|
|
PD-1/PD-L1 blockade in cervical cancer: current studies and perspectives |
Yumeng Wang1, Guiling Li1,2( ) |
1. Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Fudan University, Shanghai 200011,China 2. Department of Integration of Western and Traditional Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011, China |
|
|
Abstract Cervical cancer (CC) is the fourth most commonly diagnosed female malignancy and a leading cause of cancer-related mortality worldwide, especially in developing countries. Despite the use of advanced screening and preventive vaccines, more than half of all CC cases are diagnosed at advanced stages, when therapeutic options are extremely limited and side effects are severe. Given these circumstances, new and effective treatments are needed. In recent years, exciting progress has been made in immunotherapies, including the rapid development of immune checkpoint inhibitors. Checkpoint blockades targeting the PD-1/PD-L1 axis have achieved effective clinical responses with acceptable toxicity by suppressing tumor progression and improving survival in several tumor types. In this review, we summarize recent advances in our understanding of the PD-1/PD-L1 signaling pathway, including the expression patterns of PD-1/PD-L1 and potential PD-1/PD-L1-related therapeutic strategies for CC.
|
Keywords
PD-1
PD-L1
immune checkpoint blockade antibody
immunotherapy
cervical cancer
|
Corresponding Author(s):
Guiling Li
|
Just Accepted Date: 28 January 2019
Online First Date: 04 March 2019
Issue Date: 02 August 2019
|
|
1 |
JB Swann, MJ Smyth. Immune surveillance of tumors. J Clin Invest 2007; 117(5): 1137–1146
https://doi.org/10.1172/JCI31405
pmid: 17476343
|
2 |
GP Dunn, LJ Old, RD Schreiber. The three Es of cancer immunoediting. Annu Rev Immunol 2004; 22(1): 329–360
https://doi.org/10.1146/annurev.immunol.22.012703.104803
pmid: 15032581
|
3 |
TJ Stewart, SI Abrams. How tumours escape mass destruction. Oncogene 2008; 27(45): 5894–5903
https://doi.org/10.1038/onc.2008.268
pmid: 18836470
|
4 |
L Chen, DB Flies. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol 2013; 13(4): 227–242
https://doi.org/10.1038/nri3405
pmid: 23470321
|
5 |
S Chikuma. Basics of PD-1 in self-tolerance, infection, and cancer immunity. Int J Clin Oncol 2016; 21(3): 448–455
https://doi.org/10.1007/s10147-016-0958-0
pmid: 26864303
|
6 |
Y Ishida, Y Agata, K Shibahara, T Honjo. Induced expression of PD-1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. EMBO J 1992; 11(11): 3887–3895
https://doi.org/10.1002/j.1460-2075.1992.tb05481.x
pmid: 1396582
|
7 |
Y Agata, A Kawasaki, H Nishimura, Y Ishida, T Tsubata, H Yagita, T Honjo. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 1996; 8(5): 765–772
https://doi.org/10.1093/intimm/8.5.765
pmid: 8671665
|
8 |
ME Keir, MJ Butte, GJ Freeman, AH Sharpe. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol 2008; 26(1): 677–704
https://doi.org/10.1146/annurev.immunol.26.021607.090331
pmid: 18173375
|
9 |
BT Fife, KE Pauken, TN Eagar, T Obu, J Wu, Q Tang, M Azuma, MF Krummel, JA Bluestone. Interactions between PD-1 and PD-L1 promote tolerance by blocking the TCR-induced stop signal. Nat Immunol 2009; 10(11): 1185–1192
https://doi.org/10.1038/ni.1790
pmid: 19783989
|
10 |
ME Keir, LM Francisco, AH Sharpe. PD-1 and its ligands in T-cell immunity. Curr Opin Immunol 2007; 19(3): 309–314
https://doi.org/10.1016/j.coi.2007.04.012
pmid: 17433872
|
11 |
M Ghiotto, L Gauthier, N Serriari, S Pastor, A Truneh, JA Nunès, D Olive. PD-L1 and PD-L2 differ in their molecular mechanisms of interaction with PD-1. Int Immunol 2010; 22(8): 651–660
https://doi.org/10.1093/intimm/dxq049
pmid: 20587542
|
12 |
X Wang, F Teng, L Kong, J Yu. PD-L1 expression in human cancers and its association with clinical outcomes. OncoTargets Ther 2016; 9: 5023–5039
https://doi.org/10.2147/OTT.S105862
pmid: 27574444
|
13 |
F Tsushima, S Yao, T Shin, A Flies, S Flies, H Xu, K Tamada, DM Pardoll, L Chen. Interaction between B7-H1 and PD-1 determines initiation and reversal of T-cell anergy. Blood 2007; 110(1): 180–185
https://doi.org/10.1182/blood-2006-11-060087
pmid: 17289811
|
14 |
H Dong, G Zhu, K Tamada, L Chen. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med 1999; 5(12): 1365–1369
https://doi.org/10.1038/70932
pmid: 10581077
|
15 |
