|
|
Development of oncolytic virotherapy: from genetic modification to combination therapy |
Qiaoshuai Lan1, Shuai Xia1, Qian Wang1, Wei Xu1, Haiyan Huang2, Shibo Jiang1,3( ), Lu Lu1( ) |
1. Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China 2. Yantai Yuhuangding Hospital, Qingdao University, Yantai 264000, China 3. Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA |
|
|
Abstract Oncolytic virotherapy (OVT) is a novel form of immunotherapy using natural or genetically modified viruses to selectively replicate in and kill malignant cells. Many genetically modified oncolytic viruses (OVs) with enhanced tumor targeting, antitumor efficacy, and safety have been generated, and some of which have been assessed in clinical trials. Combining OVT with other immunotherapies can remarkably enhance the antitumor efficacy. In this work, we review the use of wild-type viruses in OVT and the strategies for OV genetic modification. We also review and discuss the combinations of OVT with other immunotherapies.
|
Keywords
immunotherapy
oncolytic virus
genetic modification
immune checkpoint blockade
chimeric antigen receptor T cell
|
Corresponding Author(s):
Shibo Jiang,Lu Lu
|
Just Accepted Date: 11 February 2020
Online First Date: 09 March 2020
Issue Date: 09 May 2020
|
|
1 |
DN Khalil, EL Smith, RJ Brentjens, JD Wolchok. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol 2016; 13(5): 273–290
https://doi.org/10.1038/nrclinonc.2016.25
pmid: 26977780
|
2 |
Y Yang. Cancer immunotherapy: harnessing the immune system to battle cancer. J Clin Invest 2015; 125(9): 3335–3337
https://doi.org/10.1172/JCI83871
pmid: 26325031
|
3 |
HL Kaufman, FJ Kohlhapp, A Zloza. Oncolytic viruses: a new class of immunotherapy drugs. Nat Rev Drug Discov 2015; 14(9): 642–662
https://doi.org/10.1038/nrd4663
pmid: 26323545
|
4 |
EA Chiocca, SD Rabkin. Oncolytic viruses and their application to cancer immunotherapy. Cancer Immunol Res 2014; 2(4): 295–300
https://doi.org/10.1158/2326-6066.CIR-14-0015
pmid: 24764576
|
5 |
F Yu, X Wang, ZS Guo, DL Bartlett, SM Gottschalk, XT Song. T-cell engager-armed oncolytic vaccinia virus significantly enhances antitumor therapy. Mol Ther 2014; 22(1): 102–111
https://doi.org/10.1038/mt.2013.240
pmid: 24135899
|
6 |
P Wang, X Li, J Wang, D Gao, Y Li, H Li, Y Chu, Z Zhang, H Liu, G Jiang, Z Cheng, S Wang, J Dong, B Feng, LS Chard, NR Lemoine, Y Wang. Re-designing interleukin-12 to enhance its safety and potential as an anti-tumor immunotherapeutic agent. Nat Commun 2017; 8(1): 1395
https://doi.org/10.1038/s41467-017-01385-8
pmid: 29123084
|
7 |
A Samson, KJ Scott, D Taggart, EJ West, E Wilson, GJ Nuovo, S Thomson, R Corns, RK Mathew, MJ Fuller, TJ Kottke, JM Thompson, EJ Ilett, JV Cockle, P van Hille, G Sivakumar, ES Polson, SJ Turnbull, ES Appleton, G Migneco, AS Rose, MC Coffey, DA Beirne, FJ Collinson, C Ralph, D Alan Anthoney, CJ Twelves, AJ Furness, SA Quezada, H Wurdak, F Errington-Mais, H Pandha, KJ Harrington, PJ Selby, RG Vile, SD Griffin, LF Stead, SC Short, AA Melcher. Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Sci Transl Med 2018; 10(422): eaam7577
