Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2019, Vol. 13 Issue (4) : 438-450    https://doi.org/10.1007/s11684-018-0674-4
REVIEW
PD-1/PD-L1 blockade in cervical cancer: current studies and perspectives
Yumeng Wang1, Guiling Li1,2()
1. Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai 200011,China
2. Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China
 Download: PDF(675 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Cervical cancer (CC) is the fourth most commonly diagnosed female malignancy and a leading cause of cancer-related mortality worldwide, especially in developing countries. Despite the use of advanced screening and preventive vaccines, more than half of all CC cases are diagnosed at advanced stages, when therapeutic options are extremely limited and side effects are severe. Given these circumstances, new and effective treatments are needed. In recent years, exciting progress has been made in immunotherapies, including the rapid development of immune checkpoint inhibitors. Checkpoint blockades targeting the PD-1/PD-L1 axis have achieved effective clinical responses with acceptable toxicity by suppressing tumor progression and improving survival in several tumor types. In this review, we summarize recent advances in our understanding of the PD-1/PD-L1 signaling pathway, including the expression patterns of PD-1/PD-L1 and potential PD-1/PD-L1-related therapeutic strategies for CC.

Keywords PD-1      PD-L1      immune checkpoint blockade antibody      immunotherapy      cervical cancer     
Corresponding Author(s): Guiling Li   
Just Accepted Date: 28 January 2019   Online First Date: 04 March 2019    Issue Date: 02 August 2019
 Cite this article:   
Yumeng Wang,Guiling Li. PD-1/PD-L1 blockade in cervical cancer: current studies and perspectives[J]. Front. Med., 2019, 13(4): 438-450.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-018-0674-4
https://academic.hep.com.cn/fmd/EN/Y2019/V13/I4/438
Fig.1  In cervical tumor microenvironment, elevated PD-L1 is expressed by tumor cells, tumor-infiltrated immune cells, and stromal cells. The upregulation of the PD-L1 and PD-1 interaction induces T cell anergy, functional exhaustion, and apoptosis. The interaction also increases inhibitory cytokine secretion (such as IL-10 and TGF-b) and favors the conversion of T cells into Tregs. In system immune status, overexpression and activation of the PD1/PD-L1 pathway also exist. Tumors exploit these mechanisms to suppress anti-tumor T cell activity and evade host immunity, facilitating immune evasion and tumor progression. Antibodies targeting the PD-1 pathway, including PD-1 antibodies and PD-L1 antibodies that inhibit the PD-1/PD-L1 or PD-1/PD-L2 interaction, provide antitumor therapy by restoring T cell-mediated immunity.
ConditionsSubtypesPD1/PD-L1 expressionReference
HPV infectionNegative
Positive
-
+/-
[3248]
Histological abnormalityNegative
Positive
-
+/-
CIN gradeI -/+
II+ /++
III++/+++
Pathological typeSCC
++/+++
AC
-/+
MetastasisNegative
++
Positive
+++
Tab.1  Expression of PD-1/PD-L1 in different cervical neoplastic subtypes
Fig.2  Schematic outline showing the interplay of HPV and PD pathway. Persistent HPV infections upregulate PD-1 and PD-L1 expression levels on cervical cells and infiltrated immune cells. Activation and interaction of the PD pathway facilitate CTL dysfunction and exhaustion, negatively influencing HPV clearance. Malignant cervical lesions are formed, and progress with PD-1/PD-L1 expression is further elevated.
TargetAgentAntibody classCompanyApproval
PD-1Nivolumab (BMS-9336558, MSX1106, ONO-4538, Opdivo®)Human IgG4Bristol–Meyers SquibbFDA approved for melanoma, NSCLCa, RCCb, HNSCCc, cHLd, colorectal cancer, urothelial carcinoma
Pembrolizumab (MK3475, Keytruda®)Humanized IgG4MerckFDA approved for melanoma, NSCLC, RCC, cHL, HNSCC, colorectal carcinoma, urothelial carcinoma
AMP-514(MEDI0680)Humanized IgG4MedImmune
AMP-224PD-L2-IgG2a fusion proteinAmplimmune
PD-L1Atezolizumab (MDPL-3280A,Tecentrip®)Human IgG1GenentechFDA approved for urothelial carcinoma, NSCLC
Avelumab (MSB0010718C, BAVENCIO®)Fully Human IgG1Merck SeronoUrothelial carcinoma,MCCe
Durvalumab (MEDI4736, IMFINZI®)Human IgG1AstraZenecaUrothelial carcinoma
MDX1105(BMS-936559)Human IgG4Bristol–Myers Squibb
Tab.2  PD-1- and PD-L1-blocking agents in clinical development
TargetAgentClinical indication and ongoing evaluationStage of development
PD-1Nivolumab (BMS-9336558, MSX1106, ONO-4538, Opdivo®)*NCT02257528: treating persistent, recurrent, and metastatic CCPhase II
*NCT02465060: treating patients with mismatch repair deficiency (loss of MLH1 or MSH2 by IHC) in advanced refractory solid tumorsPhase II
*NCT02379520: HPVST cells alone or in combination with nivolumab in HPV-related carcinomaPhase I
*NCT03126110:INCAGN01876+ nivolumab or/and ipilimumab treating advanced or metastatic malignanciesPhase I/II
*NCT03241173:INCAGN01949+ nivolumab or/and ipilimumab treating advanced or metastatic malignanciesPhase I/II
*NCT03298893: in combination with radiotherapy and cisplatin in locally advanced CCPhase I
*NCT02628064: treating advanced solid tumors including CCPhase II