H Dong, SE Strome, DR Salomao, H Tamura, F Hirano, DB Flies, PC Roche, J Lu, G Zhu, K Tamada, VA Lennon, E Celis, L Chen. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 2002; 8(8): 793–800
https://doi.org/10.1038/nm730
pmid: 12091876
|
16 |
DL Barber, EJ Wherry, D Masopust, B Zhu, JP Allison, AH Sharpe, GJ Freeman, R Ahmed. Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006; 439(7077): 682–687
https://doi.org/10.1038/nature04444
pmid: 16382236
|
17 |
S Amarnath, CW Mangus, JC Wang, F Wei, A He, V Kapoor, JE Foley, PR Massey, TC Felizardo, JL Riley, BL Levine, CH June, JA Medin, DH Fowler. The PDL1-PD1 axis converts human TH1 cells into regulatory T cells. Sci Transl Med 2011; 3(111): 111ra120
https://doi.org/10.1126/scitranslmed.3003130
pmid: 22133721
|
18 |
T Azuma, S Yao, G Zhu, AS Flies, SJ Flies, L Chen. B7-H1 is a ubiquitous antiapoptotic receptor on cancer cells. Blood 2008; 111(7): 3635–3643
https://doi.org/10.1182/blood-2007-11-123141
pmid: 18223165
|
19 |
P Wu, D Wu, L Li, Y Chai, J Huang. PD-L1 and survival in solid tumors: a meta-analysis. PLoS One 2015; 10(6): e0131403
https://doi.org/10.1371/journal.pone.0131403
pmid: 26114883
|
20 |
P Sharma, MK Callahan, P Bono, J Kim, P Spiliopoulou, E Calvo, RN Pillai, PA Ott, F de Braud, M Morse, DT Le, D Jaeger, E Chan, C Harbison, CS Lin, M Tschaika, A Azrilevich, JE Rosenberg. Nivolumab monotherapy in recurrent metastatic urothelial carcinoma (CheckMate 032): a multicentre, open-label, two-stage, multi-arm, phase 1/2 trial. Lancet Oncol 2016; 17(11): 1590–1598
https://doi.org/10.1016/S1470-2045(16)30496-X
pmid: 27733243
|
21 |
C Robert, GV Long, B Brady, C Dutriaux, M Maio, L Mortier, JC Hassel, P Rutkowski, C McNeil, E Kalinka-Warzocha, KJ Savage, MM Hernberg, C Lebbé, J Charles, C Mihalcioiu, V Chiarion-Sileni, C Mauch, F Cognetti, A Arance, H Schmidt, D Schadendorf, H Gogas, L Lundgren-Eriksson, C Horak, B Sharkey, IM Waxman, V Atkinson, PA Ascierto. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 2015; 372(4): 320–330
https://doi.org/10.1056/NEJMoa1412082
pmid: 25399552
|
22 |
CJ Langer, SM Gadgeel, H Borghaei, VA Papadimitrakopoulou, A Patnaik, SF Powell, RD Gentzler, RG Martins, JP Stevenson, SI Jalal, A Panwalkar, JC Yang, M Gubens, LV Sequist, MM Awad, J Fiore, Y Ge, H Raftopoulos, L; KEYNOTE-021 investigators. GandhiCarboplatin and pemetrexed with or without pembrolizumab for advanced, non-squamous non-small-cell lung cancer: a randomised, phase 2 cohort of the open-label KEYNOTE-021 study. Lancet Oncol 2016; 17(11): 1497–1508
https://doi.org/10.1016/S1470-2045(16)30498-3
pmid: 27745820
|
23 |
LA Torre, F Bray, RL Siegel, J Ferlay, J Lortet-Tieulent, A Jemal. Global cancer statistics, 2012. CA Cancer J Clin 2015; 65(2): 87–108
https://doi.org/10.3322/caac.21262
pmid: 25651787
|
24 |
LA Torre, RL Siegel, EM Ward, A Jemal. Global cancer incidence and mortality rates and trends—an update. Cancer Epidemiol Biomarkers Prev 2016; 25(1): 16–27
https://doi.org/10.1158/1055-9965.EPI-15-0578
pmid: 26667886
|
25 |
KS Pfaendler, KS Tewari. Changing paradigms in the systemic treatment of advanced cervical cancer. Am J Obstet Gynecol 2016; 214(1): 22–30
https://doi.org/10.1016/j.ajog.2015.07.022
pmid: 26212178
|
26 |
D Cibula, NR Abu-Rustum, P Benedetti-Panici, C Köhler, F Raspagliesi, D Querleu, CP Morrow. New classification system of radical hysterectomy: emphasis on a three-dimensional anatomic template for parametrial resection. Gynecol Oncol 2011; 122(2): 264–268
https://doi.org/10.1016/j.ygyno.2011.04.029
pmid: 21592548
|
27 |
PG Rose. Concurrent chemoradiation for locally advanced carcinoma of the cervix: where are we in 2006? Ann Oncol 2006; 17(Suppl 10): x224–x229
https://doi.org/10.1093/annonc/mdl264
pmid: 17018728
|
28 |
RN Eskander, KS Tewari. Chemotherapy in the treatment of metastatic, persistent, and recurrent cervical cancer. Curr Opin Obstet Gynecol 2014; 26(4): 314–321
https://doi.org/10.1097/GCO.0000000000000042
pmid: 24979076
|
29 |
W Ma, BM Gilligan, J Yuan, T Li. Current status and perspectives in translational biomarker research for PD-1/PD-L1 immune checkpoint blockade therapy. J Hematol Oncol 2016; 9(1): 47
https://doi.org/10.1186/s13045-016-0277-y
pmid: 27234522
|
30 |
W Zou, JD Wolchok, L Chen. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med 2016; 8(328): 328rv4