https://doi.org/10.1126/scitranslmed.aam7577
pmid: 29298869
|
8 |
K Geletneky, J Hajda, AL Angelova, B Leuchs, D Capper, AJ Bartsch, J-O Neumann, T Schöning, J Hüsing, B Beelte, I Kiprianova, M Roscher, R Bhat, A von Deimling, W Brück, A Just, V Frehtman, S Löbhard, E Terletskaia-Ladwig, J Fry, K Jochims, V Daniel, O Krebs, M Dahm, B Huber, A Unterberg, J Rommelaere. Oncolytic H-1 parvovirus shows safety and signs of immunogenic activity in a first phase I/IIa glioblastoma trial. Mol Ther 2017; 25(12): 2620–2634
https://doi.org/10.1016/j.ymthe.2017.08.016
|
9 |
D Zamarin, RB Holmgaard, SK Subudhi, JS Park, M Mansour, P Palese, T Merghoub, JD Wolchok, JP Allison. Localized oncolytic virotherapy overcomes systemic tumor resistance to immune checkpoint blockade immunotherapy. Sci Transl Med 2014; 6(226): 226ra32
https://doi.org/10.1126/scitranslmed.3008095
pmid: 24598590
|
10 |
MC Bourgeois-Daigneault, DG Roy, AS Aitken, N El Sayes, NT Martin, O Varette, T Falls, LE St-Germain, A Pelin, BD Lichty, DF Stojdl, G Ungerechts, JS Diallo, JC Bell. Neoadjuvant oncolytic virotherapy before surgery sensitizes triple-negative breast cancer to immune checkpoint therapy. Sci Transl Med 2018; 10(422): eaao1641
https://doi.org/10.1126/scitranslmed.aao1641
pmid: 29298865
|
11 |
FF Lang, C Conrad, C Gomez-Manzano, WKA Yung, R Sawaya, JS Weinberg, SS Prabhu, G Rao, GN Fuller, KD Aldape, J Gumin, LM Vence, I Wistuba, J Rodriguez-Canales, PA Villalobos, CMF Dirven, S Tejada, RD Valle, MM Alonso, B Ewald, JJ Peterkin, F Tufaro, J Fueyo. Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol 2018; 36(14): 1419–1427
https://doi.org/10.1200/JCO.2017.75.8219
pmid: 29432077
|
12 |
VT Packiam, DL Lamm, DA Barocas, A Trainer, B Fand, RL Davis 3rd, W Clark, M Kroeger, I Dumbadze, K Chamie, AK Kader, D Curran, J Gutheil, A Kuan, AW Yeung, GD Steinberg. An open label, single-arm, phase II multicenter study of the safety and efficacy of CG0070 oncolytic vector regimen in patients with BCG-unresponsive non-muscle-invasive bladder cancer: interim results. Urol Oncol 2018; 36(10): 440–447
https://doi.org/10.1016/j.urolonc.2017.07.005
pmid: 28755959
|
13 |
LK Mell, KT Brumund, GA Daniels, SJ Advani, K Zakeri, ME Wright, SJ Onyeama, RA Weisman, PR Sanghvi, PJ Martin, AA Szalay. Phase I trial of intravenous oncolytic vaccinia virus (GL-ONC1) with cisplatin and radiotherapy in patients with locoregionally advanced head and neck carcinoma. Clin Cancer Res 2017; 23(19): 5696–5702
https://doi.org/10.1158/1078-0432.CCR-16-3232
pmid: 28679776
|
14 |
J Heo, T Reid, L Ruo, CJ Breitbach, S Rose, M Bloomston, M Cho, HY Lim, HC Chung, CW Kim, J Burke, R Lencioni, T Hickman, A Moon, YS Lee, MK Kim, M Daneshmand, K Dubois, L Longpre, M Ngo, C Rooney, JC Bell, BG Rhee, R Patt, TH Hwang, DH Kirn. Randomized dose-finding clinical trial of oncolytic immunotherapeutic vaccinia JX-594 in liver cancer. Nat Med 2013; 19(3): 329–336
https://doi.org/10.1038/nm.3089
pmid: 23396206
|
15 |
