Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2016, Vol. 10 Issue (4) : 397-404    https://doi.org/10.1007/s11684-016-0483-6
REVIEW
Caveolin proteins: a molecular insight into disease
Hongli Yin,Tianyi Liu,Ying Zhang(),Baofeng Yang()
Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
 Download: PDF(211 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Caveolae are a kind of specific cystic structures of lipid rafts in the cytoplasmic membrane and are rich in cholesterol and sphingolipids. In recent years, many researchers have found that both caveolins and caveolae play a role in the development of various human diseases, including coronary heart disease, hypertension, and nervous system disorders. The specific mechanisms by which caveolins induce diseases have been a topic of interest. However, a number of detailed molecular mechanisms remain poorly understood. This article focuses on the relationship between caveolin proteins and human diseases and reviews the molecular mechanisms of caveolins in disease networks.

Keywords caveolin      caveolae      microRNA      disease      signaling pathway      heart      tumor     
Corresponding Author(s): Ying Zhang,Baofeng Yang   
Just Accepted Date: 07 November 2016   Online First Date: 25 November 2016    Issue Date: 01 December 2016
 Cite this article:   
Hongli Yin,Tianyi Liu,Ying Zhang, et al. Caveolin proteins: a molecular insight into disease[J]. Front. Med., 2016, 10(4): 397-404.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-016-0483-6
https://academic.hep.com.cn/fmd/EN/Y2016/V10/I4/397
Gene name Chromosomal
?location
Molecular ?weight Length of protein
?(amino acids)
Caveolin molecular organization ?distribution Functional contribution References
Caveolin-1 7q31.1 22 kDa 178 Highest levels in adipocytes, ?endothelia, smooth muscle cells, ?and type I alveolar cells, cerebral ?cortex cell Focal cerebral ischemia
Alzheimer’s disease
Tumor
Pulmonary fibrosis
Respiratory diseases
Intervertebral disc degeneration
[1620]
[2127]
[2932]
[3440]
[41]
[44]
Caveolin-2 7q31.1 18–20 kDa 162 Co-expressed with caveolin-1 Pulmonary dysfunction
Cerebral ischemic injury
Human cancer
Pseudomonas aeruginosa invasion
[50]
[19,51]
[5256]
[58]
Caveolin-3 3p25 17 kDa 151 Muscle specific, primarily in ?skeletal and myocardial cell Cardiac hypertrophy
Muscular dystrophy
Diabetic cardiomyopathy
Lymphocyte proliferation
[64,65]
[60,66]
[67]
[68]
Tab.1  Caveolin family molecular gene locations and the properties of their protein products
Fig.1  Description of the mechanisms of the caveolin family.
66 Stoppani E, Rossi S, Meacci E, Penna F, Costelli P, Bellucci A, Faggi F, Maiolo D, Monti E, Fanzani A. Point mutated caveolin-3 form (P104L) impairs myoblast differentiation via Akt and p38 signalling reduction, leading to an immature cell signature. Biochim Biophys Acta 2011; 1812(4): 468–479
https://doi.org/10.1016/j.bbadis.2010.12.005 pmid: 21182936
67 Lei S, Li H, Xu J, Liu Y, Gao X, Wang J, Ng KFJ, Lau WB, Ma XL, Rodrigues B, Irwin MG, Xia Z. Hyperglycemia-induced protein kinase C β2 activation induces diastolic cardiac dysfunction in diabetic rats by impairing caveolin-3 expression and Akt/eNOS signaling. Diabetes 2013; 62(7): 2318–2328
https://doi.org/10.2337/db12-1391 pmid: 23474486
68 Tran C, Stary CM, Schilling JM, Bentley B, Patel HH, Roth DM. Role of caveolin-3 in lymphocyte activation. Life Sci 2015; 121: 35–39