https://doi.org/10.1126/scitranslmed.aad7118
pmid: 26936508
|
31 |
J Hamanishi, M Mandai, N Matsumura, K Abiko, T Baba, I Konishi. PD-1/PD-L1 blockade in cancer treatment: perspectives and issues. Int J Clin Oncol 2016; 21(3): 462–473
https://doi.org/10.1007/s10147-016-0959-z
pmid: 26899259
|
32 |
Z Chen, N Pang, R Du, Y Zhu, L Fan, D Cai, Y Ding, J Ding. Elevated expression of programmed death-1 and programmed death ligand-1 negatively regulates immune response against cervical cancer cells. Mediators Inflamm 2016; 2016: 6891482
https://doi.org/10.1155/2016/6891482
pmid: 27721577
|
33 |
EK Enwere, EN Kornaga, M Dean, TA Koulis, T Phan, M Kalantarian, M Köbel, P Ghatage, AM Magliocco, SP Lees-Miller, CM Doll. Expression of PD-L1 and presence of CD8-positive T cells in pre-treatment specimens of locally advanced cervical cancer. Mod Pathol 2017; 30(4): 577–586
https://doi.org/10.1038/modpathol.2016.221
pmid: 28059093
|
34 |
AM Heeren, BD Koster, S Samuels, DM Ferns, D Chondronasiou, GG Kenter, ES Jordanova, TD de Gruijl. High and interrelated rates of PD-L1+CD14+ antigen-presenting cells and regulatory T cells mark the microenvironment of metastatic lymph nodes from patients with cervical cancer. Cancer Immunol Res 2015; 3(1): 48–58
https://doi.org/10.1158/2326-6066.CIR-14-0149
pmid: 25361854
|
35 |
AM Heeren, S Punt, MC Bleeker, KN Gaarenstroom, J van der Velden, GG Kenter, TD de Gruijl, ES Jordanova. Prognostic effect of different PD-L1 expression patterns in squamous cell carcinoma and adenocarcinoma of the cervix. Mod Pathol 2016; 29(7): 753–763
https://doi.org/10.1038/modpathol.2016.64
pmid: 27056074
|
36 |
BE Howitt, HH Sun, MGM Roemer, A Kelley, B Chapuy, E Aviki, C Pak, C Connelly, E Gjini, Y Shi, L Lee, A Viswanathan, N Horowitz, D Neuberg, CP Crum, NL Lindeman, F Kuo, AH Ligon, GJ Freeman, FS Hodi, MA Shipp, SJ Rodig. Genetic basis for PD-L1 Expression in squamous cell carcinomas of the cervix and vulva. JAMA Oncol 2016; 2(4): 518–522
https://doi.org/10.1001/jamaoncol.2015.6326
pmid: 26913631
|
37 |
R Karim, ES Jordanova, SJ Piersma, GG Kenter, L Chen, JM Boer, CJM Melief, SH van der Burg. Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T-cell infiltration and survival of patients with cervical carcinoma. Clin Cancer Res 2009; 15(20): 6341–6347
https://doi.org/10.1158/1078-0432.CCR-09-1652
pmid: 19825956
|
38 |
C Liu, J Lu, H Tian, W Du, L Zhao, J Feng, D Yuan, Z Li. Increased expression of PDL1 by the human papillomavirus 16 E7 oncoprotein inhibits anticancer immunity. Mol Med Rep 2017; 15(3): 1063–1070
https://doi.org/10.3892/mmr.2017.6102
pmid: 28075442
|
39 |
L Mezache, B Paniccia, A Nyinawabera, GJ Nuovo. Enhanced expression of PD L1 in cervical intraepithelial neoplasia and cervical cancers. Mod Pathol 2015; 28(12): 1594–1602
https://doi.org/10.1038/modpathol.2015.108
pmid: 26403783
|
40 |
OL Reddy, PI Shintaku, NA Moatamed. Programmed death-ligand 1 (PD-L1) is expressed in a significant number of the uterine cervical carcinomas. Diagn Pathol 2017; 12(1): 45
https://doi.org/10.1186/s13000-017-0631-6
pmid: 28623908
|
41 |
DT Rieke, S Ochsenreither, K Klinghammer, TY Seiwert, F Klauschen, I Tinhofer, U Keilholz. Methylation of RAD51B, XRCC3 and other homologous recombination genes is associated with expression of immune checkpoints and an inflammatory signature in squamous cell carcinoma of the head and neck, lung and cervix. Oncotarget 2016; 7(46): 75379–75393
https://doi.org/10.18632/oncotarget.12211
pmid: 27683114
|
42 |
KL Ring, AV Yemelyanova, PT Soliman, MM Frumovitz, AA Jazaeri. Potential immunotherapy targets in recurrent cervical cancer. Gynecol Oncol 2017; 145(3): 462–468
https://doi.org/10.1016/j.ygyno.2017.02.027
pmid: 28233576
|
43 |
W Yang, Y Song, YL Lu, JZ Sun, HW Wang. Increased expression of programmed death (PD)-1 and its ligand PD-L1 correlates with impaired cell-mediated immunity in high-risk human papillomavirus-related cervical intraepithelial neoplasia. Immunology 2013; 139(4):513–522 PMID: 23521696
https://doi.org/10.1111/imm.12101
|
44 |
H Chang, JH Hong, JK Lee, HW Cho, YT Ouh, KJ Min, KA So. Programmed death-1 (PD-1) expression in cervical intraepithelial neoplasia and its relationship with recurrence after conization. J Gynecol Oncol 2018; 29(3): e27
https://doi.org/10.3802/jgo.2018.29.e27
