|
|
Correlation between serum miR-154-5p and urinary albumin excretion rates in patients with type 2 diabetes mellitus: a cross-sectional cohort study |
Huiwen Ren1,2, Can Wu3, Ying Shao4, Shuang Liu5, Yang Zhou1, Qiuyue Wang1( ) |
1. Department of Endocrinology, the First Hospital of China Medical University, Shenyang 110001, China 2. Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, China 3. Department of Gastroenterology and Endoscopy, the First Hospital of China Medical University, Shenyang 110001, China 4. Department of Endocrinology, the Second Hospital of China Medical University, Shenyang 110001, China 5. Severe Infection Intensive Care Unit, Affiliated Central Hospital of Shenyang Medical College, Shenyang 110001, China |
|
|
Abstract This study aimed to investigate the correlation between serum miR-154-5p and urinary albumin to creatinine ratio (UACR) in patients with type 2 diabetes mellitus (T2DM) and the association with biomarkers of inflammation and fibrosis in diabetic kidney disease (DKD). A total of 390 patients with T2DM were divided into three groups: normal albuminuria (UACR<30 mg/g, n=136, NA), microalbuminuria (UACR at 30–300 mg/g, n=132, MA), and clinical albuminuria (UACR>300 mg/g, n=122, CA). Circulating miR-154-5p, inflammatory (C-reactive protein (CRP); erythrocyte sedimentation rate (ESR); and tumor necrosis factor-α (TNF-α) and fibrotic markers (vascular endothelial growth factor (VEGF); transforming growth factor-β1 (TGF-β1); and fibronectin (FN)), and other biochemical indicators were assessed via real-time PCR, enzyme-linked immunosorbent assay, and chemiluminescence assay in patients with T2DM and 138 control subjects (NC). UACR, miR-154-5p, glycated hemoglobin (HbA1c), serum creatinine (sCr), blood urea nitrogen (BUN), ESR, CRP, VEGF, TNF-α, TGF-β1, and FN were significantly higher and the estimated glomerular filtration rate (eGFR) was significantly lower in NA, MA, and CA groups than in NC subjects (P<0.05). Elevated levels of UACR and miR-154-5p were directly correlated with HbA1c, sCr, BUN, ESR, CRP, VEGF, TNF-α, TGF-β1, and FN and negatively correlated with eGFR (P<0.05). miR-154-5p, HbA1c, sCr, BUN, eGFR, ESR, CRP, VEGF, TNF-α, TGF-β1, and FN were important factors affecting UACR. These findings indicated that elevated serum miR-154-5p is significantly correlated with high UACR in patients with T2DM and may offer a novel reference for the early diagnosis of DKD.
|
Keywords
type 2 diabetes mellitus
diabetic kidney disease
miR-154-5p
urinary albumin to creatinine ratio
|
Corresponding Author(s):
Qiuyue Wang
|
Just Accepted Date: 30 December 2019
Online First Date: 17 January 2020
Issue Date: 12 October 2020
|
|
1 |
V Sandeep. Type 2 diabetes. Ann Intern Med 2015; 162(5): 231–242
|
2 |
B Quiroga, D Arroyo, G de Arriba. Present and future in the treatment of diabetic kidney disease. J Diabetes Res 2015; 2015: 801348
https://doi.org/10.1155/2015/801348
pmid: 25945357
|
3 |
S Toth-Manikowski, MG Atta. Diabetic kidney disease: pathophysiology and therapeutic targets. J Diabetes Res 2015; 2015: 697010