https://doi.org/10.1016/j.lfs.2014.11.017 pmid: 25476831
1 Kiss AL, Aacute, Turi g, Müller N, Kántor O, Botos E. Caveolae and caveolin isoforms in rat peritoneal macrophages. Micron 2002;33(1):75–93
pmid: 11473817
2 Parton RG. Caveolae and caveolins. Curr Opin Cell Biol 1996; 8(4): 542–548
https://doi.org/10.1016/S0955-0674(96)80033-0 pmid: 8791446
3 Sargiacomo M, Scherer PE, Tang Z, Kübler E, Song KS, Sanders MC, Lisanti MP. Oligomeric structure of caveolin: implications for caveolae membrane organization. Proc Natl Acad Sci USA 1995; 92(20): 9407–9411
https://doi.org/10.1073/pnas.92.20.9407 pmid: 7568142
69 Zhao H, Zhang QR, Zhang HP, Chen XX. Effects of hyperbaric oxygen on the expression of caveolin-2 in brain tissues and the blood brain barrier after focal cerebral ischemia and reperfusion. Chin J Phys Med Rehabil (Zhonghua Wu Li Yi Xue Yu Kang Fu Za Zhi) 2011; 33(9):652–655 (in Chinese)
4 Okamoto T, Schlegel A, Scherer PE, Lisanti MP. Caveolins, a family of scaffolding proteins for organizing “preassembled signaling complexes” at the plasma membrane. J Biol Chem 1998; 273(10): 5419–5422
https://doi.org/10.1074/jbc.273.10.5419 pmid: 9488658
5 Harris J, Werling D, Hope JC, Taylor G, Howard CJ. Caveolae and caveolin in immune cells: distribution and functions. Trends Immunol 2002; 23(3): 158–164
https://doi.org/10.1016/S1471-4906(01)02161-5 pmid: 11864845
6 Ockleford CD, Cairns H, Rowe AJ, Byrne S, Scott JJA, Willingale R. The distribution of caveolin-3 immunofluorescence in skeletal muscle fibre membrane defined by dual channel confocal laser scanning microscopy, fast Fourier transform and image modelling. J Microsc 2002; 206(Pt 2): 93–105
https://doi.org/10.1046/j.1365-2818.2002.01011.x pmid: 12000549
7 Root KT, Plucinsky SM, Glover KJ. Recent progress in the topology, structure, and oligomerization of caveolin: a building block of caveolae. Curr Top Membr 2015; 75(6): 305–336
https://doi.org/10.1016/bs.ctm.2015.03.007 pmid: 26015287
8 Schubert W, Cohen AW, Hnasko R, Lisanti MP. Role of caveolae and caveolins in health and disease. Physiol Rev 2004;84(4):1341–1379
https://doi.org/DOI: 10.1152/physrev.00046.2003 pmid: 15383654
9 Low JY, Nicholson HD. Epigenetic modifications of caveolae associated proteins in health and disease. BMC Genet 2015; 16(1): 71
https://doi.org/10.1186/s12863-015-0231-y pmid: 26112043
10 Boscher C, Nabi IR. Caveolin-1: Role in Cell Signaling. Springer US, 2012: 29–50
11 Han B, Tiwari A, Kenworthy AK. Tagging strategies strongly affect the fate of overexpressed caveolin-1. Traffic 2015; 16(4): 417–438
https://doi.org/10.1111/tra.12254 pmid: 25639341
12 Liu P, Rudick M, Anderson RG. Multiple functions of caveolin-1. J Biol Chem 2002; 277(44): 41295–41298
https://doi.org/10.1074/jbc.R200020200 pmid: 12189159
13 Virgintino D, Robertson D, Errede M, Benagiano V, Tauer U, Roncali L, Bertossi M. Expression of caveolin-1 in human brain microvessels. Neuroscience 2002; 115(1): 145–152
https://doi.org/10.1016/S0306-4522(02)00374-3 pmid: 12401329
14 Arvanitis DN, Wang H, Bagshaw RD, Callahan JW, Boggs JM. Membrane-associated estrogen receptor and caveolin-1 are present in central nervous system myelin and oligodendrocyte plasma membranes. J Neurosci Res 2004; 75(5): 603–613
https://doi.org/10.1002/jnr.20017 pmid: 14991836
15 Grossi M, Rippe C, Sathanoori R, Swärd K, Forte A, Erlinge D, Persson L, Hellstrand P, Nilsson BO. Vascular smooth muscle cell proliferation depends on caveolin-1-regulated polyamine uptake. Biosci Rep 2014;34(6):e00153