pmid: 29400020
|
45 |
K Kataoka, Y Shiraishi, Y Takeda, S Sakata, M Matsumoto, S Nagano, T Maeda, Y Nagata, A Kitanaka, S Mizuno, H Tanaka, K Chiba, S Ito, Y Watatani, N Kakiuchi, H Suzuki, T Yoshizato, K Yoshida, M Sanada, H Itonaga, Y Imaizumi, Y Totoki, W Munakata, H Nakamura, N Hama, K Shide, Y Kubuki, T Hidaka, T Kameda, K Masuda, N Minato, K Kashiwase, K Izutsu, A Takaori-Kondo, Y Miyazaki, S Takahashi, T Shibata, H Kawamoto, Y Akatsuka, K Shimoda, K Takeuchi, T Seya, S Miyano, S Ogawa. Aberrant PD-L1 expression through 3′-UTR disruption in multiple cancers. Nature 2016; 534(7607): 402–406
https://doi.org/10.1038/nature18294
pmid: 27281199
|
46 |
Y Meng, H Liang, J Hu, S Liu, X Hao, MSK Wong, X Li, L Hu. PD-L1 expression correlates with tumor infiltrating lymphocytes and response to neoadjuvant chemotherapy in cervical cancer. J Cancer 2018; 9(16): 2938–2945
https://doi.org/10.7150/jca.22532
pmid: 30123362
|
47 |
W Yang, YP Lu, YZ Yang, JR Kang, YD Jin, HW Wang. Expressions of programmed death (PD)-1 and PD-1 ligand (PD-L1) in cervical intraepithelial neoplasia and cervical squamous cell carcinomas are of prognostic value and associated with human papillomavirus status. J Obstet Gynaecol Res 2017; 43(10): 1602–1612
https://doi.org/10.1111/jog.13411
pmid: 28833798
|
48 |
F Yang-Chun, C Zhen-Zhen, H Yan-Chun, M Xiu-Min. Association between PD-L1 and HPV status and the prognostic value for HPV treatment in premalignant cervical lesion patients. Medicine (Baltimore) 2017; 96(25): e7270
https://doi.org/10.1097/MD.0000000000007270
pmid: 28640134
|
49 |
S Gandini, D Massi, M Mandalà. PD-L1 expression in cancer patients receiving anti PD-1/PD-L1 antibodies: a systematic review and meta-analysis. Crit Rev Oncol Hematol 2016; 100: 88–98
https://doi.org/10.1016/j.critrevonc.2016.02.001
pmid: 26895815
|
50 |
KM Kerr, MS Tsao, AG Nicholson, Y Yatabe, II Wistuba, , FR Hirsch; IASLC Pathology Committee. Programmed death-ligand 1 immunohistochemistry in lung cancer: in what state is this art? J Thorac Oncol 2015; 10(7): 985–989 PMID: 26134220
https://doi.org/10.1097/JTO.0000000000000526
|
51 |
SP Patel, R Kurzrock. PD-L1 expression as a predictive biomarker in cancer immunotherapy. Mol Cancer Ther 2015; 14(4): 847–856
https://doi.org/10.1158/1535-7163.MCT-14-0983
pmid: 25695955
|
52 |
EB Garon, NA Rizvi, R Hui, N Leighl, AS Balmanoukian, JP Eder, A Patnaik, C Aggarwal, M Gubens, L Horn, E Carcereny, MJ Ahn, E Felip, JS Lee, MD Hellmann, O Hamid, JW Goldman, JC Soria, M Dolled-Filhart, RZ Rutledge, J Zhang, JK Lunceford, R Rangwala, GM Lubiniecki, C Roach, K Emancipator, L Gandhi; KEYNOTE-001 Investigators. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med 2015; 372(21): 2018–2028
https://doi.org/10.1056/NEJMoa1501824
pmid: 25891174
|
53 |
RS Herbst, JC Soria, M Kowanetz, GD Fine, O Hamid, MS Gordon, JA Sosman, DF McDermott, JD Powderly, SN Gettinger, HE Kohrt, L Horn, DP Lawrence, S Rost, M Leabman, Y Xiao, A Mokatrin, H Koeppen, PS Hegde, I Mellman, DS Chen, FS Hodi. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature 2014; 515(7528): 563–567
https://doi.org/10.1038/nature14011
pmid: 25428504
|
54 |
T Powles, JP Eder, GD Fine, FS Braiteh, Y Loriot, C Cruz, J Bellmunt, HA Burris, DP Petrylak, SL Teng, X Shen, Z Boyd, PS Hegde, DS Chen, NJ Vogelzang. MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature 2014; 515(7528): 558–562
https://doi.org/10.1038/nature13904
pmid: 25428503
|
55 |
SL Topalian, FS Hodi, JR Brahmer, SN Gettinger, DC Smith, DF McDermott, JD Powderly, RD Carvajal, JA Sosman, MB Atkins, PD Leming, DR Spigel, SJ Antonia, L Horn, CG Drake, DM Pardoll, L Chen, WH Sharfman, RA Anders, JM Taube, TL McMiller, H Xu, AJ Korman, M Jure-Kunkel, S Agrawal, D McDonald, GD Kollia, A Gupta, JM Wigginton, M Sznol. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 2012; 366(26): 2443–2454
https://doi.org/10.1056/NEJMoa1200690
pmid: 22658127
|
56 |
V Catenacci Daniel, Z Wainberg, S Fuchs Charles, M Garrido, YJ Bang, K Muro, M Savage, J Wang, M Koshiji, P Dalal Rita, YK Kang. LBA-009KEYNOTE-059 cohort 3: safety and efficacy of pembrolizumab monotherapy for first-line treatment of patients (pts) with PD-L1-positive advanced gastric/gastroesophageal (G/GEJ) cancer. Ann Oncol 2017; 28(suppl 3): mdx302.008 PMID:30052791