Pembrolizumab (MK3475, Keytruda®)*NCT02628067: treating advanced solid tumors including CCPhase II
*NCT02635360: in combination with chemoradiation for the treatment of advanced CCPhase II
*NCT03144466: in combination with radiotherapy and cisplatin treating advanced CCPhase I
*NCT03192059: in combination with radiation and an immune modulatory cocktail treating advanced and/refractory CC endometrial carcinoma or uterine sarcomaPhase II
*NCT02858310: TCR gene therapy targeting HPV-16 E7 with or without pembrolizumab for HPV-associated cancersPhase I
*NCT03444376: in combination of GX-188E vaccination treating advanced, nonresectable HPV16 and/or 18+ CCPhase Ib-II
*NCT03635567: in combination with chemotherapy treating persistent, recurrent, or metastatic CCPhase III
*NCT03367871: in combination with chemotherapy and bevacizumab treating CCPhase II
PD-L1Atezolizumab (MDPL-3280A, Tecentrip®)*NCT02921269: in combination with bevacizumab treating recurrent, persistent, or metastatic CCPhase II
*NCT03074513: in combination with bevacizumab treating rare solid tumors including CCPhase II
*NCT03073525: in combination with Vigil treating advanced gynecological cancersPhase II
*NCT02914470: in combination with carboplatin-cyclophosphamide treating advanced breast cancer and gynecologic cancerPhase I
*NCT03614949: in combination with stereotactic body radiation therapy treating recurrent, persistent, or metastatic CCPhase II
*NCT03340376: in combination with doxorubicin treating recurrent CCPhase II
Avelumab (MSB0010718C, BAVENCIO®)*NCT03260023: in combination with TG4001 treating HPV-16+ recurrent or metastatic malignanciesPhase I/II
*NCT03217747: in combination with or without radiation, or radiation and cisplatin treating limited, locally advanced or metastatic solid tumors including CCPhase I/II
Durvalumab (MEDI4736)*NCT01975831: in combination with tremelimumab treating advanced solid tumorsPhase I
*NCT02725489:in combination with Vigil and durvalumab treating advanced women's cancersPhase II
*NCT02291055: in combination with ADXS11-001 in previously treated locally advanced or metastatic cervical or HPV+ head and neck cancerPhase I/II
*NCT03452332: in combination with stereotactic ablative radiotherapy and tremelimumab treating cervical, vaginal, or vulvar cancerPhase I
Tab.3  Ongoing PD pathway-targeted clinical trials of subjects with CC
1 JB Swann, MJ Smyth. Immune surveillance of tumors. J Clin Invest 2007; 117(5): 1137–1146
https://doi.org/10.1172/JCI31405 pmid: 17476343
2 GP Dunn, LJ Old, RD Schreiber. The three Es of cancer immunoediting. Annu Rev Immunol 2004; 22(1): 329–360
https://doi.org/10.1146/annurev.immunol.22.012703.104803 pmid: 15032581
3 TJ Stewart, SI Abrams. How tumours escape mass destruction. Oncogene 2008; 27(45): 5894–5903
https://doi.org/10.1038/onc.2008.268 pmid: 18836470
4 L Chen, DB Flies. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 2013; 13(4): 227–242
https://doi.org/10.1038/nri3405 pmid: 23470321
5 S Chikuma. Basics of PD-1 in self-tolerance, infection, and cancer immunity. Int J Clin Oncol 2016; 21(3): 448–455
https://doi.org/10.1007/s10147-016-0958-0 pmid: 26864303
6 Y Ishida, Y Agata, K Shibahara, T Honjo. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992; 11(11): 3887–3895
https://doi.org/10.1002/j.1460-2075.1992.tb05481.x pmid: 1396582
7 Y Agata, A Kawasaki, H Nishimura, Y Ishida, T Tsubata, H Yagita, T Honjo. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 1996; 8(5): 765–772
https://doi.org/10.1093/intimm/8.5.765 pmid: 8671665
8 ME Keir, MJ Butte, GJ Freeman, AH Sharpe. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008; 26(1): 677–704
https://doi.org/10.1146/annurev.immunol.26.021607.090331 pmid: 18173375
9 BT Fife, KE Pauken, TN Eagar, T Obu, J Wu, Q Tang, M Azuma, MF Krummel, JA Bluestone. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol 2009; 10(11): 1185–1192
https://doi.org/10.1038/ni.1790 pmid: 19783989
10 ME Keir, LM Francisco, AH Sharpe. PD-1 and its ligands in T-cell immunity. Curr Opin Immunol 2007; 19(3): 309–314
https://doi.org/10.1016/j.coi.2007.04.012 pmid: 17433872
11 M Ghiotto, L Gauthier, N Serriari, S Pastor, A Truneh, JA Nunès, D Olive. PD-L1 and PD-L2 differ in their molecular mechanisms of interaction with PD-1. Int Immunol 2010; 22(8): 651–660
https://doi.org/10.1093/intimm/dxq049 pmid: 20587542
12 X Wang, F Teng, L Kong, J Yu. PD-L1 expression in human cancers and its association with clinical outcomes. OncoTargets Ther 2016; 9: 5023–5039
https://doi.org/10.2147/OTT.S105862 pmid: 27574444
13 F Tsushima, S Yao, T Shin, A Flies, S Flies, H Xu, K Tamada, DM Pardoll, L Chen. Interaction between B7-H1 and PD-1 determines initiation and reversal of T-cell anergy. Blood 2007; 110(1): 180–185
https://doi.org/10.1182/blood-2006-11-060087 pmid: 17289811
14 H Dong, G Zhu, K Tamada, L Chen. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999; 5(12): 1365–1369
https://doi.org/10.1038/70932 pmid: 10581077
15 H Dong, SE Strome, DR Salomao, H Tamura, F Hirano, DB Flies, PC Roche, J Lu, G Zhu, K Tamada, VA Lennon, E Celis, L Chen. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002; 8(8): 793–800