HL Kaufman, SD Bines. OPTIM trial: a phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma. Future Oncol 2010; 6(6): 941–949
https://doi.org/10.2217/fon.10.66
pmid: 20528232
|
16 |
H Kasuya, Y Kodera, A Nakao, K Yamamura, T Gewen, W Zhiwen, Y Hotta, S Yamada, T Fujii, S Fukuda, N Tsurumaru, T Kuwahara, T Kikumori, Y Koide, Y Fujimoto, T Nakashima, Y Hirooka, H Shiku, M Tanaka, K Takesako, T Kondo, B Aleksic, H Kawashima, H Goto, Y Nishiyama. Phase I dose-escalation clinical trial of HF10 oncolytic herpes virus in 17 Japanese patients with advanced cancer. Hepatogastroenterology 2014; 61(131): 599–605
pmid: 26176043
|
17 |
JP Nüesch, J Lacroix, A Marchini, J Rommelaere. Molecular pathways: rodent parvoviruses--mechanisms of oncolysis and prospects for clinical cancer treatment. Clin Cancer Res 2012; 18(13): 3516–3523
https://doi.org/10.1158/1078-0432.CCR-11-2325
pmid: 22566376
|
18 |
AM Noonan, MR Farren, SM Geyer, Y Huang, S Tahiri, D Ahn, S Mikhail, KK Ciombor, S Pant, S Aparo, J Sexton, JL Marshall, TA Mace, CS Wu, B El-Rayes, CD Timmers, J Zwiebel, GB Lesinski, MA Villalona-Calero, TS Bekaii-Saab. Randomized phase 2 trial of the oncolytic virus Pelareorep (Reolysin) in upfront treatment of metastatic pancreatic adenocarcinoma. Mol Ther 2016; 24(6): 1150–1158
https://doi.org/10.1038/mt.2016.66
pmid: 27039845
|
19 |
D Mahalingam, C Fountzilas, J Moseley, N Noronha, H Tran, R Chakrabarty, G Selvaggi, M Coffey, B Thompson, J Sarantopoulos. A phase II study of REOLYSIN® (pelareorep) in combination with carboplatin and paclitaxel for patients with advanced malignant melanoma. Cancer Chemother Pharmacol 2017; 79(4): 697–703
https://doi.org/10.1007/s00280-017-3260-6
pmid: 28289863
|
20 |
S Tayeb, Z Zakay-Rones, A Panet. Therapeutic potential of oncolytic Newcastle disease virus: a critical review. Oncolytic Virother 2015; 4: 49–62
pmid: 27512670
|
21 |
A Dispenzieri, C Tong, B LaPlant, MQ Lacy, K Laumann, D Dingli, Y Zhou, MJ Federspiel, MA Gertz, S Hayman, F Buadi, M O’Connor, VJ Lowe, KW Peng, SJ Russell. Phase I trial of systemic administration of Edmonston strain of measles virus genetically engineered to express the sodium iodide symporter in patients with recurrent or refractory multiple myeloma. Leukemia 2017; 31(12): 2791–2798
https://doi.org/10.1038/leu.2017.120
pmid: 28439108
|
22 |
J Niemann, F Kühnel. Oncolytic viruses: adenoviruses. Virus Genes 2017; 53(5): 700–706
https://doi.org/10.1007/s11262-017-1488-1
pmid: 28702840
|
23 |
LE Torres-Domínguez, G McFadden. Poxvirus oncolytic virotherapy. Expert Opin Biol Ther 2019; 19(6): 561–573
https://doi.org/10.1080/14712598.2019.1600669
pmid: 30919708
|
24 |
D Watanabe, F Goshima. Oncolytic virotherapy by HSV. Adv Exp Med Biol 2018; 1045: 63–84
https://doi.org/10.1007/978-981-10-7230-7_4
pmid: 29896663
|
25 |
AL Angelova, M Barf, K Geletneky, A Unterberg, J Rommelaere. Immunotherapeutic potential of oncolytic H-1 parvovirus: hints of glioblastoma microenvironment conversion towards immunogenicity. Viruses 2017; 9(12): 382
https://doi.org/10.3390/v9120382
pmid: 29244745
|
26 |