https://doi.org/DOI:10.1093/annonc/mdx302.008
|
57 |
Y Zhang, S Kang, J Shen, J He, L Jiang, W Wang, Z Guo, G Peng, G Chen, J He, W Liang. Prognostic significance of programmed cell death 1 (PD-1) or PD-1 ligand 1 (PD-L1) expression in epithelial-originated cancer: a meta-analysis. Medicine (Baltimore) 2015; 94(6): e515
https://doi.org/10.1097/MD.0000000000000515
pmid: 25674748
|
58 |
Y Jin, J Zhao, X Shi, X Yu. Prognostic value of programed death ligand 1 in patients with solid tumors: a meta-analysis. J Cancer Res Ther 2015; 11(5 Suppl 1): C38–C43
https://doi.org/10.4103/0973-1482.163837
pmid: 26323922
|
59 |
C Badoual, S Hans, N Merillon, C Van Ryswick, P Ravel, N Benhamouda, E Levionnois, M Nizard, A Si-Mohamed, N Besnier, A Gey, R Rotem-Yehudar, H Pere, T Tran, CL Guerin, A Chauvat, E Dransart, C Alanio, S Albert, B Barry, F Sandoval, F Quintin-Colonna, P Bruneval, WH Fridman, FM Lemoine, S Oudard, L Johannes, D Olive, D Brasnu, E Tartour. PD-1-expressing tumor-infiltrating T cells are a favorable prognostic biomarker in HPV-associated head and neck cancer. Cancer Res 2013; 73(1): 128–138
https://doi.org/10.1158/0008-5472.CAN-12-2606
pmid: 23135914
|
60 |
AI Daud, K Loo, ML Pauli, R Sanchez-Rodriguez, PM Sandoval, K Taravati, K Tsai, A Nosrati, L Nardo, MD Alvarado, AP Algazi, MH Pampaloni, IV Lobach, J Hwang, RH Pierce, IK Gratz, MF Krummel, MD Rosenblum. Tumor immune profiling predicts response to anti-PD-1 therapy in human melanoma. J Clin Invest 2016; 126(9): 3447–3452
https://doi.org/10.1172/JCI87324
pmid: 27525433
|
61 |
D Song, H Li, H Li, J Dai. Effect of human papillomavirus infection on the immune system and its role in the course of cervical cancer. Oncol Lett 2015; 10(2): 600–606
https://doi.org/10.3892/ol.2015.3295
pmid: 26622540
|
62 |
P Conesa-Zamora. Immune responses against virus and tumor in cervical carcinogenesis: treatment strategies for avoiding the HPV-induced immune escape. Gynecol Oncol 2013; 131(2): 480–488
https://doi.org/10.1016/j.ygyno.2013.08.025
pmid: 23994536
|
63 |
JC Dudley, MT Lin, DT Le, JR Eshleman. Microsatellite Instability as a Biomarker for PD-1 Blockade. Clin Cancer Res 2016; 22(4): 813–820
https://doi.org/10.1158/1078-0432.CCR-15-1678
pmid: 26880610
|
64 |
DT Le, JN Uram, H Wang, BR Bartlett, H Kemberling, AD Eyring, AD Skora, BS Luber, NS Azad, D Laheru, B Biedrzycki, RC Donehower, A Zaheer, GA Fisher, TS Crocenzi, JJ Lee, SM Duffy, RM Goldberg, A de la Chapelle, M Koshiji, F Bhaijee, T Huebner, RH Hruban, LD Wood, N Cuka, DM Pardoll, N Papadopoulos, KW Kinzler, S Zhou, TC Cornish, JM Taube, RA Anders, JR Eshleman, B Vogelstein, LA Diaz Jr. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 2015; 372(26): 2509–2520
https://doi.org/10.1056/NEJMoa1500596
pmid: 26028255
|
65 |
W Roh, PL Chen, A Reuben, CN Spencer, PA Prieto, JP Miller, V Gopalakrishnan, F Wang, ZA Cooper, SM Reddy, C Gumbs, L Little, Q Chang, WS Chen, K Wani, MP De Macedo, E Chen, JL Austin-Breneman, H Jiang, J Roszik, MT Tetzlaff, MA Davies, JE Gershenwald, H Tawbi, AJ Lazar, P Hwu, WJ Hwu, A Diab, IC Glitza, SP Patel, SE Woodman, RN Amaria, VG Prieto, J Hu, P Sharma, JP Allison, L Chin, J Zhang, JA Wargo, PA Futreal. Integrated molecular analysis of tumor biopsies on sequential CTLA-4 and PD-1 blockade reveals markers of response and resistance. Sci Transl Med 2017; 9(379): eaah3560
https://doi.org/10.1126/scitranslmed.aah3560
pmid: 28251903
|
66 |
H zur Hausen. Papillomaviruses and cancer: from basic studies to clinical application. Nat Rev Cancer 2002; 2(5): 342–350
https://doi.org/10.1038/nrc798
pmid: 12044010
|
67 |
FX Bosch, A Lorincz, N Muñoz, CJ Meijer, KV Shah. The causal relation between human papillomavirus and cervical cancer. J Clin Pathol 2002; 55(4): 244–265
https://doi.org/10.1136/jcp.55.4.244
pmid: 11919208
|
68 |
N Egawa, K Egawa, H Griffin, J Doorbar. Human papillomaviruses; epithelial tropisms, and the development of neoplasia. Viruses 2015; 7(7): 3863–3890
https://doi.org/10.3390/v7072802
pmid: 26193301
|
69 |
M Tommasino. The human papillomavirus family and its role in carcinogenesis. Semin Cancer Biol 2014; 26: 13–21
https://doi.org/10.1016/j.semcancer.2013.11.002
pmid: 24316445
|
70 |
J Doorbar, N Egawa, H Griffin, C Kranjec, I Murakami. Human papillomavirus molecular biology and disease association. Rev Med Virol 2015; 25(Suppl 1): 2–23