https://doi.org/10.1038/nm730 pmid: 12091876
16 DL Barber, EJ Wherry, D Masopust, B Zhu, JP Allison, AH Sharpe, GJ Freeman, R Ahmed. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006; 439(7077): 682–687
https://doi.org/10.1038/nature04444 pmid: 16382236
17 S Amarnath, CW Mangus, JC Wang, F Wei, A He, V Kapoor, JE Foley, PR Massey, TC Felizardo, JL Riley, BL Levine, CH June, JA Medin, DH Fowler. The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci Transl Med 2011; 3(111): 111ra120
https://doi.org/10.1126/scitranslmed.3003130 pmid: 22133721
18 T Azuma, S Yao, G Zhu, AS Flies, SJ Flies, L Chen. B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 2008; 111(7): 3635–3643
https://doi.org/10.1182/blood-2007-11-123141 pmid: 18223165
19 P Wu, D Wu, L Li, Y Chai, J Huang. PD-L1 and survival in solid tumors: a meta-analysis. PLoS One 2015; 10(6): e0131403
https://doi.org/10.1371/journal.pone.0131403 pmid: 26114883
20 P Sharma, MK Callahan, P Bono, J Kim, P Spiliopoulou, E Calvo, RN Pillai, PA Ott, F de Braud, M Morse, DT Le, D Jaeger, E Chan, C Harbison, CS Lin, M Tschaika, A Azrilevich, JE Rosenberg. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol 2016; 17(11): 1590–1598
https://doi.org/10.1016/S1470-2045(16)30496-X pmid: 27733243
21 C Robert, GV Long, B Brady, C Dutriaux, M Maio, L Mortier, JC Hassel, P Rutkowski, C McNeil, E Kalinka-Warzocha, KJ Savage, MM Hernberg, C Lebbé, J Charles, C Mihalcioiu, V Chiarion-Sileni, C Mauch, F Cognetti, A Arance, H Schmidt, D Schadendorf, H Gogas, L Lundgren-Eriksson, C Horak, B Sharkey, IM Waxman, V Atkinson, PA Ascierto. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015; 372(4): 320–330
https://doi.org/10.1056/NEJMoa1412082 pmid: 25399552
22 CJ Langer, SM Gadgeel, H Borghaei, VA Papadimitrakopoulou, A Patnaik, SF Powell, RD Gentzler, RG Martins, JP Stevenson, SI Jalal, A Panwalkar, JC Yang, M Gubens, LV Sequist, MM Awad, J Fiore, Y Ge, H Raftopoulos, L; KEYNOTE-021 investigators. GandhiCarboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol 2016; 17(11): 1497–1508
https://doi.org/10.1016/S1470-2045(16)30498-3 pmid: 27745820
23 LA Torre, F Bray, RL Siegel, J Ferlay, J Lortet-Tieulent, A Jemal. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87–108
https://doi.org/10.3322/caac.21262 pmid: 25651787
24 LA Torre, RL Siegel, EM Ward, A Jemal. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol Biomarkers Prev 2016; 25(1): 16–27
https://doi.org/10.1158/1055-9965.EPI-15-0578 pmid: 26667886
25 KS Pfaendler, KS Tewari. Changing paradigms in the systemic treatment of advanced cervical cancer. Am J Obstet Gynecol 2016; 214(1): 22–30
https://doi.org/10.1016/j.ajog.2015.07.022 pmid: 26212178
26 D Cibula, NR Abu-Rustum, P Benedetti-Panici, C Köhler, F Raspagliesi, D Querleu, CP Morrow. New classification system of radical hysterectomy: emphasis on a three-dimensional anatomic template for parametrial resection. Gynecol Oncol 2011; 122(2): 264–268
https://doi.org/10.1016/j.ygyno.2011.04.029 pmid: 21592548
27 PG Rose. Concurrent chemoradiation for locally advanced carcinoma of the cervix: where are we in 2006? Ann Oncol 2006; 17(Suppl 10): x224–x229
https://doi.org/10.1093/annonc/mdl264 pmid: 17018728
28 RN Eskander, KS Tewari. Chemotherapy in the treatment of metastatic, persistent, and recurrent cervical cancer. Curr Opin Obstet Gynecol 2014; 26(4): 314–321
https://doi.org/10.1097/GCO.0000000000000042 pmid: 24979076
29 W Ma, BM Gilligan, J Yuan, T Li. Current status and perspectives in translational biomarker research for PD-1/PD-L1 immune checkpoint blockade therapy. J Hematol Oncol 2016; 9(1): 47
https://doi.org/10.1186/s13045-016-0277-y pmid: 27234522
30 W Zou, JD Wolchok, L Chen. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 2016; 8(328): 328rv4
https://doi.org/10.1126/scitranslmed.aad7118 pmid: 26936508
31 J Hamanishi, M Mandai, N Matsumura, K Abiko, T Baba, I Konishi. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. Int J Clin Oncol 2016; 21(3): 462–473
https://doi.org/10.1007/s10147-016-0959-z pmid: 26899259
32 Z Chen, N Pang, R Du, Y Zhu, L Fan, D Cai, Y Ding, J Ding. Elevated expression of programmed death-1 and programmed death ligand-1 negatively regulates immune response against cervical cancer cells. Mediators Inflamm 2016; 2016: 6891482
https://doi.org/10.1155/2016/6891482 pmid: 27721577
33 EK Enwere, EN Kornaga, M Dean, TA Koulis, T Phan, M Kalantarian, M Köbel, P Ghatage, AM Magliocco, SP Lees-Miller, CM Doll. Expression of PD-L1 and presence of CD8-positive T cells in pre-treatment specimens of locally advanced cervical cancer. Mod Pathol 2017; 30(4): 577–586
https://doi.org/10.1038/modpathol.2016.221 pmid: 28059093
34 AM Heeren, BD Koster, S Samuels, DM Ferns, D Chondronasiou, GG Kenter, ES Jordanova, TD de Gruijl. High and interrelated rates of PD-L1+CD14+ antigen-presenting cells and regulatory T cells mark the microenvironment of metastatic lymph nodes from patients with cervical cancer. Cancer Immunol Res 2015; 3(1): 48–58
https://doi.org/10.1158/2326-6066.CIR-14-0149 pmid: 25361854