https://doi.org/10.1042/BSR20140140 PMID: 25301005
16 Gu Y, Zheng G, Xu M, Li Y, Chen X, Zhu W, Tong Y, Chung SK, Liu KJ, Shen J. Caveolin-1 regulates nitric oxide-mediated matrix metalloproteinases activity and blood-brain barrier permeability in focal cerebral ischemia and reperfusion injury. J Neurochem 2012; 120(1): 147–156
https://doi.org/10.1111/j.1471-4159.2011.07542.x pmid: 22007835
17 Chen Y, Dai Z, Liu YM, Tian HH, Deng SX, Chen LX,Wang HD, Qin XP. Inhibitory effects of CGRP on vascular smooth muscle cell proliferation: role of caveolae/caveolin-1/erk_(1/2) signal pathway. Acta Agron Sin 2013; 40(5): 445–453
https://doi.org/10.3724/SP.J.1206.2012.00028
18 Grande-García A, del Pozo MA. Caveolin-1 in cell polarization and directional migration. Eur J Cell Biol 2008; 87(8-9): 641–647
https://doi.org/10.1016/j.ejcb.2008.02.001 pmid: 18375013
19 Jasmin JF, Malhotra S, Singh Dhallu M, Mercier I, Rosenbaum DM, Lisanti MP. Caveolin-1 deficiency increases cerebral ischemic injury. Circ Res 2007; 100(5): 721–729
https://doi.org/10.1161/01.RES.0000260180.42709.29 pmid: 17293479
20 Li Y, Lau WM, So KF, Tong Y, Shen J. Caveolin-1 promote astroglial differentiation of neural stem/progenitor cells through modulating Notch1/NICD and Hes1 expressions. Biochem Biophys Res Commun 2011; 407(3): 517–524
https://doi.org/10.1016/j.bbrc.2011.03.050 pmid: 21414292
21 Sun JH, Yu JT, Tan L. The role of cholesterol metabolism in Alzheimer’s disease. Mol Neurobiol 2015; 51(3): 947–965
https://doi.org/10.1007/s12035-014-8749-y pmid: 24838626
22 Kuo YM, Beach TG, Sue LI, Scott S, Layne KJ, Kokjohn TA, Kalback WM, Luehrs DC, Vishnivetskaya TA, Abramowski D, Sturchler-Pierrat C, Staufenbiel M, Weller RO, Roher AE. The evolution of A β peptide burden in the APP23 transgenic mice: implications for A β deposition in Alzheimer disease. Mol Med 2001; 7(9): 609–618
pmid: 11778650
23 Kapoor A, Wang BJ, Liao YF. P3–334: γ-secretase–mediated proteolysis of APP and notch is regulated by caveolin-1. Alzheimer’s Dementia 2008; 4(4Suppl):T619–T620
https://doi.org/10.1016/j.jalz.2008.05.1903
24 Cameron PL, Ruffin JW, Bollag R, Rasmussen H, Cameron RS. Identification of caveolin and caveolin-related proteins in the brain. J Neurosci 1997; 17(24): 9520–9535
pmid: 9391007
25 Gaudreault SB, Dea D, Poirier J. Increased caveolin-1 expression in Alzheimer’s disease brain. Neurobiol Aging 2004; 25(6): 753–759
https://doi.org/10.1016/j.neurobiolaging.2003.07.004 pmid: 15165700
26 Head BP, Peart JN, Panneerselvam M, Yokoyama T, Pearn ML, Niesman IR, Bonds JA, Schilling JM, Miyanohara A, Headrick J, Ali SS, Roth DM, Patel PM, Patel HH. Loss of caveolin-1 accelerates neurodegeneration and aging. PLoS ONE 2010; 5(12): e15697
https://doi.org/10.1371/journal.pone.0015697 pmid: 21203469
27 Salgado IK, Serrano M, García JO, Martínez NA, Maldonado HM, Báez-Pagán CA, Lasalde-Dominicci JA, Silva WI. SorLA in glia: shared subcellular distribution patterns with caveolin-1. Cell Mol Neurobiol 2012; 32(3): 409–421
https://doi.org/10.1007/s10571-011-9771-5 pmid: 22127416
28 Diaz-Valdivia N, Bravo D, Huerta H, Henriquez S, Gabler F, Vega M, Romero C, Calderon C, Owen GI, Leyton L, Quest AF. Enhanced caveolin-1 expression increases migration, anchorage-independent growth and invasion of endometrial adenocarcinoma cells. BMC Cancer 2015; 15(1): 463