P Msaouel, M Opyrchal, A Dispenzieri, KW Peng, MJ Federspiel, SJ Russell, E Galanis. Clinical trials with oncolytic measles virus: current status and future prospects. Curr Cancer Drug Targets 2018; 18(2): 177–187
https://doi.org/10.2174/1568009617666170222125035
pmid: 28228086
|
27 |
V Schirrmacher. Fifty years of clinical application of Newcastle disease virus: time to celebrate! Biomedicines 2016; 4(3): 16
https://doi.org/10.3390/biomedicines4030016
pmid: 28536382
|
28 |
NM Durham, K Mulgrew, K McGlinchey, NR Monks, H Ji, R Herbst, J Suzich, SA Hammond, EJ Kelly. Oncolytic VSV primes differential responses to immuno-oncology therapy. Mol Ther 2017; 25(8): 1917–1932
https://doi.org/10.1016/j.ymthe.2017.05.006
pmid: 28578991
|
29 |
MC Brown, EY Dobrikova, MI Dobrikov, RW Walton, SL Gemberling, SK Nair, A Desjardins, JH Sampson, HS Friedman, AH Friedman, DS Tyler, DD Bigner, M Gromeier. Oncolytic polio virotherapy of cancer. Cancer 2014; 120(21): 3277–3286
https://doi.org/10.1002/cncr.28862
pmid: 24939611
|
30 |
S Bradley, AD Jakes, K Harrington, H Pandha, A Melcher, F Errington-Mais. Applications of coxsackievirus A21 in oncology. Oncolytic Virother 2014; 3: 47–55
https://doi.org/10.2147/OV.S56322
pmid: 27512662
|
31 |
T Bourhill, Y Mori, DE Rancourt, M Shmulevitz, RN Johnston. Going (Reo)Viral: factors promoting successful reoviral oncolytic infection. Viruses 2018; 10(8): 421
https://doi.org/10.3390/v10080421
pmid: 30103501
|
32 |
EF Wheelock, JH Dingle. Observations on the repeated administration of viruses to a patient with acute leukemia. A preliminary report. N Engl J Med 1964; 271(13): 645–651
https://doi.org/10.1056/NEJM196409242711302
pmid: 14170843
|
33 |
Z Zygiert. Hodgkin’s disease: remissions after measles. Lancet 1971; 297(7699): 593
https://doi.org/10.1016/S0140-6736(71)91186-X
pmid: 4100922
|
34 |
HW Toolan, EL Saunders, CM Southam, AE Moore, AG Levin. H-1 virus viremia in the human. Proc Soc Exp Biol Med 1965; 119(3): 711–715
https://doi.org/10.3181/00379727-119-30278
pmid: 14328982
|
35 |
A Howells, G Marelli, NR Lemoine, Y Wang. Oncolytic viruses-interaction of virus and tumor cells in the battle to eliminate cancer. Front Oncol 2017; 7(195): 195
https://doi.org/10.3389/fonc.2017.00195
pmid: 28944214
|
36 |
M Aghi, RL Martuza. Oncolytic viral therapies—the clinical experience. Oncogene 2005; 24(52): 7802–7816
https://doi.org/10.1038/sj.onc.1209037
pmid: 16299539
|
37 |
IR Eissa, I Bustos-Villalobos, T Ichinose, S Matsumura, Y Naoe, N Miyajima, D Morimoto, N Mukoyama, W Zhiwen, M Tanaka, H Hasegawa, S Sumigama, B Aleksic, Y Kodera, H Kasuya. The current status and future prospects of oncolytic viruses in clinical trials against melanoma, glioma, pancreatic, and breast cancers. Cancers (Basel) 2018; 10(10): 356
https://doi.org/10.3390/cancers10100356
pmid: 30261620
|
38 |
RL Martuza, A Malick, JM Markert, KL Ruffner, DM Coen. Experimental therapy of human glioma by means of a genetically engineered virus mutant. Science 1991; 252(5007): 854–856
https://doi.org/10.1126/science.1851332
pmid: 1851332
|
39 |