35 AM Heeren, S Punt, MC Bleeker, KN Gaarenstroom, J van der Velden, GG Kenter, TD de Gruijl, ES Jordanova. Prognostic effect of different PD-L1 expression patterns in squamous cell carcinoma and adenocarcinoma of the cervix. Mod Pathol 2016; 29(7): 753–763
https://doi.org/10.1038/modpathol.2016.64 pmid: 27056074
36 BE Howitt, HH Sun, MGM Roemer, A Kelley, B Chapuy, E Aviki, C Pak, C Connelly, E Gjini, Y Shi, L Lee, A Viswanathan, N Horowitz, D Neuberg, CP Crum, NL Lindeman, F Kuo, AH Ligon, GJ Freeman, FS Hodi, MA Shipp, SJ Rodig. Genetic basis for PD-L1 Expression in squamous cell carcinomas of the cervix and vulva. JAMA Oncol 2016; 2(4): 518–522
https://doi.org/10.1001/jamaoncol.2015.6326 pmid: 26913631
37 R Karim, ES Jordanova, SJ Piersma, GG Kenter, L Chen, JM Boer, CJM Melief, SH van der Burg. Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T-cell infiltration and survival of patients with cervical carcinoma. Clin Cancer Res 2009; 15(20): 6341–6347
https://doi.org/10.1158/1078-0432.CCR-09-1652 pmid: 19825956
38 C Liu, J Lu, H Tian, W Du, L Zhao, J Feng, D Yuan, Z Li. Increased expression of PDL1 by the human papillomavirus 16 E7 oncoprotein inhibits anticancer immunity. Mol Med Rep 2017; 15(3): 1063–1070
https://doi.org/10.3892/mmr.2017.6102 pmid: 28075442
39 L Mezache, B Paniccia, A Nyinawabera, GJ Nuovo. Enhanced expression of PD L1 in cervical intraepithelial neoplasia and cervical cancers. Mod Pathol 2015; 28(12): 1594–1602
https://doi.org/10.1038/modpathol.2015.108 pmid: 26403783
40 OL Reddy, PI Shintaku, NA Moatamed. Programmed death-ligand 1 (PD-L1) is expressed in a significant number of the uterine cervical carcinomas. Diagn Pathol 2017; 12(1): 45
https://doi.org/10.1186/s13000-017-0631-6 pmid: 28623908
41 DT Rieke, S Ochsenreither, K Klinghammer, TY Seiwert, F Klauschen, I Tinhofer, U Keilholz. Methylation of RAD51B, XRCC3 and other homologous recombination genes is associated with expression of immune checkpoints and an inflammatory signature in squamous cell carcinoma of the head and neck, lung and cervix. Oncotarget 2016; 7(46): 75379–75393
https://doi.org/10.18632/oncotarget.12211 pmid: 27683114
42 KL Ring, AV Yemelyanova, PT Soliman, MM Frumovitz, AA Jazaeri. Potential immunotherapy targets in recurrent cervical cancer. Gynecol Oncol 2017; 145(3): 462–468
https://doi.org/10.1016/j.ygyno.2017.02.027 pmid: 28233576
43 W Yang, Y Song, YL Lu, JZ Sun, HW Wang. Increased expression of programmed death (PD)-1 and its ligand PD-L1 correlates with impaired cell-mediated immunity in high-risk human papillomavirus-related cervical intraepithelial neoplasia. Immunology 2013; 139(4):513–522 PMID: 23521696
https://doi.org/10.1111/imm.12101
44 H Chang, JH Hong, JK Lee, HW Cho, YT Ouh, KJ Min, KA So. Programmed death-1 (PD-1) expression in cervical intraepithelial neoplasia and its relationship with recurrence after conization. J Gynecol Oncol 2018; 29(3): e27
https://doi.org/10.3802/jgo.2018.29.e27 pmid: 29400020
45 K Kataoka, Y Shiraishi, Y Takeda, S Sakata, M Matsumoto, S Nagano, T Maeda, Y Nagata, A Kitanaka, S Mizuno, H Tanaka, K Chiba, S Ito, Y Watatani, N Kakiuchi, H Suzuki, T Yoshizato, K Yoshida, M Sanada, H Itonaga, Y Imaizumi, Y Totoki, W Munakata, H Nakamura, N Hama, K Shide, Y Kubuki, T Hidaka, T Kameda, K Masuda, N Minato, K Kashiwase, K Izutsu, A Takaori-Kondo, Y Miyazaki, S Takahashi, T Shibata, H Kawamoto, Y Akatsuka, K Shimoda, K Takeuchi, T Seya, S Miyano, S Ogawa. Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature 2016; 534(7607): 402–406
https://doi.org/10.1038/nature18294 pmid: 27281199
46 Y Meng, H Liang, J Hu, S Liu, X Hao, MSK Wong, X Li, L Hu. PD-L1 expression correlates with tumor infiltrating lymphocytes and response to neoadjuvant chemotherapy in cervical cancer. J Cancer 2018; 9(16): 2938–2945
https://doi.org/10.7150/jca.22532 pmid: 30123362
47 W Yang, YP Lu, YZ Yang, JR Kang, YD Jin, HW Wang. Expressions of programmed death (PD)-1 and PD-1 ligand (PD-L1) in cervical intraepithelial neoplasia and cervical squamous cell carcinomas are of prognostic value and associated with human papillomavirus status. J Obstet Gynaecol Res 2017; 43(10): 1602–1612
https://doi.org/10.1111/jog.13411 pmid: 28833798
48 F Yang-Chun, C Zhen-Zhen, H Yan-Chun, M Xiu-Min. Association between PD-L1 and HPV status and the prognostic value for HPV treatment in premalignant cervical lesion patients. Medicine (Baltimore) 2017; 96(25): e7270
https://doi.org/10.1097/MD.0000000000007270 pmid: 28640134
49 S Gandini, D Massi, M Mandalà. PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: a systematic review and meta-analysis. Crit Rev Oncol Hematol 2016; 100: 88–98
https://doi.org/10.1016/j.critrevonc.2016.02.001 pmid: 26895815
50 KM Kerr, MS Tsao, AG Nicholson, Y Yatabe, II Wistuba, , FR Hirsch; IASLC Pathology Committee. Programmed death-ligand 1 immunohistochemistry in lung cancer: in what state is this art? J Thorac Oncol 2015; 10(7): 985–989 PMID: 26134220
https://doi.org/10.1097/JTO.0000000000000526
51 SP Patel, R Kurzrock. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 2015; 14(4): 847–856
https://doi.org/10.1158/1535-7163.MCT-14-0983 pmid: 25695955