https://doi.org/10.1002/rmv.1822
pmid: 25752814
|
71 |
YJ Choi, JS Park. Clinical significance of human papillomavirus genotyping. J Gynecol Oncol 2016; 27(2): e21
https://doi.org/10.3802/jgo.2016.27.e21
pmid: 26768784
|
72 |
M Narisawa-Saito, T Kiyono. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci 2007; 98(10): 1505–1511
https://doi.org/10.1111/j.1349-7006.2007.00546.x
pmid: 17645777
|
73 |
RC Kines, CD Thompson, DR Lowy, JT Schiller, PM Day. The initial steps leading to papillomavirus infection occur on the basement membrane prior to cell surface binding. Proc Natl Acad Sci USA 2009; 106(48): 20458–20463
https://doi.org/10.1073/pnas.0908502106
pmid: 19920181
|
74 |
SF Jabbar, L Abrams, A Glick, PF Lambert. Persistence of high-grade cervical dysplasia and cervical cancer requires the continuous expression of the human papillomavirus type 16 E7 oncogene. Cancer Res 2009; 69(10): 4407–4414
https://doi.org/10.1158/0008-5472.CAN-09-0023
pmid: 19435895
|
75 |
H Romanczuk, PM Howley. Disruption of either the E1 or the E2 regulatory gene of human papillomavirus type 16 increases viral immortalization capacity. Proc Natl Acad Sci USA 1992; 89(7): 3159–3163
https://doi.org/10.1073/pnas.89.7.3159
pmid: 1313584
|
76 |
CP Crum, G Nuovo, D Friedman, SJ Silverstein. Accumulation of RNA homologous to human papillomavirus type 16 open reading frames in genital precancers. J Virol 1988; 62(1): 84–90
pmid: 2824859
|
77 |
AJ van den Brule, FV Cromme, PJ Snijders, L Smit, CB Oudejans, JP Baak, CJ Meijer, JM Walboomers. Nonradioactive RNA in situ hybridization detection of human papillomavirus 16-E7 transcripts in squamous cell carcinomas of the uterine cervix using confocal laser scan microscopy. Am J Pathol 1991; 139(5): 1037–1045
pmid: 1719818
|
78 |
S Krishna, P Ulrich, E Wilson, F Parikh, P Narang, S Yang, AK Read, S Kim-Schulze, JG Park, M Posner, MA Wilson Sayres, A Sikora, KS Anderson. Human papilloma virus specific immunogenicity and dysfunction of CD8+ T cells in head and neck cancer. Cancer Res 2018; 78(21): 6159–6170
https://doi.org/10.1158/0008-5472.CAN-18-0163
pmid: 30154146
|
79 |
RJ Greenwald, GJ Freeman, AH Sharpe. The B7 family revisited. Annu Rev Immunol 2005; 23(1): 515–548
https://doi.org/10.1146/annurev.immunol.23.021704.115611
pmid: 15771580
|
80 |
RL Ferris, G Blumenschein Jr, J Fayette, J Guigay, AD Colevas, L Licitra, K Harrington, S Kasper, EE Vokes, C Even, F Worden, NF Saba, LC Iglesias Docampo, R Haddad, T Rordorf, N Kiyota, M Tahara, M Monga, M Lynch, WJ Geese, J Kopit, JW Shaw, ML Gillison. Nivolumab for recurrent squamous-cell carcinoma of the head and neck. N Engl J Med 2016; 375(19): 1856–1867
https://doi.org/10.1056/NEJMoa1602252
pmid: 27718784
|
81 |
Cancer Genome Atlas Research Network; Albert Einstein College of Medicine; Analytical Biological Services; Barretos Cancer Hospital; Baylor College of Medicine; Beckman Research Institute of City of Hope; Buck Institute for Research on Aging; Canada's Michael Smith Genome Sciences Centre; Harvard Medical School; Helen F. Graham Cancer Center &Research Institute at Christiana Care Health Services; HudsonAlpha Institute for Biotechnology; ILSbio, LLC; Indiana University School of Medicine; Institute of Human Virology; Institute for Systems Biology; International Genomics Consortium; Leidos Biomedical; Massachusetts General Hospital; McDonnell Genome Institute at Washington University; Medical College of Wisconsin; Medical University of South Carolina; Memorial Sloan Kettering Cancer Center; Montefiore Medical Center; NantOmics; National Cancer Institute; National Hospital, Abuja, Nigeria; National Human Genome Research Institute; National Institute of Environmental Health Sciences; National Institute on Deafness &Other Communication Disorders; Ontario Tumour Bank, London Health Sciences Centre; Ontario Tumour Bank, Ontario Institute for Cancer Research; Ontario Tumour Bank, The Ottawa Hospital; Oregon Health &Science University; Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center; SRA International; St Joseph's Candler Health System; Eli &Edythe L. Broad Institute of Massachusetts Institute of Technology &Harvard University; Research Institute at Nationwide Children's Hospital; Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins University; University