M Liang. Oncorine, the world first oncolytic virus medicine and its update in China. Curr Cancer Drug Targets 2018; 18(2): 171–176
https://doi.org/10.2174/1568009618666171129221503
pmid: 29189159
|
40 |
D Wei, J Xu, XY Liu, ZN Chen, H Bian. Fighting cancer with viruses: oncolytic virus therapy in China. Hum Gene Ther 2018; 29(2): 151–159
https://doi.org/10.1089/hum.2017.212
pmid: 29284308
|
41 |
FJ Kohlhapp, A Zloza, HL Kaufman. Talimogene laherparepvec (T-VEC) as cancer immunotherapy. Drugs Today (Barc) 2015; 51(9): 549–558
https://doi.org/10.1358/dot.2015.51.9.2383044
pmid: 26488034
|
42 |
RM Conry, B Westbrook, S McKee, TG Norwood. Talimogene laherparepvec: first in class oncolytic virotherapy. Hum Vaccin Immunother 2018; 14(4): 839–846
https://doi.org/10.1080/21645515.2017.1412896
pmid: 29420123
|
43 |
MC Bourgeois-Daigneault, LE St-Germain, DG Roy, A Pelin, AS Aitken, R Arulanandam, T Falls, V Garcia, JS Diallo, JC Bell. Combination of paclitaxel and MG1 oncolytic virus as a successful strategy for breast cancer treatment. Breast Cancer Res 2016; 18(1): 83
https://doi.org/10.1186/s13058-016-0744-y
pmid: 27503504
|
44 |
M Garofalo, H Saari, P Somersalo, D Crescenti, L Kuryk, L Aksela, C Capasso, M Madetoja, K Koskinen, T Oksanen, A Mäkitie, M Jalasvuori, V Cerullo, P Ciana, M Yliperttula. Antitumor effect of oncolytic virus and paclitaxel encapsulated in extracellular vesicles for lung cancer treatment. J Control Release 2018; 283: 223–234
https://doi.org/10.1016/j.jconrel.2018.05.015
pmid: 29864473
|
45 |
E Binz, S Berchtold, J Beil, M Schell, C Geisler, I Smirnow, UM Lauer. Chemovirotherapy of pancreatic adenocarcinoma by combining oncolytic vaccinia virus GLV-1h68 with nab-paclitaxel plus gemcitabine. Mol Ther Oncolytics 2017; 6: 10–21
https://doi.org/10.1016/j.omto.2017.04.001
pmid: 28607950
|
46 |
MJ Wilkinson, HG Smith, G McEntee, J Kyula-Currie, TD Pencavel, DC Mansfield, AA Khan, V Roulstone, AJ Hayes, KJ Harrington. Oncolytic vaccinia virus combined with radiotherapy induces apoptotic cell death in sarcoma cells by down-regulating the inhibitors of apoptosis. Oncotarget 2016; 7(49): 81208–81222
https://doi.org/10.18632/oncotarget.12820
pmid: 27783991
|
47 |
SM O’Cathail, TD Pokrovska, TS Maughan, KD Fisher, LW Seymour, MA Hawkins. Combining oncolytic adenovirus with radiation—a paradigm for the future of radiosensitization. Front Oncol 2017; 7: 153
https://doi.org/10.3389/fonc.2017.00153
pmid: 28791251
|
48 |
BA McKenzie, FJ Zemp, A Pisklakova, A Narendran, G McFadden, X Lun, RS Kenchappa, EU Kurz, PA Forsyth. In vitro screen of a small molecule inhibitor drug library identifies multiple compounds that synergize with oncolytic myxoma virus against human brain tumor-initiating cells. Neuro-oncol 2015; 17(8): 1086–1094
https://doi.org/10.1093/neuonc/nou359
pmid: 25605818
|
49 |
MH Dornan, R Krishnan, AM Macklin, M Selman, N El Sayes, HH Son, C Davis, A Chen, K Keillor, PJ Le, C Moi, P Ou, C Pardin, CR Canez, F Le Boeuf, JC Bell, JC Smith, JS Diallo, CN Boddy. First-in-class small molecule potentiators of cancer virotherapy. Sci Rep 2016; 6(1): 26786