52 EB Garon, NA Rizvi, R Hui, N Leighl, AS Balmanoukian, JP Eder, A Patnaik, C Aggarwal, M Gubens, L Horn, E Carcereny, MJ Ahn, E Felip, JS Lee, MD Hellmann, O Hamid, JW Goldman, JC Soria, M Dolled-Filhart, RZ Rutledge, J Zhang, JK Lunceford, R Rangwala, GM Lubiniecki, C Roach, K Emancipator, L Gandhi; KEYNOTE-001 Investigators. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015; 372(21): 2018–2028
https://doi.org/10.1056/NEJMoa1501824 pmid: 25891174
53 RS Herbst, JC Soria, M Kowanetz, GD Fine, O Hamid, MS Gordon, JA Sosman, DF McDermott, JD Powderly, SN Gettinger, HE Kohrt, L Horn, DP Lawrence, S Rost, M Leabman, Y Xiao, A Mokatrin, H Koeppen, PS Hegde, I Mellman, DS Chen, FS Hodi. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014; 515(7528): 563–567
https://doi.org/10.1038/nature14011 pmid: 25428504
54 T Powles, JP Eder, GD Fine, FS Braiteh, Y Loriot, C Cruz, J Bellmunt, HA Burris, DP Petrylak, SL Teng, X Shen, Z Boyd, PS Hegde, DS Chen, NJ Vogelzang. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 2014; 515(7528): 558–562
https://doi.org/10.1038/nature13904 pmid: 25428503
55 SL Topalian, FS Hodi, JR Brahmer, SN Gettinger, DC Smith, DF McDermott, JD Powderly, RD Carvajal, JA Sosman, MB Atkins, PD Leming, DR Spigel, SJ Antonia, L Horn, CG Drake, DM Pardoll, L Chen, WH Sharfman, RA Anders, JM Taube, TL McMiller, H Xu, AJ Korman, M Jure-Kunkel, S Agrawal, D McDonald, GD Kollia, A Gupta, JM Wigginton, M Sznol. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366(26): 2443–2454
https://doi.org/10.1056/NEJMoa1200690 pmid: 22658127
56 V Catenacci Daniel, Z Wainberg, S Fuchs Charles, M Garrido, YJ Bang, K Muro, M Savage, J Wang, M Koshiji, P Dalal Rita, YK Kang. LBA-009KEYNOTE-059 cohort 3: safety and efficacy of pembrolizumab monotherapy for first-line treatment of patients (pts) with PD-L1-positive advanced gastric/gastroesophageal (G/GEJ) cancer. Ann Oncol 2017; 28(suppl 3): mdx302.008 PMID:30052791
https://doi.org/DOI:10.1093/annonc/mdx302.008
57 Y Zhang, S Kang, J Shen, J He, L Jiang, W Wang, Z Guo, G Peng, G Chen, J He, W Liang. Prognostic significance of programmed cell death 1 (PD-1) or PD-1 ligand 1 (PD-L1) expression in epithelial-originated cancer: a meta-analysis. Medicine (Baltimore) 2015; 94(6): e515
https://doi.org/10.1097/MD.0000000000000515 pmid: 25674748
58 Y Jin, J Zhao, X Shi, X Yu. Prognostic value of programed death ligand 1 in patients with solid tumors: a meta-analysis. J Cancer Res Ther 2015; 11(5 Suppl 1): C38–C43
https://doi.org/10.4103/0973-1482.163837 pmid: 26323922
59 C Badoual, S Hans, N Merillon, C Van Ryswick, P Ravel, N Benhamouda, E Levionnois, M Nizard, A Si-Mohamed, N Besnier, A Gey, R Rotem-Yehudar, H Pere, T Tran, CL Guerin, A Chauvat, E Dransart, C Alanio, S Albert, B Barry, F Sandoval, F Quintin-Colonna, P Bruneval, WH Fridman, FM Lemoine, S Oudard, L Johannes, D Olive, D Brasnu, E Tartour. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res 2013; 73(1): 128–138
https://doi.org/10.1158/0008-5472.CAN-12-2606 pmid: 23135914
60 AI Daud, K Loo, ML Pauli, R Sanchez-Rodriguez, PM Sandoval, K Taravati, K Tsai, A Nosrati, L Nardo, MD Alvarado, AP Algazi, MH Pampaloni, IV Lobach, J Hwang, RH Pierce, IK Gratz, MF Krummel, MD Rosenblum. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J Clin Invest 2016; 126(9): 3447–3452
https://doi.org/10.1172/JCI87324 pmid: 27525433
61 D Song, H Li, H Li, J Dai. Effect of human papillomavirus infection on the immune system and its role in the course of cervical cancer. Oncol Lett 2015; 10(2): 600–606
https://doi.org/10.3892/ol.2015.3295 pmid: 26622540
62 P Conesa-Zamora. Immune responses against virus and tumor in cervical carcinogenesis: treatment strategies for avoiding the HPV-induced immune escape. Gynecol Oncol 2013; 131(2): 480–488
https://doi.org/10.1016/j.ygyno.2013.08.025 pmid: 23994536
63 JC Dudley, MT Lin, DT Le, JR Eshleman. Microsatellite Instability as a Biomarker for PD-1 Blockade. Clin Cancer Res 2016; 22(4): 813–820
https://doi.org/10.1158/1078-0432.CCR-15-1678 pmid: 26880610
64 DT Le, JN Uram, H Wang, BR Bartlett, H Kemberling, AD Eyring, AD Skora, BS Luber, NS Azad, D Laheru, B Biedrzycki, RC Donehower, A Zaheer, GA Fisher, TS Crocenzi, JJ Lee, SM Duffy, RM Goldberg, A de la Chapelle, M Koshiji, F Bhaijee, T Huebner, RH Hruban, LD Wood, N Cuka, DM Pardoll, N Papadopoulos, KW Kinzler, S Zhou, TC Cornish, JM Taube, RA Anders, JR Eshleman, B Vogelstein, LA Diaz Jr. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015; 372(26): 2509–2520
https://doi.org/10.1056/NEJMoa1500596 pmid: 26028255
65 W Roh, PL Chen, A Reuben, CN Spencer, PA Prieto, JP Miller, V Gopalakrishnan, F Wang, ZA Cooper, SM Reddy, C Gumbs, L Little, Q Chang, WS Chen, K Wani, MP De Macedo, E Chen, JL Austin-Breneman, H Jiang, J Roszik, MT Tetzlaff, MA Davies, JE Gershenwald, H Tawbi, AJ Lazar, P Hwu, WJ Hwu, A Diab, IC Glitza, SP Patel, SE Woodman, RN Amaria, VG Prieto, J Hu, P Sharma, JP Allison, L Chin, J Zhang, JA Wargo, PA Futreal. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med 2017; 9(379): eaah3560
https://doi.org/10.1126/scitranslmed.aah3560 pmid: 28251903
66 H zur Hausen. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2002; 2(5): 342–350
https://doi.org/10.1038/nrc798 pmid: 12044010