of Bergen; University of Texas MD Anderson Cancer Center; University of Abuja Teaching Hospital; University of Alabama at Birmingham; University of California, Irvine; University of California Santa Cruz; University of Kansas Medical Center; University of Lausanne; University of New Mexico Health Sciences Center; University of North Carolina at Chapel Hill; University of Oklahoma Health Sciences Center; University of Pittsburgh; University of São Paulo, Ribeir ão Preto Medical School; University of Southern California; University of Washington; University of Wisconsin School of Medicine &Public Health; Van Andel Research Institute; Washington University in St Louis.. Integrated genomic and molecular characterization of cervical cancer. Nature 2017; 543(7645): 378–384 PMID: 28112728
https://doi.org/DOI: 10.1038/nature21386
|
82 |
JR Brahmer, CG Drake, I Wollner, JD Powderly, J Picus, WH Sharfman, E Stankevich, A Pons, TM Salay, TL McMiller, MM Gilson, C Wang, M Selby, JM Taube, R Anders, L Chen, AJ Korman, DM Pardoll, I Lowy, SL Topalian. Phase I study of single-agent anti-programmed death-1 (MDX-1106) in refractory solid tumors: safety, clinical activity, pharmacodynamics, and immunologic correlates. J Clin Oncol 2010; 28(19): 3167–3175
https://doi.org/10.1200/JCO.2009.26.7609
pmid: 20516446
|
83 |
H Borghaei, L Paz-Ares, L Horn, DR Spigel, M Steins, NE Ready, LQ Chow, EE Vokes, E Felip, E Holgado, F Barlesi, M Kohlhäufl, O Arrieta, MA Burgio, J Fayette, H Lena, E Poddubskaya, DE Gerber, SN Gettinger, CM Rudin, N Rizvi, L Crinò, GR Blumenschein Jr, SJ Antonia, C Dorange, CT Harbison, F Graf Finckenstein, JR Brahmer. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med 2015; 373(17): 1627–1639
https://doi.org/10.1056/NEJMoa1507643
pmid: 26412456
|
84 |
FS Hodi, J Chesney, AC Pavlick, C Robert, KF Grossmann, DF McDermott, GP Linette, N Meyer, JK Giguere, SS Agarwala, M Shaheen, MS Ernstoff, DR Minor, AK Salama, MH Taylor, PA Ott, C Horak, P Gagnier, J Jiang, JD Wolchok, MA Postow. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol 2016; 17(11): 1558–1568
https://doi.org/10.1016/S1470-2045(16)30366-7
pmid: 27622997
|
85 |
YL Kasamon, RA de Claro, Y Wang, YL Shen, AT Farrell, R Pazdur. FDA approval summary: nivolumab for the treatment of relapsed or progressive classical Hodgkin lymphoma. Oncologist 2017; 22(5): 585–591
https://doi.org/10.1634/theoncologist.2017-0004
pmid: 28438889
|
86 |
MJ Overman, R McDermott, JL Leach, S Lonardi, HJ Lenz, MA Morse, J Desai, A Hill, M Axelson, RA Moss, MV Goldberg, ZA Cao, JM Ledeine, GA Maglinte, S Kopetz, T André. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol 2017; 18(9): 1182–1191
https://doi.org/10.1016/S1470-2045(17)30422-9
pmid: 28734759
|
87 |
H Rexer, CH Ohlmann, J, AUO Gschwend. First line therapy for locally advanced or metastatic urothelial cancer: a randomized double blind phase III multicenter study on adjuvant nivolumab therapy versus placebo in patients with invasive high-risk urothelial cancer (CheckMate 274)-AB 58/17 of the AUO. Urologe A 2017; 56(10): 1331–1332 (in German)
https://doi.org/10.1007/s00120-017-0480-7
pmid: 28779222
|
88 |
Y Tomita, S Fukasawa, N Shinohara, H Kitamura, M Oya, M Eto, K Tanabe, G Kimura, J Yonese, M Yao, RJ Motzer, H Uemura, MB McHenry, E Berghorn, S Ozono. Nivolumab versus everolimus in advanced renal cell carcinoma: Japanese subgroup analysis from the CheckMate 025 study. Jpn J Clin Oncol 2017; 47(7): 639–646
https://doi.org/10.1093/jjco/hyx049
pmid: 28419248
|
89 |
SB Goldberg, SN Gettinger, A Mahajan, AC Chiang, RS Herbst, M Sznol, AJ Tsiouris, J Cohen, A Vortmeyer, L Jilaveanu, J Yu, U Hegde, S Speaker, M Madura, A Ralabate, A Rivera, E Rowen, H Gerrish, X Yao, V Chiang, HM Kluger. Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol 2016; 17(7): 976–983
https://doi.org/10.1016/S1470-2045(16)30053-5
pmid: 27267608
|
90 |
FS Hodi, J Chesney, AC Pavlick, C Robert, KF Grossmann, DF McDermott, GP Linette, N Meyer, JK Giguere, SS Agarwala, M Shaheen, MS Ernstoff, DR Minor, AK Salama, MH Taylor, PA Ott, C Horak, P Gagnier, J Jiang, JD Wolchok, MA Postow. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol 2016; 17(11): 1558–1568
https://doi.org/10.1016/S1470-2045(16)30366-7
pmid: 27622997
|
91 |