https://doi.org/10.1038/srep26786
pmid: 27226390
|
50 |
A Ajina, J Maher. Prospects for combined use of oncolytic viruses and CAR T-cells. J Immunother Cancer 2017; 5(1): 90
https://doi.org/10.1186/s40425-017-0294-6
pmid: 29157300
|
51 |
CY Chen, B Hutzen, MF Wedekind, TP Cripe. Oncolytic virus and PD-1/PD-L1 blockade combination therapy. Oncolytic Virother 2018; 7: 65–77
https://doi.org/10.2147/OV.S145532
pmid: 30105219
|
52 |
L Russell, KW Peng, SJ Russell, RM Diaz. Oncolytic viruses: priming time for cancer immunotherapy. BioDrugs 2019; 33(5): 485–501
https://doi.org/10.1007/s40259-019-00367-0
pmid: 31321623
|
53 |
KR Kelly, CM Espitia, W Zhao, K Wu, V Visconte, F Anwer, CM Calton, JS Carew, ST Nawrocki. Oncolytic reovirus sensitizes multiple myeloma cells to anti-PD-L1 therapy. Leukemia 2018; 32(1): 230–233
https://doi.org/10.1038/leu.2017.272
pmid: 28832023
|
54 |
C Achard, A Surendran, ME Wedge, G Ungerechts, J Bell, CS Ilkow. Lighting a fire in the tumor microenvironment using oncolytic immunotherapy. EBioMedicine 2018; 31: 17–24
https://doi.org/10.1016/j.ebiom.2018.04.020
pmid: 29724655
|
55 |
GG Au, LF Lincz, A Enno, DR Shafren. Oncolytic coxsackievirus A21 as a novel therapy for multiple myeloma. Br J Haematol 2007; 137(2): 133–141
https://doi.org/10.1111/j.1365-2141.2007.06550.x
pmid: 17391493
|
56 |
C Geiss, Z Kis, B Leuchs, M Frank-Stöhr, JR Schlehofer, J Rommelaere, C Dinsart, J Lacroix. Preclinical testing of an oncolytic parvovirus: standard protoparvovirus H-1PV efficiently induces osteosarcoma cell lysis in vitro. Viruses 2017; 9(10): 301
https://doi.org/10.3390/v9100301
pmid: 29039746
|
57 |
L Vidal, HS Pandha, TA Yap, CL White, K Twigger, RG Vile, A Melcher, M Coffey, KJ Harrington, JS DeBono. A phase I study of intravenous oncolytic reovirus type 3 Dearing in patients with advanced cancer. Clin Cancer Res 2008; 14(21): 7127–7137
https://doi.org/10.1158/1078-0432.CCR-08-0524
pmid: 18981012
|
58 |
NE Annels, D Mansfield, M Arif, C Ballesteros-Merino, GR Simpson, M Denyer, SS Sandhu, AA Melcher, KJ Harrington, B Davies, G Au, M Grose, I Bagwan, B Fox, R Vile, H Mostafid, D Shafren, HS Pandha. Phase I trial of an ICAM-1-targeted immunotherapeutic-coxsackievirus A21 (CVA21) as an oncolytic agent against non muscle-invasive bladder cancer. Clin Cancer Res 2019; 25(19): 5818–5831
https://doi.org/10.1158/1078-0432.CCR-18-4022
pmid: 31273010
|
59 |
NE Annels, D Mansfield, M Arif, C Ballesteros-Merino, GR Simpson, M Denyer, SS Sandhu, AA Melcher, KJ Harrington, B Davies, G Au, M Grose, I Bagwan, B Fox, R Vile, H Mostafid, D Shafren, HS Pandha. Viral targeting of non-muscle-invasive bladder cancer and priming of antitumor immunity following intravesical coxsackievirus A21. Clin Cancer Res 2019 Aug. 14. [Epub ahead of print] doi: 10.1158/1078-0432.CCR-18-4022
https://doi.org/10.1158/1078-0432.CCR-18-4022
|
60 |