67 FX Bosch, A Lorincz, N Muñoz, CJ Meijer, KV Shah. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 2002; 55(4): 244–265
https://doi.org/10.1136/jcp.55.4.244 pmid: 11919208
68 N Egawa, K Egawa, H Griffin, J Doorbar. Human papillomaviruses; epithelial tropisms, and the development of neoplasia. Viruses 2015; 7(7): 3863–3890
https://doi.org/10.3390/v7072802 pmid: 26193301
69 M Tommasino. The human papillomavirus family and its role in carcinogenesis. Semin Cancer Biol 2014; 26: 13–21
https://doi.org/10.1016/j.semcancer.2013.11.002 pmid: 24316445
70 J Doorbar, N Egawa, H Griffin, C Kranjec, I Murakami. Human papillomavirus molecular biology and disease association. Rev Med Virol 2015; 25(Suppl 1): 2–23
https://doi.org/10.1002/rmv.1822 pmid: 25752814
71 YJ Choi, JS Park. Clinical significance of human papillomavirus genotyping. J Gynecol Oncol 2016; 27(2): e21
https://doi.org/10.3802/jgo.2016.27.e21 pmid: 26768784
72 M Narisawa-Saito, T Kiyono. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci 2007; 98(10): 1505–1511
https://doi.org/10.1111/j.1349-7006.2007.00546.x pmid: 17645777
73 RC Kines, CD Thompson, DR Lowy, JT Schiller, PM Day. The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Natl Acad Sci USA 2009; 106(48): 20458–20463
https://doi.org/10.1073/pnas.0908502106 pmid: 19920181
74 SF Jabbar, L Abrams, A Glick, PF Lambert. Persistence of high-grade cervical dysplasia and cervical cancer requires the continuous expression of the human papillomavirus type 16 E7 oncogene. Cancer Res 2009; 69(10): 4407–4414
https://doi.org/10.1158/0008-5472.CAN-09-0023 pmid: 19435895
75 H Romanczuk, PM Howley. Disruption of either the E1 or the E2 regulatory gene of human papillomavirus type 16 increases viral immortalization capacity. Proc Natl Acad Sci USA 1992; 89(7): 3159–3163
https://doi.org/10.1073/pnas.89.7.3159 pmid: 1313584
76 CP Crum, G Nuovo, D Friedman, SJ Silverstein. Accumulation of RNA homologous to human papillomavirus type 16 open reading frames in genital precancers. J Virol 1988; 62(1): 84–90
pmid: 2824859
77 AJ van den Brule, FV Cromme, PJ Snijders, L Smit, CB Oudejans, JP Baak, CJ Meijer, JM Walboomers. Nonradioactive RNA in situ hybridization detection of human papillomavirus 16-E7 transcripts in squamous cell carcinomas of the uterine cervix using confocal laser scan microscopy. Am J Pathol 1991; 139(5): 1037–1045
pmid: 1719818
78 S Krishna, P Ulrich, E Wilson, F Parikh, P Narang, S Yang, AK Read, S Kim-Schulze, JG Park, M Posner, MA Wilson Sayres, A Sikora, KS Anderson. Human papilloma virus specific immunogenicity and dysfunction of CD8+ T cells in head and neck cancer. Cancer Res 2018; 78(21): 6159–6170
https://doi.org/10.1158/0008-5472.CAN-18-0163 pmid: 30154146
79 RJ Greenwald, GJ Freeman, AH Sharpe. The B7 family revisited. Annu Rev Immunol 2005; 23(1): 515–548
https://doi.org/10.1146/annurev.immunol.23.021704.115611 pmid: 15771580
80 RL Ferris, G Blumenschein Jr, J Fayette, J Guigay, AD Colevas, L Licitra, K Harrington, S Kasper, EE Vokes, C Even, F Worden, NF Saba, LC Iglesias Docampo, R Haddad, T Rordorf, N Kiyota, M Tahara, M Monga, M Lynch, WJ Geese, J Kopit, JW Shaw, ML Gillison. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016; 375(19): 1856–1867
https://doi.org/10.1056/NEJMoa1602252 pmid: 27718784
81 Cancer Genome Atlas Research Network; Albert Einstein College of Medicine; Analytical Biological Services; Barretos Cancer Hospital; Baylor College of Medicine; Beckman Research Institute of City of Hope; Buck Institute for Research on Aging; Canada's Michael Smith Genome Sciences Centre; Harvard Medical School; Helen F. Graham Cancer Center &Research Institute at Christiana Care Health Services; HudsonAlpha Institute for Biotechnology; ILSbio, LLC; Indiana University School of Medicine; Institute of Human Virology; Institute for Systems Biology; International Genomics Consortium; Leidos Biomedical; Massachusetts General Hospital; McDonnell Genome Institute at Washington University; Medical College of Wisconsin; Medical University of South Carolina; Memorial Sloan Kettering Cancer Center; Montefiore Medical Center; NantOmics; National Cancer Institute; National Hospital, Abuja, Nigeria; National Human Genome Research Institute; National Institute of Environmental Health Sciences; National Institute on Deafness &Other Communication Disorders; Ontario Tumour Bank, London Health Sciences Centre; Ontario Tumour Bank, Ontario Institute for Cancer Research; Ontario Tumour Bank, The Ottawa Hospital; Oregon Health &Science University; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center; SRA International; St Joseph's Candler Health System; Eli &Edythe L. Broad Institute of Massachusetts Institute of Technology &Harvard University; Research Institute at Nationwide Children's Hospital; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University; University of Bergen; University of Texas MD Anderson Cancer Center; University of Abuja Teaching Hospital; University of Alabama at Birmingham; University of California, Irvine; University of California Santa Cruz; University of Kansas Medical Center; University of Lausanne; University of New Mexico Health Sciences Center; University of North Carolina at Chapel Hill; University of Oklahoma Health Sciences Center; University of Pittsburgh; University of São Paulo, Ribeir ão Preto Medical School; University of Southern California; University of Washington; University of Wisconsin School of Medicine &Public Health; Van Andel Research Institute; Washington University in St Louis.. Integrated genomic and molecular characterization of cervical cancer. Nature 2017; 543(7645): 378–384 PMID: 28112728
