|
|
Netrin-1 works with UNC5B to regulate angiogenesis in diabetic kidney disease |
Xiaojing Jiao1,2, Dong Zhang1, Quan Hong1, Lei Yan2, Qiuxia Han1, Fengmin Shao2( ), Guangyan Cai1, Xiangmei Chen1, Hanyu Zhu1( ) |
1. Department of Nephrology, Chinese People’s Liberation Army (PLA) General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing Key Laboratory of Kidney Disease, Beijing 100853, China 2. Department of Nephrology, Henan Provincial Key Laboratory of Kidney Disease and Immunology, Henan Provincial People’s Hospital (Zhengzhou University People’s Hospital), Zhengzhou 450003, China |
|
|
Abstract Netrin-1, an axon guidance factor, and its receptor UNC5B play important roles in axonal development and angiogenesis. This study examined netrin-1 and UNC5B expression in kidneys with diabetic kidney disease (DKD) and investigated their roles in angiogenesis. Netrin-1 and UNC5B were upregulated in streptozotocin-induced DKD Wistar rats, and their expression was compared with that in healthy controls. However, exogenous netrin-1 in UNC5B-depleted human renal glomerular endothelial cells (HRGECs) inhibited cell migration and tubulogenesis. This effect was likely associated with SRC pathway deactivation. Netrin-1 treatment also eliminated the pro-angiogenic effects of exogenous VEGF-165 on UNC5B-silenced HRGECs. These results indicate that UNC5B antagonizes netrin-1 and that UNC5B upregulation contributes partly to enhancing angiogenesis in DKD. Therefore, introducing exogenous netrin-1 and depleting endogenous UNC5B are potential strategies for reducing the incidence of early angiogenesis and mitigating kidney injury in DKD.
|
Keywords
netrin-1
VEGF-165
UNC5B
angiogenesis
diabetic kidney disease
|
Corresponding Author(s):
Fengmin Shao,Hanyu Zhu
|
Just Accepted Date: 28 October 2019
Online First Date: 25 December 2019
Issue Date: 08 June 2020
|
|
1 |
J Zhang, W Weng, K Wang, X Lu, L Cai, J Sun. The role of FGF21 in type 1 diabetes and its complications. Int J Biol Sci 2018; 14(9): 1000–1011
https://doi.org/10.7150/ijbs.25026
pmid: 29989062
|
2 |
RJ MacIsaac, EI Ekinci, G Jerums. Markers of and risk factors for the development and progression of diabetic kidney disease. Am J Kidney Dis 2014; 63(2 Suppl 2): S39–S62
https://doi.org/10.1053/j.ajkd.2013.10.048
pmid: 24461729
|
3 |
H Zhu, M Liu, H Yu, X Liu, Y Zhong, J Shu, X Fu, G Cai, X Chen, W Geng, X Yang, M Wu, Z Li, D Zhang. Glycopatterns of urinary protein as new potential diagnosis indicators for diabetic nephropathy. J Diabetes Res 2017; 2017: 5728087
https://doi.org/10.1155/2017/5728087
pmid: 28401167
|
4 |
XL Yang, HJ Yu, HY Zhu, Y Zheng, QX Han, GY Cai, XM Chen. Potential value of Datura stramonium agglutinin-recognized glycopatterns in urinary protein on differential diagnosis of diabetic nephropathy and nondiabetic renal disease. Chin Med J (Engl) 2018; 131(2): 180–187
https://doi.org/10.4103/0366-6999.222328
pmid: 29336366
|
5 |
JC Chan, V Malik, W Jia, T Kadowaki, CS Yajnik, KH Yoon, FB Hu. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA 2009; 301(20): 2129–2140
https://doi.org/10.1001/jama.2009.726
pmid: 19470990
|