https://doi.org/10.1186/s12885-015-1477-5 pmid: 26054531
29 Hulit J, Bash T, Fu M, Galbiati F, Albanese C, Sage DR, Schlegel A, Zhurinsky J, Shtutman M, Ben-Ze’ev A, Lisanti MP, Pestell RG. The cyclin D1 gene is transcriptionally repressed by caveolin-1. J Biol Chem 2000; 275(28): 21203–21209
https://doi.org/10.1074/jbc.M000321200 pmid: 10747899
30 Fiucci G, Ravid D, Reich R, Liscovitch M. Caveolin-1 inhibits anchorage-independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene 2002; 21(15): 2365–2375
https://doi.org/10.1038/sj.onc.1205300 pmid: 11948420
31 Li S, Couet J, Lisanti MP. Src tyrosine kinases, G α subunits, and H-Ras share a common membrane-anchored scaffolding protein, caveolin. Caveolin binding negatively regulates the auto-activation of Src tyrosine kinases. J Biol Chem 1996; 271(46): 29182–29190
https://doi.org/10.1074/jbc.271.46.29182 pmid: 8910575
32 Lee H, Park DS, Razani B, Russell RG, Pestell RG, Lisanti MP. Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (-/-) null mice show mammary epithelial cell hyperplasia. Am J Pathol 2002; 161(4): 1357–1369
https://doi.org/10.1016/S0002-9440(10)64412-4 pmid: 12368209
33 Lee H, Volonte D, Galbiati F, Iyengar P, Lublin DM, Bregman DB, Wilson MT, Campos-Gonzalez R, Bouzahzah B, Pestell RG, Scherer PE, Lisanti MP. Constitutive and growth factor-regulated phosphorylation of caveolin-1 occurs at the same site (Tyr-14) in vivo: identification of a c-Src/Cav-1/Grb7 signaling cassette. Mol Endocrinol 2000; 14(11): 1750–1775
https://doi.org/10.1210/mend.14.11.0553 pmid: 11075810
34 Kasper M, Seidel D, Knels L, Morishima N, Neisser A, Bramke S, Koslowski R. Early signs of lung fibrosis after in vitro treatment of rat lung slices with CdCl2 and TGF-β1. Histochem Cell Biol 2004; 121(2): 131–140
https://doi.org/10.1007/s00418-003-0612-6 pmid: 14752665
35 Koslowski R, Barth K, Augstein A, Tschernig T, Bargsten G, Aufderheide M, Kasper M. A new rat type I-like alveolar epithelial cell line R3/1: bleomycin effects on caveolin expression. Histochem Cell Biol 2004; 121(6): 509–519
https://doi.org/10.1007/s00418-004-0662-4 pmid: 15221420
36 Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV. Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 2001; 293(5539): 2449–2452
https://doi.org/10.1126/science.1062688 pmid: 11498544
37 Murata T, Lin MI, Huang Y, Yu J, Bauer PM, Giordano FJ, Sessa WC. Reexpression of caveolin-1 in endothelium rescues the vascular, cardiac, and pulmonary defects in global caveolin-1 knockout mice. J Exp Med 2007; 204(10): 2373–2382
https://doi.org/10.1084/jem.20062340 pmid: 17893196
38 Razani B, Zhang XL, Bitzer M, von Gersdorff G, Böttinger EP, Lisanti MP. Caveolin-1 regulates transforming growth factor (TGF)- β/SMAD signaling through an interaction with the TGF-β type I receptor. J Biol Chem 2001; 276(9): 6727–6738
https://doi.org/10.1074/jbc.M008340200 pmid: 11102446
39 Lee EK, Lee YS, Han IO, Park SH. Expression of Caveolin-1 reduces cellular responses to TGF-β1 through down-regulating the expression of TGF-β type II receptor gene in NIH3T3 fibroblast cells. Biochem Biophys Res Commun 2007; 359(2): 385–390
https://doi.org/10.1016/j.bbrc.2007.05.121 pmid: 17543885
40 Tourkina E, Gooz P, Pannu J, Bonner M, Scholz D, Hacker S, Silver RM, Trojanowska M, Hoffman S. Opposing effects of protein kinase Cα and protein kinase Cepsilon on collagen expression by human lung fibroblasts are mediated via MEK/ERK and caveolin-1 signaling. J Biol Chem 2005; 280(14): 13879–13887