https://doi.org/10.1155/2015/697010
pmid: 26064987
|
4 |
JJ Chamberlain, WH Herman, S Leal, AS Rhinehart, JH Shubrook, N Skolnik, RR Kalyani. Pharmacologic therapy for type 2 diabetes: synopsis of the 2017 American Diabetes Association Standards of Medical Care in Diabetes. Ann Intern Med 2017; 166(8): 572–578
https://doi.org/10.7326/M16-2937
pmid: 28288484
|
5 |
M Brownlee, LP Aiello, ME Cooper, AI Vinik, J Plutzky, AJM Boulton. Chapter 33—Complications of Diabetes Mellitus. Elsevier Inc., 2016
|
6 |
S Bagga, J Bracht, S Hunter, K Massirer, J Holtz, R Eachus, AE Pasquinelli. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 2005; 122(4): 553–563
https://doi.org/10.1016/j.cell.2005.07.031
pmid: 16122423
|
7 |
D Saito, Y Maeshima, T Nasu, H Yamasaki, K Tanabe, H Sugiyama, H Sonoda, Y Sato, H Makino. Amelioration of renal alterations in obese type 2 diabetic mice by vasohibin-1, a negative feedback regulator of angiogenesis. Am J Physiol Renal Physiol 2011; 300(4): F873–F886
https://doi.org/10.1152/ajprenal.00503.2010
pmid: 21228103
|
8 |
J Milosevic, K Pandit, M Magister, E Rabinovich, DC Ellwanger, G Yu, LJ Vuga, B Weksler, PV Benos, KF Gibson, M McMillan, M Kahn, N Kaminski. Profibrotic role of miR-154 in pulmonary fibrosis. Am J Respir Cell Mol Biol 2012; 47(6): 879–887
https://doi.org/10.1165/rcmb.2011-0377OC
pmid: 23043088
|
9 |
American Diabetes Association. Standards of medical care in diabetes—2014. Diabetes Care 2014; 37(Suppl 1): S14–S80
https://doi.org/10.2337/dc14-S014
pmid: 24357209
|
10 |
J Chalmers. The 1999 WHO-ISH Guidelines for the Management of Hypertension. Med J Aust 1999; 171(9): 458–459
https://doi.org/10.5694/j.1326-5377.1999.tb123747.x
pmid: 10615337
|
11 |
M Affara, D Sanders, H Araki, Y Tamada, BJ Dunmore, S Humphreys, S Imoto, C Savoie, S Miyano, S Kuhara, D Jeffries, C Print, DS Charnock-Jones. Vasohibin-1 is identified as a master-regulator of endothelial cell apoptosis using gene network analysis. BMC Genomics 2013; 14(1): 23
https://doi.org/10.1186/1471-2164-14-23
pmid: 23324451
|
12 |
AV Chobanian, GL Bakris, HR Black, WC Cushman, LA Green, JL Izzo Jr, DW Jones, BJ Materson, S Oparil, JT Wright Jr, EJ Roccella; National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National High Blood Pressure Education Program Coordinating Committee. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 2003; 289(19): 2560–2572
https://doi.org/10.1001/jama.289.19.2560
pmid: 12748199
|
13 |
R Yu, Y Yang, Y Tian, Y Zhang, G Lyu, J Zhu, L Xiao, J. Zhu The mechanism played by 1,25-dihydroxyvitamin D3 in treating renal fibrosis in diabetic nephropathy. Chin J Endocrinol Metab (Zhonghua Nei Fen Mi Dai Xie Za Zhi) 2015; 9: 793–799 (in Chinese)
|
14 |
Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl 2013; 3: 1–150
https://doi.org/10.1038/kisup.2012.73
|
15 |
YC Wang, Y Li, XY Wang, D Zhang, H Zhang, Q Wu, YQ He, JY Wang, L Zhang, H Xia, J Yan, X Li, H Ying. Circulating miR-130b mediates metabolic crosstalk between fat and muscle in overweight/obesity. Diabetologia 2013; 56(10): 2275–2285