https://doi.org/DOI: 10.1038/nature21386
82 JR Brahmer, CG Drake, I Wollner, JD Powderly, J Picus, WH Sharfman, E Stankevich, A Pons, TM Salay, TL McMiller, MM Gilson, C Wang, M Selby, JM Taube, R Anders, L Chen, AJ Korman, DM Pardoll, I Lowy, SL Topalian. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 2010; 28(19): 3167–3175
https://doi.org/10.1200/JCO.2009.26.7609 pmid: 20516446
83 H Borghaei, L Paz-Ares, L Horn, DR Spigel, M Steins, NE Ready, LQ Chow, EE Vokes, E Felip, E Holgado, F Barlesi, M Kohlhäufl, O Arrieta, MA Burgio, J Fayette, H Lena, E Poddubskaya, DE Gerber, SN Gettinger, CM Rudin, N Rizvi, L Crinò, GR Blumenschein Jr, SJ Antonia, C Dorange, CT Harbison, F Graf Finckenstein, JR Brahmer. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 2015; 373(17): 1627–1639
https://doi.org/10.1056/NEJMoa1507643 pmid: 26412456
84 FS Hodi, J Chesney, AC Pavlick, C Robert, KF Grossmann, DF McDermott, GP Linette, N Meyer, JK Giguere, SS Agarwala, M Shaheen, MS Ernstoff, DR Minor, AK Salama, MH Taylor, PA Ott, C Horak, P Gagnier, J Jiang, JD Wolchok, MA Postow. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol 2016; 17(11): 1558–1568
https://doi.org/10.1016/S1470-2045(16)30366-7 pmid: 27622997
85 YL Kasamon, RA de Claro, Y Wang, YL Shen, AT Farrell, R Pazdur. FDA approval summary: nivolumab for the treatment of relapsed or progressive classical Hodgkin lymphoma. Oncologist 2017; 22(5): 585–591
https://doi.org/10.1634/theoncologist.2017-0004 pmid: 28438889
86 MJ Overman, R McDermott, JL Leach, S Lonardi, HJ Lenz, MA Morse, J Desai, A Hill, M Axelson, RA Moss, MV Goldberg, ZA Cao, JM Ledeine, GA Maglinte, S Kopetz, T André. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 2017; 18(9): 1182–1191
https://doi.org/10.1016/S1470-2045(17)30422-9 pmid: 28734759
87 H Rexer, CH Ohlmann, J, AUO Gschwend. First line therapy for locally advanced or metastatic urothelial cancer: a randomized double blind phase III multicenter study on adjuvant nivolumab therapy versus placebo in patients with invasive high-risk urothelial cancer (CheckMate 274)-AB 58/17 of the AUO. Urologe A 2017; 56(10): 1331–1332 (in German)
https://doi.org/10.1007/s00120-017-0480-7 pmid: 28779222
88 Y Tomita, S Fukasawa, N Shinohara, H Kitamura, M Oya, M Eto, K Tanabe, G Kimura, J Yonese, M Yao, RJ Motzer, H Uemura, MB McHenry, E Berghorn, S Ozono. Nivolumab versus everolimus in advanced renal cell carcinoma: Japanese subgroup analysis from the CheckMate 025 study. Jpn J Clin Oncol 2017; 47(7): 639–646
https://doi.org/10.1093/jjco/hyx049 pmid: 28419248
89 SB Goldberg, SN Gettinger, A Mahajan, AC Chiang, RS Herbst, M Sznol, AJ Tsiouris, J Cohen, A Vortmeyer, L Jilaveanu, J Yu, U Hegde, S Speaker, M Madura, A Ralabate, A Rivera, E Rowen, H Gerrish, X Yao, V Chiang, HM Kluger. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol 2016; 17(7): 976–983
https://doi.org/10.1016/S1470-2045(16)30053-5 pmid: 27267608
90 FS Hodi, J Chesney, AC Pavlick, C Robert, KF Grossmann, DF McDermott, GP Linette, N Meyer, JK Giguere, SS Agarwala, M Shaheen, MS Ernstoff, DR Minor, AK Salama, MH Taylor, PA Ott, C Horak, P Gagnier, J Jiang, JD Wolchok, MA Postow. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol 2016; 17(11): 1558–1568
https://doi.org/10.1016/S1470-2045(16)30366-7 pmid: 27622997
91 TY Seiwert, B Burtness, R Mehra, J Weiss, R Berger, JP Eder, K Heath, T McClanahan, J Lunceford, C Gause, JD Cheng, LQ Chow. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 2016; 17(7): 956–965
https://doi.org/10.1016/S1470-2045(16)30066-3 pmid: 27247226
92 J Sul, GM Blumenthal, X Jiang, K He, P Keegan, R Pazdur. FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1. Oncologist 2016; 21(5): 643–650
https://doi.org/10.1634/theoncologist.2015-0498 pmid: 27026676
93 A Venniyoor. Pembrolizumab for advanced urothelial carcinoma. N Engl J Med 2017; 376(23): 2302–2303
https://doi.org/10.1056/NEJMc1704612 pmid: 28594151
94 [No authors listed.]. First anti-PD-L1 drug approved for NSCLC. Cancer Discov 2016; 6(12): OF1
https://doi.org/10.1158/2159-8290.CD-NB2016-143 pmid: 27920140
95 AV Balar, MD Galsky, JE Rosenberg, T Powles, DP Petrylak, J Bellmunt, Y Loriot, A Necchi, J Hoffman-Censits, JL Perez-Gracia, NA Dawson, MS van der Heijden, R Dreicer, S Srinivas, MM Retz, RW Joseph, A Drakaki, UN Vaishampayan, SS Sridhar, DI Quinn, I Durán, DR Shaffer, BJ Eigl, PD Grivas, EY Yu, S Li, EE Kadel 3rd, Z Boyd, R Bourgon, PS Hegde, S Mariathasan, A Thåström, OO Abidoye, GD Fine, DF; IMvigor210 Study Group. BajorinAtezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 2017; 389(10064): 67–76
https://doi.org/10.1016/S0140-6736(16)32455-2 pmid: 27939400