https://doi.org/10.1074/jbc.M412551200 pmid: 15691837
41 Royce SG, Le Saux CJ. Role of caveolin-1 in asthma and chronic inflammatory respiratory diseases. Expert Rev Respir Med 2014; 8(3): 339–347
https://doi.org/10.1586/17476348.2014.905915 pmid: 24742020
42 Cohen AW, Park DS, Woodman SE, Williams TM, Chandra M, Shirani J, Pereira de Souza A, Kitsis RN, Russell RG, Weiss LM, Tang B, Jelicks LA, Factor SM, Shtutin V, Tanowitz HB, Lisanti MP. Caveolin-1 null mice develop cardiac hypertrophy with hyperactivation of p42/44 MAP kinase in cardiac fibroblasts. Am J Physiol Cell Physiol 2003; 284(2): C457–C474
https://doi.org/10.1152/ajpcell.00380.2002 pmid: 12388077
43 Patel HH, Tsutsumi YM, Head BP, Niesman IR, Jennings M, Horikawa Y, Huang D, Moreno AL, Patel PM, Insel PA, Roth DM. Mechanisms of cardiac protection from ischemia/reperfusion injury: a role for caveolae and caveolin-1. FASEB J 2007; 21(7): 1565–1574
https://doi.org/10.1096/fj.06-7719com pmid: 17272740
44 Bach FC, Zhang Y, Miranda-Bedate A, Verdonschot LC, Bergknut N, Creemers LB, Ito K, Sakai D, Chan D, Meij BP, Tryfonidou MA. Increased caveolin-1 in intervertebral disc degeneration facilitates repair. Arthritis Res Ther 2015; 18(59): 59
pmid: 26939667
45 Zhang C, Su X, Bellner L, Lin DH. Caveolin-1 regulates corneal wound healing by modulating Kir4.1 activity. Am J Physiol Cell Physiol 2016; 310(11): C993–C1000
pmid: 27122158
46 Scherer PE, Okamoto T, Chun M, Nishimoto I, Lodish HF, Lisanti MP. Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci USA 1996; 93(1): 131–135
https://doi.org/10.1073/pnas.93.1.131 pmid: 8552590
47 Kwon H, Lee J, Jeong K, Jang D, Pak Y. A novel actin cytoskeleton-dependent noncaveolar microdomain composed of homo-oligomeric caveolin-2 for activation of insulin signaling. Biochim Biophys Acta 2013; 1833(10): 2176–2189
https://doi.org/10.1016/j.bbamcr.2013.05.003 pmid: 23665048
48 Engelman JA, Zhang XL, Lisanti MP. Genes encoding human caveolin-1 and-2 are co-localized to the D7S522 locus (7q31.1), a known fragile site (FRA7G) that is frequently deleted in human cancers. FEBS Lett 1998; 436(3): 403–410
https://doi.org/10.1016/S0014-5793(98)01134-X pmid: 9801158
49 Scherer PE, Lewis RY, Volonté D, Engelman JA, Galbiati F, Couet J, Kohtz DS, van Donselaar E, Peters P, Lisanti MP. Cell-type and tissue-specific expression of caveolin-2. Caveolins 1 and 2 co-localize and form a stable hetero-oligomeric complex in vivo. J Biol Chem 1997; 272(46): 29337–29346
https://doi.org/10.1074/jbc.272.46.29337 pmid: 9361015
50 Razani B, Wang XB, Engelman JA, Battista M, Lagaud G, Zhang XL, Kneitz B, Hou H Jr, Christ GJ, Edelmann W, Lisanti MP. Caveolin-2-deficient mice show evidence of severe pulmonary dysfunction without disruption of caveolae. Mol Cell Biol 2002; 22(7): 2329–2344
https://doi.org/10.1128/MCB.22.7.2329-2344.2002 pmid: 11884617
51 Frank PG, Woodman SE, Park DS, Lisanti MP. Caveolin, caveolae, and endothelial cell function. Arterioscler Thromb Vasc Biol 2003; 23(7): 1161–1168
https://doi.org/10.1161/01.ATV.0000070546.16946.3A pmid: 12689915
52 Lee S, Kwon H, Jeong K, Pak Y. Regulation of cancer cell proliferation by caveolin-2 down-regulation and re-expression. Int J Oncol 2011; 38(5): 1395–1402
pmid: 21373752
53 Shatseva T, Lee DY, Deng Z, Yang BB. MicroRNA miR-199a-3p regulates cell proliferation and survival by targeting caveolin-2. J Cell Sci 2011; 124(Pt 16): 2826–2836