https://doi.org/10.1007/s00125-013-2996-8
pmid: 23868745
|
16 |
EK Ng, WW Chong, H Jin, EK Lam, VY Shin, J Yu, TC Poon, SS Ng, JJ Sung. Differential expression of microRNAs in plasma of patients with colorectal cancer: a potential marker for colorectal cancer screening. Gut 2009; 58(10): 1375–1381
https://doi.org/10.1136/gut.2008.167817
pmid: 19201770
|
17 |
FJ Ortega, JM Mercader, JM Moreno-Navarrete, O Rovira, E Guerra, E Esteve, G Xifra, C Martínez, W Ricart, J Rieusset, S Rome, M Karczewska-Kupczewska, M Straczkowski, JM Fernández-Real. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care 2014; 37(5): 1375–1383
https://doi.org/10.2337/dc13-1847
pmid: 24478399
|
18 |
Y Shao, H Ren, C Lv, X Ma, C Wu, Q Wang. Changes of serum miR-217 and the correlation with the severity in type 2 diabetes patients with different stages of diabetic kidney disease. Endocrine 2017; 55(1): 130–138
https://doi.org/10.1007/s12020-016-1069-4
pmid: 27522360
|
19 |
X Ma, C Lu, C Lv, C Wu, Q. Wang The expression of miR-192 and its significance in diabetic nephropathy patients with different urine albumin creatinine ratio. J Diabetes Res 2016; 2016: 6789402
https://doi.org/10.1155/2016/6789402
pmid: 26881255
|
20 |
C Lv, YH Zhou, C Wu, Y Shao, CL Lu, QY Wang. The changes in miR-130b levels in human serum and the correlation with the severity of diabetic nephropathy. Diabetes Metab Res Rev 2015; 31(7): 717–724
https://doi.org/10.1002/dmrr.2659
pmid: 25952368
|
21 |
X Lin, Z Yang, P Zhang, Y Liu, G Shao. miR-154 inhibits migration and invasion of human non-small cell lung cancer by targeting ZEB2. Oncol Lett 2016; 12(1): 301–306
https://doi.org/10.3892/ol.2016.4577
pmid: 27347142
|
22 |
S Dambal, AA Giangreco, AM Acosta, A Fairchild, Z Richards, R Deaton, D Wagner, R Vieth, PH Gann, A Kajdacsy-Balla, T Van der Kwast, L Nonn. MicroRNAs and DICER1 are regulated by 1,25-dihydroxyvitamin D in prostate stroma. J Steroid Biochem Mol Biol 2017; 167: 192–202
https://doi.org/10.1016/j.jsbmb.2017.01.004
pmid: 28089917
|
23 |
JM Luk, J Burchard, C Zhang, AM Liu, KF Wong, FH Shek, NP Lee, ST Fan, RT Poon, I Ivanovska, U Philippar, MA Cleary, CA Buser, PM Shaw, CN Lee, DG Tenen, H Dai, M Mao. DLK1-DIO3 genomic imprinted microRNA cluster at 14q32.2 defines a stemlike subtype of hepatocellular carcinoma associated with poor survival. J Biol Chem 2011; 286(35): 30706–30713
https://doi.org/10.1074/jbc.M111.229831
pmid: 21737452
|
24 |
C Xin, H Zhang, Z Liu. miR-154 suppresses colorectal cancer cell growth and motility by targeting TLR2. Mol Cell Biochem 2014; 387(1-2): 271–277
https://doi.org/10.1007/s11010-013-1892-3
pmid: 24242044
|
25 |
E Gardiner, NJ Beveridge, JQ Wu, V Carr, RJ Scott, PA Tooney, MJ Cairns. Imprinted DLK1-DIO3 region of 14q32 defines a schizophrenia-associated miRNA signature in peripheral blood mononuclear cells. Mol Psychiatry 2012; 17(8): 827–840
https://doi.org/10.1038/mp.2011.78
pmid: 21727898
|
26 |