TY Seiwert, B Burtness, R Mehra, J Weiss, R Berger, JP Eder, K Heath, T McClanahan, J Lunceford, C Gause, JD Cheng, LQ Chow. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol 2016; 17(7): 956–965
https://doi.org/10.1016/S1470-2045(16)30066-3
pmid: 27247226
|
92 |
J Sul, GM Blumenthal, X Jiang, K He, P Keegan, R Pazdur. FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1. Oncologist 2016; 21(5): 643–650
https://doi.org/10.1634/theoncologist.2015-0498
pmid: 27026676
|
93 |
A Venniyoor. Pembrolizumab for advanced urothelial carcinoma. N Engl J Med 2017; 376(23): 2302–2303
https://doi.org/10.1056/NEJMc1704612
pmid: 28594151
|
94 |
[No authors listed.]. First anti-PD-L1 drug approved for NSCLC. Cancer Discov 2016; 6(12): OF1
https://doi.org/10.1158/2159-8290.CD-NB2016-143
pmid: 27920140
|
95 |
AV Balar, MD Galsky, JE Rosenberg, T Powles, DP Petrylak, J Bellmunt, Y Loriot, A Necchi, J Hoffman-Censits, JL Perez-Gracia, NA Dawson, MS van der Heijden, R Dreicer, S Srinivas, MM Retz, RW Joseph, A Drakaki, UN Vaishampayan, SS Sridhar, DI Quinn, I Durán, DR Shaffer, BJ Eigl, PD Grivas, EY Yu, S Li, EE Kadel 3rd, Z Boyd, R Bourgon, PS Hegde, S Mariathasan, A Thåström, OO Abidoye, GD Fine, DF; IMvigor210 Study Group. BajorinAtezolizumab as first-line treatment in cisplatin-ineligible patients with locally advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2 trial. Lancet 2017; 389(10064): 67–76
https://doi.org/10.1016/S0140-6736(16)32455-2
pmid: 27939400
|
96 |
A Rittmeyer, F Barlesi, D Waterkamp, K Park, F Ciardiello, J von Pawel, SM Gadgeel, T Hida, DM Kowalski, MC Dols, DL Cortinovis, J Leach, J Polikoff, C Barrios, F Kabbinavar, OA Frontera, F De Marinis, H Turna, JS Lee, M Ballinger, M Kowanetz, P He, DS Chen, A Sandler, DR Gandara; OAK Study Group. Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial. Lancet 2017; 389(10066): 255–265
https://doi.org/10.1016/S0140-6736(16)32517-X
pmid: 27979383
|
97 |
HL Kaufman, J Russell, O Hamid, S Bhatia, P Terheyden, SP D’Angelo, KC Shih, C Lebbé, GP Linette, M Milella, I Brownell, KD Lewis, JH Lorch, K Chin, L Mahnke, A von Heydebreck, JM Cuillerot, P Nghiem. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol 2016; 17(10): 1374–1385
https://doi.org/10.1016/S1470-2045(16)30364-3
pmid: 27592805
|
98 |
AB Apolo, JR Infante, A Balmanoukian, MR Patel, D Wang, K Kelly, AE Mega, CD Britten, A Ravaud, AC Mita, H Safran, TE Stinchcombe, M Srdanov, AB Gelb, M Schlichting, K Chin, JL Gulley. Avelumab, an anti-programmed death-ligand 1 antibody, in patients with refractory metastatic urothelial carcinoma: results from a multicenter, phase Ib study. J Clin Oncol 2017; 35(19): 2117–2124
https://doi.org/10.1200/JCO.2016.71.6795
pmid: 28375787
|
99 |
C Massard, MS Gordon, S Sharma, S Rafii, ZA Wainberg, J Luke, TJ Curiel, G Colon-Otero, O Hamid, RE Sanborn, PH O’Donnell, A Drakaki, W Tan, JF Kurland, MC Rebelatto, X Jin, JA Blake-Haskins, A Gupta, NH Segal. Safety and efficacy of durvalumab (MEDI4736), an anti-programmed cell death ligand-1 immune checkpoint inhibitor, in patients with advanced urothelial bladder cancer. J Clin Oncol 2016; 34(26): 3119–3125
https://doi.org/10.1200/JCO.2016.67.9761
pmid: 27269937
|
100 |
AO Kamphorst, A Wieland, T Nasti, S Yang, R Zhang, DL Barber, BT Konieczny, CZ Daugherty, L Koenig, K Yu, GL Sica, AH Sharpe, GJ Freeman, BR Blazar, LA Turka, TK Owonikoko, RN Pillai, SS Ramalingam, K Araki, R Ahmed. Rescue of exhausted CD8 T cells by PD-1-targeted therapies is CD28-dependent. Science 2017; 355(6332): 1423–1427
https://doi.org/10.1126/science.aaf0683
pmid: 28280249
|
101 |
E Hui, J Cheung, J Zhu, X Su, MJ Taylor, HA Wallweber, DK Sasmal, J Huang, JM Kim, I Mellman, RD Vale. T cell costimulatory receptor CD28 is a primary target for PD-1-mediated inhibition. Science 2017; 355(6332): 1428–1433
https://doi.org/10.1126/science.aaf1292
pmid: 28280247
|
102 |
S Koyama, EA Akbay, YY Li, GS Herter-Sprie, KA Buczkowski, WG Richards, L Gandhi, AJ Redig, SJ Rodig, H Asahina, RE Jones, MM Kulkarni, M Kuraguchi, S Palakurthi, PE Fecci, BE Johnson, PA Janne, JA Engelman, SP Gangadharan, DB Costa, GJ Freeman, R Bueno, FS Hodi, G Dranoff, KK Wong, PS Hammerman. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 2016; 7(1): 10501
https://doi.org/10.1038/ncomms10501
pmid: 26883990
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|