https://doi.org/10.1242/jcs.077529 pmid: 21807947
54 Yamasaki T, Seki N, Yoshino H, Itesako T, Hidaka H, Yamada Y, Tatarano S, Yonezawa T, Kinoshita T, Nakagawa M, Enokida H. MicroRNA-218 inhibits cell migration and invasion in renal cell carcinoma through targeting caveolin-2 involved in focal adhesion pathway. J Urol 2013; 190(3): 1059–1068
https://doi.org/10.1016/j.juro.2013.02.089 pmid: 23454155
55 Scherer PE, Okamoto T, Chun M, Nishimoto I, Lodish HF, Lisanti MP. Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. Proc Natl Acad Sci USA 1996; 93(1): 131–135
https://doi.org/10.1073/pnas.93.1.131 pmid: 8552590
56 Sagara Y, Mimori K, Yoshinaga K, Tanaka F, Nishida K, Ohno S, Inoue H, Mori M. Clinical significance of caveolin-1, caveolin-2 and HER2/neu mRNA expression in human breast cancer. Br J Cancer 2004; 91(5): 959–965
pmid: 15305200
57 López IP, Milagro FI, Martí A, Moreno-Aliaga MJ, Martínez JA, De Miguel C. Gene expression changes in rat white adipose tissue after a high-fat diet determined by differential display. Biochem Biophys Res Commun 2004; 318(1): 234–239
https://doi.org/10.1016/j.bbrc.2004.04.018 pmid: 15110778
58 Zaas DW, Duncan MJ, Li G, Wright JR, Abraham SN. Pseudomonas invasion of type I pneumocytes is dependent on the expression and phosphorylation of caveolin-2. J Biol Chem 2005; 280(6): 4864–4872
https://doi.org/10.1074/jbc.M411702200 pmid: 15545264
59 Totta P, Gionfra F, Busonero C, Acconcia F. Modulation of 17β-estradiol signaling on cellular proliferation by caveolin-2. J Cell Physiol 2016; 231(6): 1219–1225
pmid: 26480297
60 Tang Z, Scherer PE, Okamoto T, Song K, Chu C, Kohtz DS, Nishimoto I, Lodish HF, Lisanti MP. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J Biol Chem 1996; 271(4): 2255–2261
https://doi.org/10.1074/jbc.271.4.2255 pmid: 8567687
61 Hagiwara Y, Sasaoka T, Araishi K, Imamura M, Yorifuji H, Nonaka I, Ozawa E, Kikuchi T. Caveolin-3 deficiency causes muscle degeneration in mice. Hum Mol Genet. 2000;9(20):3047–3054
pmid: 11115849
62 Kim JH, Peng D, Schlebach JP, Hadziselimovic A, Sanders CR. Modest effects of lipid modifications on the structure of caveolin-3. Biochemistry 2014; 53(27): 4320–4322
https://doi.org/10.1021/bi5005238 pmid: 24960539
63 Schmitz M, Zerr I, Althaus HH. Effect of cavtratin, a caveolin-1 scaffolding domain peptide, on oligodendroglial signaling cascades. Cell Mol Neurobiol 2011; 31(7): 991–997
https://doi.org/10.1007/s10571-011-9694-1 pmid: 21523467
64 Olmo-Turrubiarte AD, Calzada-Torres A, Díaz-Rosas G, Palma-Lara I, Sánchez-Urbina R, Garcia-Alonso P, Contreras-Ramos A. Mouse models for the study of postnatal cardiac hypertrophy. IJC Heart Vasculature 2015; 103: 131–140
https://doi.org/Doi:10.1016/j.ijcha.2015.02.005
65 Markandeya YS, Phelan LJ, Woon MT, Keefe AM, Reynolds CR, August BK, Hacker TA, Roth DM, Patel HH, Balijepalli RC. Caveolin-3 overexpression attenuates cardiac hypertrophy via inhibition of T-type Ca2+ current modulated by protein kinase Cα in cardiomyocytes. J Biol Chem 2015; 290(36): 22085–22100
https://doi.org/10.1074/jbc.M115.674945 pmid: 26170457
[1] Xueling Suo, Du Lei, Wenbin Li, Lei Li, Jing Dai, Song Wang, Nannan Li, Lan Cheng, Rong Peng, Graham J Kemp, Qiyong Gong. Altered white matter microarchitecture in Parkinson’s disease: a voxel-based meta-analysis of diffusion tensor imaging studies[J]. Front. Med., 2021, 15(1): 125-138.