RHI Andtbacka, BD Curti, H Kaufman, GA Daniels, JJ Nemunaitis, LE Spitler, S Hallmeyer, J Lutzky, SM Schultz, ED Whitman, K Zhou, R Karpathy, JI Weisberg, M Grose, D Shafren. Final data from CALM: a phase II study of coxsackievirus A21 (CVA21) oncolytic virus immunotherapy in patients with advanced melanoma. J Clin Oncol 2015; 33(15_suppl): 9030
https://doi.org/10.1200/jco.2015.33.15_suppl.9030
|
61 |
AL Angelova, M Witzens-Harig, AS Galabov, J Rommelaere. The oncolytic virotherapy era in cancer management: prospects of applying H-1 parvovirus to treat blood and solid cancers. Front Oncol 2017; 7: 93
https://doi.org/10.3389/fonc.2017.00093
pmid: 28553616
|
62 |
KA Garant, M Shmulevitz, L Pan, RM Daigle, DG Ahn, SA Gujar, PWK Lee. Oncolytic reovirus induces intracellular redistribution of Ras to promote apoptosis and progeny virus release. Oncogene 2016; 35(6): 771–782
https://doi.org/10.1038/onc.2015.136
pmid: 25961930
|
63 |
DW Sborov, GJ Nuovo, A Stiff, T Mace, GB Lesinski, DM Benson Jr, YA Efebera, AE Rosko, F Pichiorri, MR Grever, CC Hofmeister. A phase I trial of single-agent reolysin in patients with relapsed multiple myeloma. Clin Cancer Res 2014; 20(23): 5946–5955
https://doi.org/10.1158/1078-0432.CCR-14-1404
pmid: 25294913
|
64 |
D Mahalingam, S Goel, S Aparo, S Patel Arora, N Noronha, H Tran, R Chakrabarty, G Selvaggi, A Gutierrez, M Coffey, ST Nawrocki, G Nuovo, MM Mita. A phase II study of Pelareorep (REOLYSIN®) in combination with gemcitabine for patients with advanced pancreatic adenocarcinoma. Cancers (Basel) 2018; 10(6): 160
https://doi.org/10.3390/cancers10060160
pmid: 29799479
|
65 |
E Galanis, SN Markovic, VJ Suman, GJ Nuovo, RG Vile, TJ Kottke, WK Nevala, MA Thompson, JE Lewis, KM Rumilla, V Roulstone, K Harrington, GP Linette, WJ Maples, M Coffey, J Zwiebel, K Kendra. Phase II trial of intravenous administration of Reolysin(®) (Reovirus Serotype-3-dearing Strain) in patients with metastatic melanoma. Mol Ther 2012; 20(10): 1998–2003
https://doi.org/10.1038/mt.2012.146
pmid: 22871663
|
66 |
A Stiff, E Caserta, DW Sborov, GJ Nuovo, X Mo, SY Schlotter, A Canella, E Smith, J Badway, M Old, AC Jaime-Ramirez, P Yan, DM Benson, JC Byrd, R Baiocchi, B Kaur, CC Hofmeister, F Pichiorri. Histone deacetylase inhibitors enhance the therapeutic potential of reovirus in multiple myeloma. Mol Cancer Ther 2016; 15(5):830–841
https://doi.org/10.1158/1535-7163
pmid: . MCT-15-0240-T26809490
|
67 |
M Ramachandran, D Yu, M Dyczynski, S Baskaran, L Zhang, A Lulla, V Lulla, S Saul, S Nelander, A Dimberg, A Merits, J Leja-Jarblad, M. EssandSafe and effective treatment of experimental neuroblastoma and glioblastoma using systemically delivered triple microRNA-detargeted oncolytic Semliki Forest Virus. Clin Cancer Res 2017; 23(6): 1519–1530
https://doi.org/10.1158/1078-0432.CCR-16-0925
|
68 |
JI Quetglas, S Labiano, MA Aznar, E Bolaños, A Azpilikueta, I Rodriguez, E Casales, AR Sánchez-Paulete, V Segura, C Smerdou, I Melero. Virotherapy with a Semliki Forest virus-based vector encoding IL12 synergizes with PD-1/PD-L1 blockade. Cancer Immunol Res 2015; 3(5): 449–454
https://doi.org/10.1158/2326-6066.CIR-14-0216
pmid: 25691326
|
69 |