A Formosa, EK Markert, AM Lena, D Italiano, E Finazzi-Agro’, AJ Levine, S Bernardini, AV Garabadgiu, G Melino, E Candi. MicroRNAs, miR-154, miR-299-5p, miR-376a, miR-376c, miR-377, miR-381, miR-487b, miR-485-3p, miR-495 and miR-654-3p, mapped to the 14q32.31 locus, regulate proliferation, apoptosis, migration and invasion in metastatic prostate cancer cells. Oncogene 2014; 33(44): 5173–5182
https://doi.org/10.1038/onc.2013.451
pmid: 24166498
|
27 |
H Seitz, H Royo, ML Bortolin, SP Lin, AC Ferguson-Smith, J Cavaillé. A large imprinted microRNA gene cluster at the mouse Dlk1-Gtl2 domain. Genome Res 2004; 14(9): 1741–1748
https://doi.org/10.1101/gr.2743304
pmid: 15310658
|
28 |
A Dixon-McIver, P East, CA Mein, JB Cazier, G Molloy, T Chaplin, T Andrew Lister, BD Young, S Debernardi. Distinctive patterns of microRNA expression associated with karyotype in acute myeloid leukaemia. PLoS One 2008; 3(5): e2141
https://doi.org/10.1371/journal.pone.0002141
pmid: 18478077
|
29 |
Y Altuvia, P Landgraf, G Lithwick, N Elefant, S Pfeffer, A Aravin, MJ Brownstein, T Tuschl, H Margalit. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 2005; 33(8): 2697–2706
https://doi.org/10.1093/nar/gki567
pmid: 15891114
|
30 |
N Kaminski, P Benos, D Corcoran, KV Pandit, J Milosevic, H Yousef. MicroRNAs In Idiopathic Pulmonary Fibrosis. Mosby, Inc., 2012. 191–199
|
31 |
H Yang, L Wang, J Zhao, Y Chen, Z Lei, X Liu, W Xia, L Guo, HT Zhang. TGF-b-activated SMAD3/4 complex transcriptionally upregulates N-cadherin expression in non-small cell lung cancer. Lung Cancer 2015; 87(3): 249–257
https://doi.org/10.1016/j.lungcan.2014.12.015
pmid: 25595426
|
32 |
Y Li, F Hu, M Xue, YJ Jia, ZJ Zheng, L Wang, MP Guan, YM Xue. Klotho down-regulates Egr-1 by inhibiting TGF-b1/Smad3 signaling in high glucose treated human mesangial cells. Biochem Biophys Res Commun 2017; 487(2): 216–222
https://doi.org/10.1016/j.bbrc.2017.04.036
pmid: 28411025
|
33 |
J Huang, J Wu, Y Li, X Li, T Yang, Q Yang, Y Jiang. Deregulation of serum microRNA expression is associated with cigarette smoking and lung cancer. BioMed Res Int 2014; 2014: 364316
https://doi.org/10.1155/2014/364316
pmid: 25386559
|
34 |
Y Zheng, C Zhu, L Ma, P Shao, C Qin, P Li, Q Cao, X Ju, G Cheng, Q Zhu, X Gu, L Hua. miRNA-154-5p inhibits proliferation, migration and invasion by targeting E2F5 in prostate cancer cell lines. Urol Int 2017; 98(1): 102–110
https://doi.org/10.1159/000445252
pmid: 27074041
|
35 |
J Ding, JL Li, MK Yu. Expression of miRNA-154 in astrocytomas and its clinical significance. Chin Clin Oncol (Lin Chuang Zhong Liu Xue Za Zhi) 2017; 22(4): 314–318 (in Chinese)
|
36 |
HY Liu, CH Zhang. China’s urban and rural public health resources insufficiency input or unbalanced allocation. Chin Health Econ (Zhongguo Wei Sheng Jing Ji) 2012; 31(8): 12–15 (in Chinese)
|
37 |
Z Feng. Chinese health care in rural areas. BMJ 2010; 341: c5254
https://doi.org/10.1136/bmj.c5254
pmid: 20966007
|
38 |
KDOQI. KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and chronic disease. Am J Kidney Dis 2007; 49(2 Suppl 2): S12–S154
https://doi.org/10.1053/j.ajkd.2006.12.005
pmid: 17276798
|
39 |
KR Tuttle, GL Bakris, RW Bilous, JL Chiang, IH de Boer, J Goldstein-Fuchs, IB Hirsch, K Kalantar-Zadeh, AS Narva, SD Navaneethan, JJ Neumiller, UD Patel, RE Ratner, AT Whaley-Connell, ME Molitch. Diabetic kidney disease: a report from an ADA Consensus Conference. Am J Kidney Dis 2014; 64(4): 510–533
https://doi.org/10.1053/j.ajkd.2014.08.001
pmid: 25257325
|
40 |
National Clinical Guideline Centre (UK). Chronic Kidney Disease (Partial Update): Early Identification and Management of Chronic Kidney Disease in Adults in Primary and Secondary Care. London: National Institute for Health and Care Excellence (UK). 2014
pmid: 25340245
|
41 |
BS Zitkus. Update on the American Diabetes Association Standards of Medical Care. Nurse Pract 2014; 39(8): 22–32
https://doi.org/10.1146/annurev.pathol.4.110807.092150
pmid: 24979246
|
42 |
YS Kanwar, L Sun, P Xie, FY Liu, S Chen. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu Rev Pathol 2011; 6(1): 395–423
https://doi.org/10.1097/01.NPR.0000451880.48790.50
pmid: 21261520
|
43 |
HY Lan, ACK Chung. Transforming growth factor-b and Smads. Contrib Nephrol 2011; 170: 75–82
https://doi.org/10.1159/000324949
pmid: 21659760
|
44 |
Y Sato. The vasohibin family: a novel family for angiogenesis regulation. J Biochem 2013; 153(1): 5–11
https://doi.org/10.1093/jb/mvs128
pmid: 23100270
|
45 |
XF Yao, D Cai, JJ Quan. Levels and clinical significances of IGF-1, TGF-β and VEGF in patients with type 2 diabetic nephropathy. Med Pharm J Chin PLA (Jie Fang Jun Yi Yao Za Zhi) 2017; 29(6): 78–81 (in Chinese)
|
46 |
SA Fathy, MR Mohamed, M A M Ali, AE El-Helaly, AT Alattar. Influence of IL-6, IL-10, IFN-γ and TNF-α genetic variants on susceptibility to diabetic kidney disease in type 2 diabetes mellitus patients. Biomarkers 2019; 24(1): 43–55
pmid: 30015512
|
47 |
C Lu, HD Han, LS Mangala, R Ali-Fehmi, CS Newton, L Ozbun, GN Armaiz-Pena, W Hu, RL Stone, A Munkarah, MK Ravoori, MM Shahzad, JW Lee, E Mora, RR Langley, AR Carroll, K Matsuo, WA Spannuth, R Schmandt, NB Jennings, BW Goodman, RB Jaffe, AM Nick, HS Kim, EO Guven, YH Chen, LY Li, MC Hsu, RL Coleman, GA Calin, EB Denkbas, JY Lim, JS Lee, V Kundra, MJ Birrer, MC Hung, G Lopez-Berestein, AK Sood. Regulation of tumor angiogenesis by EZH2. Cancer Cell 2010; 18(2): 185–197
https://doi.org/10.1016/j.ccr.2010.06.016
pmid: 20708159
|
48 |
ES Yeo, JY Hwang, JE Park, YJ Choi, KB Huh, WY Kim. Tumor necrosis factor (TNF-α) and C-reactive protein (CRP) are positively associated with the risk of chronic kidney disease in patients with type 2 diabetes. Yonsei Med J 2010; 51(4): 519–525
https://doi.org/10.3349/ymj.2010.51.4.519
pmid: 20499416
|
49 |
CJ Magri, N Calleja, G Buhagiar, S Fava, J Vassallo. Factors associated with diabetic nephropathy in subjects with proliferative retinopathy. Int Urol Nephrol 2012; 44(1): 197–206
https://doi.org/10.1007/s11255-011-9958-1
pmid: 21516475
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|