6 |
R Østerby, G Nyberg. New vessel formation in the renal corpuscles in advanced diabetic glomerulopathy. J Diabet Complications 1987; 1(4): 122–127
https://doi.org/10.1016/S0891-6632(87)80069-7
pmid: 2456298
|
7 |
B Hohenstein, B Hausknecht, K Boehmer, R Riess, RA Brekken, CP Hugo. Local VEGF activity but not VEGF expression is tightly regulated during diabetic nephropathy in man. Kidney Int 2006; 69(9): 1654–1661
https://doi.org/10.1038/sj.ki.5000294
pmid: 16541023
|
8 |
Y Kanesaki, D Suzuki, G Uehara, M Toyoda, T Katoh, H Sakai, T Watanabe. Vascular endothelial growth factor gene expression is correlated with glomerular neovascularization in human diabetic nephropathy. Am J Kidney Dis 2005; 45(2): 288–294
https://doi.org/10.1053/j.ajkd.2004.09.020
pmid: 15685506
|
9 |
JR Nyengaard, R Rasch. The impact of experimental diabetes mellitus in rats on glomerular capillary number and sizes. Diabetologia 1993; 36(3): 189–194
https://doi.org/10.1007/BF00399948
pmid: 8462766
|
10 |
M Guo, SD Ricardo, JA Deane, M Shi, L Cullen-McEwen, JF Bertram. A stereological study of the renal glomerular vasculature in the db/db mouse model of diabetic nephropathy. J Anat 2005; 207(6): 813–821
https://doi.org/10.1111/j.1469-7580.2005.00492.x
pmid: 16367807
|
11 |
H Wehner, G Nelischer. Morphometric investigations on intrarenal vessels of streptozotocin-diabetic rats. Virchows Arch A Pathol Anat Histopathol 1991; 419(3): 231–235
https://doi.org/10.1007/BF01626353
pmid: 1926764
|
12 |
R Osterby, HJ Bangstad, G Nyberg, S Rudberg. On glomerular structural alterations in type-1 diabetes. Companions of early diabetic glomerulopathy. Virchows Arch 2001; 438(2): 129–135
pmid: 11253114
|
13 |
LC Stout, S Kumar, EB Whorton. Insudative lesions—their pathogenesis and association with glomerular obsolescence in diabetes: a dynamic hypothesis based on single views of advancing human diabetic nephropathy. Hum Pathol 1994; 25(11): 1213–1227
https://doi.org/10.1016/0046-8177(94)90039-6
pmid: 7959667
|
14 |
B Najafian, Y Kim, JT Crosson, M Mauer. Atubular glomeruli and glomerulotubular junction abnormalities in diabetic nephropathy. J Am Soc Nephrol 2003; 14(4): 908–917
https://doi.org/10.1097/01.ASN.0000057854.32413.81
pmid: 12660325
|
15 |
L Wang, X Zhi, Y Zhu, Q Zhang, W Wang, Z Li, J Tang, J Wang, S Wei, B Li, J Zhou, J Jiang, L Yang, H Xu, Z Xu. MUC4-promoted neural invasion is mediated by the axon guidance factor netrin-1 in PDAC. Oncotarget 2015; 6(32): 33805–33822
https://doi.org/10.18632/oncotarget.5668
pmid: 26393880
|
16 |
NP Ly, K Komatsuzaki, IP Fraser, AA Tseng, P Prodhan, KJ Moore, TB Kinane. Netrin-1 inhibits leukocyte migration in vitro and in vivo. Proc Natl Acad Sci USA 2005; 102(41): 14729–14734
https://doi.org/10.1073/pnas.0506233102
pmid: 16203981
|
17 |
W Wang, WB Reeves, L Pays, P Mehlen, G Ramesh. Netrin-1 overexpression protects kidney from ischemia reperfusion injury by suppressing apoptosis. Am J Pathol 2009; 175(3): 1010–1018
https://doi.org/10.2353/ajpath.2009.090224
pmid: 19700747
|
18 |
M Klagsbrun, A Eichmann. A role for axon guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor Rev 2005; 16(4-5): 535–548
https://doi.org/10.1016/j.cytogfr.2005.05.002
pmid: 15979925
|
19 |
MJ Barallobre, M Pascual, JA Del Río, E Soriano. The netrin family of guidance factors: emphasis on netrin-1 signalling. Brain Res Brain Res Rev 2005; 49(1): 22–47
https://doi.org/10.1016/j.brainresrev.2004.11.003
pmid: 15960985
|
20 |
X Lu, F Le Noble, L Yuan, Q Jiang, B De Lafarge, D Sugiyama, C Bréant, F Claes, F De Smet, JL Thomas, M Autiero, P Carmeliet, M Tessier-Lavigne, A Eichmann. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 2004; 432(7014): 179–186
https://doi.org/10.1038/nature03080
pmid: 15510105
|
21 |
B Larrivée, C Freitas, S Suchting, I Brunet, A Eichmann. Guidance of vascular development: lessons from the nervous system. Circ Res 2009; 104(4): 428–441
https://doi.org/10.1161/CIRCRESAHA.108.188144
pmid: 19246687
|
22 |
K Bouvrée, B Larrivée, X Lv, L Yuan, B DeLafarge, C Freitas, T Mathivet, C Bréant, M Tessier-Lavigne, A Bikfalvi, A Eichmann, L Pardanaud. Netrin-1 inhibits sprouting angiogenesis in developing avian embryos. Dev Biol 2008; 318(1): 172–183
https://doi.org/10.1016/j.ydbio.2008.03.023
pmid: 18439993
|
23 |
H Chen, L Li, S Wang, Y Lei, Q Ge, N Lv, X Zhou, C Chen. Reduced miR-126 expression facilitates angiogenesis of gastric cancer through its regulation on VEGF-A. Oncotarget 2014; 5(23): 11873–11885
https://doi.org/10.18632/oncotarget.2662
pmid: 25428912
|
24 |
JY Chuang, PC Chen, CW Tsao, AC Chang, MY Lein, CC Lin, SW Wang, CW Lin, CH Tang. WISP-1 a novel angiogenic regulator of the CCN family promotes oral squamous cell carcinoma angiogenesis through VEGF-A expression. Oncotarget 2015; 6(6): 4239–4252
https://doi.org/10.18632/oncotarget.2978
pmid: 25738362
|
25 |
A Tufro, D Veron. VEGF and podocytes in diabetic nephropathy. Semin Nephrol 2012; 32(4): 385–393
https://doi.org/10.1016/j.semnephrol.2012.06.010
pmid: 22958493
|
26 |
MV Alvarez-Arroyo, S Yague, FR Gonzalez-Pacheco, MA Castilla, Y Suzuki, S Jimenez, JJ Deudero, F Neria, L Velasco, C Caramelo. Role of VEGF in the cellular response to injury. Nefrologia 2003; 23(Suppl 3): 54–57 (in Spanish)
pmid: 12901194
|
27 |
MD Tallquist, P Soriano, RA Klinghoffer. Growth factor signaling pathways in vascular development. Oncogene 1999; 18(55): 7917–7932
https://doi.org/10.1038/sj.onc.1203216
pmid: 10630644
|
28 |
M Shibuya, L Claesson-Welsh. Signal transduction by VEGF receptors in regulation of angiogenesis and lymphangiogenesis. Exp Cell Res 2006; 312(5): 549–560
https://doi.org/10.1016/j.yexcr.2005.11.012
pmid: 16336962
|
29 |
AS de Vriese, RG Tilton, M Elger, CC Stephan, W Kriz, NH Lameire. Antibodies against vascular endothelial growth factor improve early renal dysfunction in experimental diabetes. J Am Soc Nephrol 2001; 12(5): 993–1000
pmid: 11316858
|
30 |
A Flyvbjerg, WF Bennett, R Rasch, JJ Kopchick, JA Scarlett. Inhibitory effect of a growth hormone receptor antagonist (G120K-PEG) on renal enlargement, glomerular hypertrophy, and urinary albumin excretion in experimental diabetes in mice. Diabetes 1999; 48(2): 377–382
https://doi.org/10.2337/diabetes.48.2.377
pmid: 10334317
|
31 |
V Eremina, JA Jefferson, J Kowalewska, H Hochster, M Haas, J Weisstuch, C Richardson, JB Kopp, MG Kabir, PH Backx, HP Gerber, N Ferrara, L Barisoni, CE Alpers, SE Quaggin. VEGF inhibition and renal thrombotic microangiopathy. N Engl J Med 2008; 358(11): 1129–1136
https://doi.org/10.1056/NEJMoa0707330
pmid: 18337603
|
32 |
RS Saad, YL Liu, G Nathan, J Celebrezze, D Medich, JF Silverman. Endoglin (CD105) and vascular endothelial growth factor as prognostic markers in colorectal cancer. Mod Pathol 2004; 17(2): 197–203
https://doi.org/10.1038/modpathol.3800034
pmid: 14657950
|
33 |
C Jayakumar, FL Nauta, SJ Bakker, H Bilo, RT Gansevoort, MH Johnson, G Ramesh. Netrin-1, a urinary proximal tubular injury marker, is elevated early in the time course of human diabetes. J Nephrol 2014; 27(2): 151–157
https://doi.org/10.1007/s40620-014-0055-2
pmid: 24510764
|
34 |
E Tak, D Ridyard, A Badulak, A Giebler, U Shabeka, T Werner, E Clambey, R Moldovan, MA Zimmerman, HK Eltzschig, A Grenz. Protective role for netrin-1 during diabetic nephropathy. J Mol Med (Berl) 2013; 91(9): 1071–1080
https://doi.org/10.1007/s00109-013-1041-1
pmid: 23636509
|
35 |
P Ranganathan, R Mohamed, C Jayakumar, MW Brands, G Ramesh. Deletion of UNC5B in kidney epithelium exacerbates diabetic nephropathy in mice. Am J Nephrol 2015; 41(3): 220–230
https://doi.org/10.1159/000381428
pmid: 25896231
|
36 |
WB Reeves, O Kwon, G Ramesh. Netrin-1 and kidney injury. II. Netrin-1 is an early biomarker of acute kidney injury. Am J Physiol Renal Physiol 2008; 294(4): F731–F738
https://doi.org/10.1152/ajprenal.00507.2007
pmid: 18234954
|
37 |
G Ramesh, CD Krawczeski, JG Woo, Y Wang, P Devarajan. Urinary netrin-1 is an early predictive biomarker of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol 2010; 5(3): 395–401
https://doi.org/10.2215/CJN.05140709
pmid: 20007677
|
38 |
W Wang, WB Reeves, G Ramesh. Netrin-1 increases proliferation and migration of renal proximal tubular epithelial cells via the UNC5B receptor. Am J Physiol Renal Physiol 2009; 296(4): F723–F729
https://doi.org/10.1152/ajprenal.90686.2008
pmid: 19211685
|
39 |
T Nakagawa, W Sato, T Kosugi, RJ Johnson. Uncoupling of VEGF with endothelial NO as a potential mechanism for abnormal angiogenesis in the diabetic nephropathy. J Diabetes Res 2013; 2013: 184539
https://doi.org/10.1155/2013/184539
pmid: 24386643
|
40 |
AW Koch, T Mathivet, B Larrivée, RK Tong, J Kowalski, L Pibouin-Fragner, K Bouvrée, S Stawicki, K Nicholes, N Rathore, SJ Scales, E Luis, R del Toro, C Freitas, C Bréant, A Michaud, P Corvol, JL Thomas, Y Wu, F Peale, RJ Watts, M Tessier-Lavigne, A Bagri, A Eichmann. Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B. Dev Cell 2011; 20(1): 33–46
https://doi.org/10.1016/j.devcel.2010.12.001
pmid: 21238923
|
41 |
JH Hanke, JP Gardner, RL Dow, PS Changelian, WH Brissette, EJ Weringer, BA Pollok, PA Connelly. Discovery of a novel, potent, and Src family-selective tyrosine kinase inhibitor. Study of Lck- and FynT-dependent T cell activation. J Biol Chem 1996; 271(2): 695–701
https://doi.org/10.1074/jbc.271.2.695
pmid: 8557675
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|