[2] Jing Ma, Shiyu Chen, Lili Hao, Wei Sheng, Weicheng Chen, Xiaojing Ma, Bowen Zhang, Duan Ma, Guoying Huang. Long non-coding RNA SAP30-2:1 is downregulated in congenital heart disease and regulates cell proliferation by targeting HAND2[J]. Front. Med., 2021, 15(1): 91-100.
[3] Hui Wang, Yang Zhang, Zhujun Shen, Ligang Fang, Zhenyu Liu, Shuyang Zhang. Prognostic value of fasting glucose on the risk of heart failure and left ventricular systolic dysfunction in non-diabetic patients with ST-segment elevation myocardial infarction[J]. Front. Med., 2021, 15(1): 70-78.
[4] Xiaofang Cai, Hanlan Jiang, Simin Zhang, Shengying Xia, Wenhui Du, Yaoling Ma, Tao Yu, Wenbin Li. Clinical manifestations and pathogen characteristics in children admitted for suspected COVID-19[J]. Front. Med., 2020, 14(6): 776-785.
[5] Lingling Tang, Yingan Jiang, Mengfei Zhu, Lijun Chen, Xiaoyang Zhou, Chenliang Zhou, Peng Ye, Xiaobei Chen, Baohong Wang, Zhenyu Xu, Qiang Zhang, Xiaowei Xu, Hainv Gao, Xiaojun Wu, Dong Li, Wanli Jiang, Jingjing Qu, Charlie Xiang, Lanjuan Li. Clinical study using mesenchymal stem cells for the treatment of patients with severe COVID-19[J]. Front. Med., 2020, 14(5): 664-673.
[6] Huiwen Ren, Can Wu, Ying Shao, Shuang Liu, Yang Zhou, Qiuyue Wang. Correlation between serum miR-154-5p and urinary albumin excretion rates in patients with type 2 diabetes mellitus: a cross-sectional cohort study[J]. Front. Med., 2020, 14(5): 642-650.
[7] Zhengqian Li, Taotao Liu, Ning Yang, Dengyang Han, Xinning Mi, Yue Li, Kaixi Liu, Alain Vuylsteke, Hongbing Xiang, Xiangyang Guo. Neurological manifestations of patients with COVID-19: potential routes of SARS-CoV-2 neuroinvasion from the periphery to the brain[J]. Front. Med., 2020, 14(5): 533-541.
[8] Joseph JY Sung, Nicholas CH Poon. Artificial intelligence in gastroenterology: where are we heading?[J]. Front. Med., 2020, 14(4): 511-517.
[9] Xiaojing Jiao, Dong Zhang, Quan Hong, Lei Yan, Qiuxia Han, Fengmin Shao, Guangyan Cai, Xiangmei Chen, Hanyu Zhu. Netrin-1 works with UNC5B to regulate angiogenesis in diabetic kidney disease[J]. Front. Med., 2020, 14(3): 293-304.
[10] Min Zhou, Xinxin Zhang, Jieming Qu. Coronavirus disease 2019 (COVID-19): a clinical update[J]. Front. Med., 2020, 14(2): 126-135.
[11] Zhiruo Zhang, Shelan Liu, Mi Xiang, Shijian Li, Dahai Zhao, Chaolin Huang, Saijuan Chen. Protecting healthcare personnel from 2019-nCoV infection risks: lessons and suggestions[J]. Front. Med., 2020, 14(2): 229-231.
[12] Shuxian Zhang, Zezhou Wang, Ruijie Chang, Huwen Wang, Chen Xu, Xiaoyue Yu, Lhakpa Tsamlag, Yinqiao Dong, Hui Wang, Yong Cai. COVID-19 containment: China provides important lessons for global response[J]. Front. Med., 2020, 14(2): 215-219.
[13] Wei Liu, Jing Wang, Wenbin Li, Zhaoxian Zhou, Siying Liu, Zhihui Rong. Clinical characteristics of 19 neonates born to mothers with COVID-19[J]. Front. Med., 2020, 14(2): 193-198.
[14] Honglu Zhou, Songmei Wang, Lorenz von Seidlein, Xuanyi Wang. The epidemiology of norovirus gastroenteritis in China: disease burden and distribution of genotypes[J]. Front. Med., 2020, 14(1): 1-7.
[15] Anqi Chen, Suhua Zhang, Jixi Li, Chaoneng Ji, Jinzhong Chen, Chengtao Li. Detecting genetic hypermutability of gastrointestinal tumor by using a forensic STR kit[J]. Front. Med., 2020, 14(1): 101-111.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed