|
|
Long non-coding RNA SAP30-2:1 is downregulated in congenital heart disease and regulates cell proliferation by targeting HAND2 |
Jing Ma1,2, Shiyu Chen2, Lili Hao2, Wei Sheng3, Weicheng Chen3, Xiaojing Ma3, Bowen Zhang2, Duan Ma2,3( ), Guoying Huang3( ) |
1. ENT Institute, Department of Facial Plastic and Reconstructive Surgery, Eye & ENT Hospital, Fudan University, Shanghai 200031, China 2. Research Center for Birth Defects, Institutes of Biomedical Sciences, Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China 3. Children’s Hospital of Fudan University, Shanghai 201102, China |
|
|
Abstract Congenital heart disease (CHD) is the most common birth defect worldwide. Long non-coding RNAs (lncRNAs) have been implicated in many diseases. However, their involvement in CHD is not well understood. This study aimed to investigate the role of dysregulated lncRNAs in CHD. We used Gene Expression Omnibus data mining, bioinformatics analysis, and analysis of clinical tissue samples and observed that the novel lncRNA SAP30-2:1 with unknown function was significantly downregulated in damaged cardiac tissues from patients with CHD. Knockdown of lncRNA SAP30-2:1 inhibited the proliferation of human embryonic kidney and AC16 cells and decreased the expression of heart and neural crest derivatives expressed 2 (HAND2). Moreover, lncRNA SAP30-2:1 was associated with HAND2 by RNA immunoprecipitation. Overall, these results suggest that lncRNA SAP30-2:1 may be involved in heart development through affecting cell proliferation via targeting HAND2 and may thus represent a novel therapeutic target for CHD.
|
Keywords
congenital heart disease
Gene Expression Omnibus
lncRNA SAP30-2:1
cell proliferation
RNA immunoprecipitation
HAND2
|
Corresponding Author(s):
Duan Ma,Guoying Huang
|
Just Accepted Date: 16 July 2020
Online First Date: 18 August 2020
Issue Date: 11 February 2021
|
|
1 |
DA Lara, KN Lopez. Public health research in congenital heart disease. Congenit Heart Dis 2014; 9(6): 549–558
https://doi.org/10.1111/chd.12235
pmid: 25377072
|
2 |
A Egbe, S Lee, D Ho, S Uppu, S Srivastava. Prevalence of congenital anomalies in newborns with congenital heart disease diagnosis. Ann Pediatr Cardiol 2014; 7(2): 86–91
https://doi.org/10.4103/0974-2069.132474
pmid: 24987252
|
3 |
TA Andersen, KdeL Troelsen, LA Larsen. Of mice and men: molecular genetics of congenital heart disease. Cell Mol Life Sci 2014; 71(8): 1327–1352
https://doi.org/10.1007/s00018-013-1430-1
pmid: 23934094
|
4 |
X Wang, P Li, S Chen, L Xi, Y Guo, A Guo, K Sun. Influence of genes and the environment in familial congenital heart defects. Mol Med Rep 2014; 9(2): 695–700
https://doi.org/10.3892/mmr.2013.1847
pmid: 24337398
|
5 |
S Zaidi, M Brueckner. Genetics and genomics of congenital heart disease. Circ Res 2017; 120(6): 923–940
https://doi.org/10.1161/CIRCRESAHA.116.309140
pmid: 28302740
|
6 |
JC Scheuermann, LA Boyer. Getting to the heart of the matter: long non-coding RNAs in cardiac development and disease. EMBO J 2013; 32(13): 1805–1816
https://doi.org/10.1038/emboj.2013.134
pmid: 23756463
|
7 |
KR Cordes, D Srivastava. MicroRNA regulation of cardiovascular development. Circ Res 2009; 104(6): 724–732
https://doi.org/10.1161/CIRCRESAHA.108.192872
pmid: 19325160
|
8 |
Y Li, C Huo, T Pan, L Li, X Jin, X Lin, J Chen, J Zhang, Z Guo, J Xu, X Li. Systematic review regulatory principles of non-coding RNAs in cardiovascular diseases. Brief Bioinform 2019; 20(1): 66–76
https://doi.org/10.1093/bib/bbx095
pmid: 28968629
|
9 |
CP Ponting, PL Oliver, W Reik. Evolution and functions of long noncoding RNAs. Cell 2009; 136(4): 629–641
https://doi.org/10.1016/j.cell.2009.02.006
pmid: 19239885
|
10 |
Y Long, X Wang, DT Youmans, TR Cech. How do lncRNAs regulate transcription? Sci Adv 2017; 3(9): eaao2110
|
11 |
O Wapinski, HY Chang. Long noncoding RNAs and human disease. Trends Cell Biol 2011; 21(6): 354–361
https://doi.org/10.1016/j.tcb.2011.04.001
pmid: 21550244
|
12 |
T Sallam, J Sandhu, P Tontonoz. Long noncoding RNA discovery in cardiovascular disease: decoding form to function. Circ Res 2018; 122(1): 155–166
https://doi.org/10.1161/CIRCRESAHA.117.311802
pmid: 29301847
|
13 |
Y Devaux, J Zangrando, B Schroen, EE Creemers, T Pedrazzini, CP Chang, GW Dorn 2nd, T Thum, S Heymans; Cardiolinc Network. Long noncoding RNAs in cardiac development and ageing. Nat Rev Cardiol 2015; 12(7): 415–425
https://doi.org/10.1038/nrcardio.2015.55
pmid: 25855606
|
14 |
A Jandura, HM Krause. The new RNA world: growing evidence for long noncoding RNA functionality. Trends Genet 2017; 33(10): 665–676
https://doi.org/10.1016/j.tig.2017.08.002
pmid: 28870653
|
15 |
M Kataoka, DZ Wang. Noncoding RNAs in cardiovascular disease. In: Nakanishi T, Markwald RR, Baldwin HS, Keller BB, Srivastava D, Yamagishi H. Etiology and Morphogenesis of Congenital Heart Disease: From Gene Function and Cellular Interaction to Morphology. Tokyo: Springer, 2016: 313–317
|
16 |
Y Zhou, X He, R Liu, Y Qin, S Wang, X Yao, C Li, Z Hu. lncRNA CRNDE regulates the proliferation and migration of vascular smooth muscle cells. J Cell Physiol 2019; 234(9): 16205–16214
https://doi.org/10.1002/jcp.28284
pmid: 30740670
|
17 |
R Sun, L Zhang. Long non-coding RNA MALAT1 regulates cardiomyocytes apoptosis after hypoxia/reperfusion injury via modulating miR-200a-3p/PDCD4 axis. Biomed Pharmacother 2019; 111: 1036–1045
https://doi.org/10.1016/j.biopha.2018.12.122
pmid: 30841417
|
18 |
Z Cheng, Q Zhang, A Yin, M Feng, H Li, H Liu, Y Li, L Qian. The long non-coding RNA uc.4 influences cell differentiation through the TGF-β signaling pathway. Exp Mol Med 2018; 50(2): e447
https://doi.org/10.1038/emm.2017.278
pmid: 29504607
|
19 |
H Hezroni, D Koppstein, MG Schwartz, A Avrutin, DP Bartel, I Ulitsky. Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. Cell Rep 2015; 11(7): 1110–1122
https://doi.org/10.1016/j.celrep.2015.04.023
pmid: 25959816
|
20 |
A Necsulea, M Soumillon, M Warnefors, A Liechti, T Daish, U Zeller, JC Baker, F Grützner, H Kaessmann. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 2014; 505(7485): 635–640
https://doi.org/10.1038/nature12943
pmid: 24463510
|
21 |
G Song, Y Shen, J Zhu, H Liu, M Liu, YQ Shen, S Zhu, X Kong, Z Yu, L Qian. Integrated analysis of dysregulated lncRNA expression in fetal cardiac tissues with ventricular septal defect. PLoS One 2013; 8(10): e77492
https://doi.org/10.1371/journal.pone.0077492
pmid: 24147006
|
22 |
M Gu, A Zheng, W Tu, J Zhao, L Li, M Li, S Han, X Hu, J Zhu, Y Pan, J Xu, Z Yu. Circulating lncRNAs as novel, non-invasive biomarkers for prenatal detection of fetal congenital heart defects. Cell Physiol Biochem 2016; 38(4): 1459–1471
https://doi.org/10.1159/000443088
pmid: 27035723
|
23 |
X Wang, WL Charng, CA Chen, JA Rosenfeld, A Al Shamsi, L Al-Gazali, M McGuire, NA Mew, GL Arnold, C Qu, Y Ding, DM Muzny, RA Gibbs, CM Eng, M Walkiewicz, F Xia, SE Plon, JR Lupski, CP Schaaf, Y Yang. Germline mutations in ABL1 cause an autosomal dominant syndrome characterized by congenital heart defects and skeletal malformations. Nat Genet 2017; 49(4): 613–617
https://doi.org/10.1038/ng.3815
pmid: 28288113
|
24 |
B Stallmeyer, J Kuß, S Kotthoff, S Zumhagen, K Vowinkel, S Rinné, LA Matschke, C Friedrich, E Schulze-Bahr, S Rust, G Seebohm, N Decher, E Schulze-Bahr. A mutation in the G-protein gene GNB2 causes familial sinus node and atrioventricular conduction dysfunction. Circ Res 2017; 120(10): e33–e44
https://doi.org/10.1161/CIRCRESAHA.116.310112
pmid: 28219978
|
25 |
J Wang, RR Zhang, K Cai, Q Yang, WY Duan, JY Zhao, YH Gui, F Wang. Susceptibility to congenital heart defects associated with a polymorphism in TBX2 3′ untranslated region in the Han Chinese population. Pediatr Res 2019; 85(3): 378–383
https://doi.org/10.1038/s41390-018-0181-y
pmid: 30262811
|
26 |
F Kopp, JT Mendell. Functional classification and experimental dissection of long noncoding RNAs. Cell 2018; 172(3): 393–407
https://doi.org/10.1016/j.cell.2018.01.011
pmid: 29373828
|
27 |
Y Morikawa, P Cserjesi. Cardiac neural crest expression of Hand2 regulates outflow and second heart field development. Circ Res 2008; 103(12): 1422–1429
https://doi.org/10.1161/CIRCRESAHA.108.180083
pmid: 19008477
|
28 |
YL Schindler, KM Garske, J Wang, BA Firulli, AB Firulli, KD Poss, D Yelon. Hand2 elevates cardiomyocyte production during zebrafish heart development and regeneration. Development 2014; 141(16): 3112–3122
https://doi.org/10.1242/dev.106336
pmid: 25038045
|
29 |
R Soemedi, IJ Wilson, J Bentham, R Darlay, A Töpf, D Zelenika, C Cosgrove, K Setchfield, C Thornborough, J Granados-Riveron, GM Blue, J Breckpot, S Hellens, S Zwolinkski, E Glen, C Mamasoula, TJ Rahman, D Hall, A Rauch, K Devriendt, M Gewillig, J O’ Sullivan, DS Winlaw, F Bu’Lock, JD Brook, S Bhattacharya, M Lathrop, M Santibanez-Koref, HJ Cordell, JA Goodship, BD Keavney. Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. Am J Hum Genet 2012; 91(3): 489–501
https://doi.org/10.1016/j.ajhg.2012.08.003
pmid: 22939634
|
30 |
JW Vincentz, KP Toolan, W Zhang, AB Firulli. Hand factor ablation causes defective left ventricular chamber development and compromised adult cardiac function. PLoS Genet 2017; 13(7): e1006922
https://doi.org/10.1371/journal.pgen.1006922
pmid: 28732025
|
31 |
F Laurent, A Girdziusaite, J Gamart, I Barozzi, M Osterwalder, JA Akiyama, J Lincoln, J Lopez-Rios, A Visel, A Zuniga, R Zeller. HAND2 target gene regulatory networks control atrioventricular canal and cardiac valve development. Cell Rep 2017; 19(8): 1602–1613
https://doi.org/10.1016/j.celrep.2017.05.004
pmid: 28538179
|
32 |
D Srivastava. HAND proteins: molecular mediators of cardiac development and congenital heart disease. Trends Cardiovasc Med 1999; 9(1–2): 11–18
https://doi.org/10.1016/S1050-1738(98)00033-4
pmid: 10189962
|
33 |
Y Zhao, E Samal, D Srivastava. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 2005; 436(7048): 214–220
https://doi.org/10.1038/nature03817
pmid: 15951802
|
34 |
KM Anderson, DM Anderson, JR McAnally, JM Shelton, R Bassel-Duby, EN Olson. Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature 2016; 539(7629): 433–436
https://doi.org/10.1038/nature20128
pmid: 27783597
|
35 |
D MacGrogan, J Münch, JL de la Pompa. Notch and interacting signalling pathways in cardiac development, disease, and regeneration. Nat Rev Cardiol 2018; 15(11): 685–704
https://doi.org/10.1038/s41569-018-0100-2
pmid: 30287945
|
36 |
M Mollova, K Bersell, S Walsh, J Savla, LT Das, SY Park, LE Silberstein, CG Dos Remedios, D Graham, S Colan, B Kühn. Cardiomyocyte proliferation contributes to heart growth in young humans. Proc Natl Acad Sci U S A 2013; 110(4): 1446–1451
https://doi.org/10.1073/pnas.1214608110
pmid: 23302686
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|