96 A Rittmeyer, F Barlesi, D Waterkamp, K Park, F Ciardiello, J von Pawel, SM Gadgeel, T Hida, DM Kowalski, MC Dols, DL Cortinovis, J Leach, J Polikoff, C Barrios, F Kabbinavar, OA Frontera, F De Marinis, H Turna, JS Lee, M Ballinger, M Kowanetz, P He, DS Chen, A Sandler, DR Gandara; OAK Study Group. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 2017; 389(10066): 255–265
https://doi.org/10.1016/S0140-6736(16)32517-X pmid: 27979383
97 HL Kaufman, J Russell, O Hamid, S Bhatia, P Terheyden, SP D’Angelo, KC Shih, C Lebbé, GP Linette, M Milella, I Brownell, KD Lewis, JH Lorch, K Chin, L Mahnke, A von Heydebreck, JM Cuillerot, P Nghiem. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol 2016; 17(10): 1374–1385
https://doi.org/10.1016/S1470-2045(16)30364-3 pmid: 27592805
98 AB Apolo, JR Infante, A Balmanoukian, MR Patel, D Wang, K Kelly, AE Mega, CD Britten, A Ravaud, AC Mita, H Safran, TE Stinchcombe, M Srdanov, AB Gelb, M Schlichting, K Chin, JL Gulley. Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase Ib study. J Clin Oncol 2017; 35(19): 2117–2124
https://doi.org/10.1200/JCO.2016.71.6795 pmid: 28375787
99 C Massard, MS Gordon, S Sharma, S Rafii, ZA Wainberg, J Luke, TJ Curiel, G Colon-Otero, O Hamid, RE Sanborn, PH O’Donnell, A Drakaki, W Tan, JF Kurland, MC Rebelatto, X Jin, JA Blake-Haskins, A Gupta, NH Segal. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol 2016; 34(26): 3119–3125
https://doi.org/10.1200/JCO.2016.67.9761 pmid: 27269937
100 AO Kamphorst, A Wieland, T Nasti, S Yang, R Zhang, DL Barber, BT Konieczny, CZ Daugherty, L Koenig, K Yu, GL Sica, AH Sharpe, GJ Freeman, BR Blazar, LA Turka, TK Owonikoko, RN Pillai, SS Ramalingam, K Araki, R Ahmed. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 2017; 355(6332): 1423–1427
https://doi.org/10.1126/science.aaf0683 pmid: 28280249
101 E Hui, J Cheung, J Zhu, X Su, MJ Taylor, HA Wallweber, DK Sasmal, J Huang, JM Kim, I Mellman, RD Vale. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 2017; 355(6332): 1428–1433
https://doi.org/10.1126/science.aaf1292 pmid: 28280247
102 S Koyama, EA Akbay, YY Li, GS Herter-Sprie, KA Buczkowski, WG Richards, L Gandhi, AJ Redig, SJ Rodig, H Asahina, RE Jones, MM Kulkarni, M Kuraguchi, S Palakurthi, PE Fecci, BE Johnson, PA Janne, JA Engelman, SP Gangadharan, DB Costa, GJ Freeman, R Bueno, FS Hodi, G Dranoff, KK Wong, PS Hammerman. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 2016; 7(1): 10501
https://doi.org/10.1038/ncomms10501 pmid: 26883990
[1] Yong Fan, Yan Geng, Lin Shen, Zhuoli Zhang. Advances on immune-related adverse events associated with immune checkpoint inhibitors[J]. Front. Med., 2021, 15(1): 33-42.
[2] Hongnan Mo, Binghe Xu. Progress in systemic therapy for triple-negative breast cancer[J]. Front. Med., 2021, 15(1): 1-10.
[3] Ching-Hon Pui. Precision medicine in acute lymphoblastic leukemia[J]. Front. Med., 2020, 14(6): 689-700.
[4] Qiaoshuai Lan, Shuai Xia, Qian Wang, Wei Xu, Haiyan Huang, Shibo Jiang, Lu Lu. Development of oncolytic virotherapy: from genetic modification to combination therapy[J]. Front. Med., 2020, 14(2): 160-184.
[5] Synat Kang, Yanyan Li, Yifeng Bao, Yi Li. High-affinity T cell receptors redirect cytokine-activated T cells (CAT) to kill cancer cells[J]. Front. Med., 2019, 13(1): 69-82.
[6] Zhao Zhang, Jun Jiang, Xiaodong Wu, Mengyao Zhang, Dan Luo, Renyu Zhang, Shiyou Li, Youwen He, Huijie Bian, Zhinan Chen. Chimeric antigen receptor T cell targeting EGFRvIII for metastatic lung cancer therapy[J]. Front. Med., 2019, 13(1): 57-68.
[7] Min Zhang, Jingwen Yang, Wenjing Hua, Zhong Li, Zenghui Xu, Qijun Qian. Monitoring checkpoint inhibitors: predictive biomarkers in immunotherapy[J]. Front. Med., 2019, 13(1): 32-44.
[8] Renyu Zhang, Zhao Zhang, Zekun Liu, Ding Wei, Xiaodong Wu, Huijie Bian, Zhinan Chen. Adoptive cell transfer therapy for hepatocellular carcinoma[J]. Front. Med., 2019, 13(1): 3-11.
[9] Chia-Wei Li, Yun-Ju Lai, Jennifer L. Hsu, Mien-Chie Hung. Activation of phagocytosis by immune checkpoint blockade[J]. Front. Med., 2018, 12(4): 473-480.
[10] Fang Fang, Weihua Xiao, Zhigang Tian. Challenges of NK cell-based immunotherapy in the new era[J]. Front. Med., 2018, 12(4): 440-450.
[11] Yingyan Yu. Molecular classification and precision therapy of cancer: immune checkpoint inhibitors[J]. Front. Med., 2018, 12(2): 229-235.
[12] Min Yu, Zonghai Li. Natural killer cells in hepatocellular carcinoma: current status and perspectives for future immunotherapeutic approaches[J]. Front. Med., 2017, 11(4): 509-521.
[13] Tian Wang, Yan Li, Abidan Tuerhanjiang, Wenwen Wang, Zhangying Wu, Ming Yuan, Shixuan Wang. Correlation of Twist upregulation and senescence bypass during the progression and metastasis of cervical cancer[J]. Front Med, 2014, 8(1): 106-112.
[14] Qiang Gao, Yinghong Shi, Xiaoying Wang, Jian Zhou, Shuangjian Qiu, Jia Fan. Translational medicine in hepatocellular carcinoma[J]. Front Med, 2012, 6(2): 122-133.
[15] Min Cheng, Jian Zhang, Wen Jiang, Yongyan Chen, Zhigang Tian. Natural killer cell lines in tumor immunotherapy[J]. Front Med, 2012, 6(1): 56-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed