancer therapy[J]. Front. Med., 2018, 12(4): 426-439.
[12] Xiaodong Duan, Daizhi Peng, Yilan Zhang, Yalan Huang, Xiao Liu, Ruifu Li, Xin Zhou, Jing Liu. Sub-cytotoxic concentrations of ionic silver promote the proliferation of human keratinocytes by inducing the production of reactive oxygen species[J]. Front. Med., 2018, 12(3): 289-300.
[13] Junyun Wang, Shuang Chang, Guochao Li, Yingli Sun. Application of liquid biopsy in precision medicine: opportunities and challenges[J]. Front. Med., 2017, 11(4): 522-527.
[14] Hongli Yin,Tianyi Liu,Ying Zhang,Baofeng Yang. Caveolin proteins: a molecular insight into disease[J]. Front. Med., 2016, 10(4): 397-404.
[15] Yi Liang,Qisheng Feng,Jian Hong,Futuo Feng,Yi Sang,Wenrong Hu,Miao Xu,Roujun Peng,Tiebang Kang,Jinxin Bei,Yixin Zeng. Tumor growth and metastasis can be inhibited by maintaining genomic stability in cancer cells[J]. Front. Med., 2015, 9(1): 57-62.
Full text