PY Huang, JH Guo, LH Hwang. Oncolytic Sindbis virus targets tumors defective in the interferon response and induces significant bystander antitumor immunity in vivo. Mol Ther 2012; 20(2): 298–305
https://doi.org/10.1038/mt.2011.245
|
70 |
Y Lin, H Zhang, J Liang, K Li, W Zhu, L Fu, F Wang, X Zheng, H Shi, S Wu, X Xiao, L Chen, L Tang, M Yan, X Yang, Y Tan, P Qiu, Y Huang, W Yin, X Su, H Hu, J Hu, G Yan. Identification and characterization of alphavirus M1 as a selective oncolytic virus targeting ZAP-defective human cancers. Proc Natl Acad Sci U S A 2014; 111(42): E4504–E4512
https://doi.org/10.1073/pnas.1408759111
|
71 |
C Hu, Y Liu, Y Lin, JK Liang, WW Zhong, K Li, WT Huang, DJ Wang, GM Yan, WB Zhu, JG Qiu, X Gao. Intravenous injections of the oncolytic virus M1 as a novel therapy for muscle-invasive bladder cancer. Cell Death Dis 2018; 9(3): 274
https://doi.org/10.1038/s41419-018-0325-3
pmid: 29449555
|
72 |
J Liang, L Guo, K Li, X Xiao, W Zhu, X Zheng, J Hu, H Zhang, J Cai, Y Yu, Y Tan, C Li, X Liu, C Hu, Y Liu, P Qiu, X Su, S He, Y Lin, G Yan. Inhibition of the mevalonate pathway enhances cancer cell oncolysis mediated by M1 virus. Nat Commun 2018; 9(1): 1524
https://doi.org/10.1038/s41467-018-03913-6
pmid: 29670091
|
73 |
H Zhang, Y Lin, K Li, J Liang, X Xiao, J Cai, Y Tan, F Xing, J Mai, Y Li, W Chen, L Sheng, J Gu, W Zhu, W Yin, P Qiu, X Su, B Lu, X Tian, J Liu, W Lu, Y Dou, Y Huang, B Hu, Z Kang, G Gao, Z Mao, SY Cheng, L Lu, XT Bai, S Gong, G Yan, J Hu. Naturally existing oncolytic virus M1 is nonpathogenic for the nonhuman primates after multiple rounds of repeated intravenous injections. Hum Gene Ther 2016; 27(9): 700–711
https://doi.org/10.1089/hum.2016.038
pmid: 27296553
|
74 |
H Zhang, K Li, Y Lin, F Xing, X Xiao, J Cai, W Zhu, J Liang, Y Tan, L Fu, F Wang, W Yin, B Lu, P Qiu, X Su, S Gong, X Bai, J Hu, G Yan. Targeting VCP enhances anticancer activity of oncolytic virus M1 in hepatocellular carcinoma. Sci Transl Med 2017; 9(404): eaam7996
https://doi.org/10.1126/scitranslmed.aam7996
pmid: 28835517
|
75 |
X Xiao, J Liang, C Huang, K Li, F Xing, W Zhu, Z Lin, W Xu, G Wu, J Zhang, X Lin, Y Tan, J Cai, J Hu, X Chen, Y Huang, Z Qin, P Qiu, X Su, L Chen, Y Lin, H Zhang, G Yan. DNA-PK inhibition synergizes with oncolytic virus M1 by inhibiting antiviral response and potentiating DNA damage. Nat Commun 2018; 9(1): 4342
https://doi.org/10.1038/s41467-018-06771-4
pmid: 30337542
|
76 |
AH Choi, MP O’Leary, Y Fong, NG Chen. From benchtop to bedside: a review of oncolytic virotherapy. Biomedicines 2016; 4(3): 18
https://doi.org/10.3390/biomedicines4030018
pmid: 28536385
|
77 |
J Maroun, M Muñoz-Alía, A Ammayappan, A Schulze, KW Peng, S Russell. Designing and building oncolytic viruses. Future Virol 2017; 12(4):193–213
https://doi.org/10.2217/fvl-2016-0129
pmid: 29387140
|
78 |
SR Jhawar, A Thandoni, PK Bommareddy, S Hassan, FJ Kohlhapp, S Goyal, JM Schenkel, AW Silk, A Zloza. Oncolytic viruses-natural and genetically engineered cancer immunotherapies. Front Oncol 2017; 7: 202
https://doi.org/10.3389/fonc.2017.00202
pmid: 28955655
|
79 |
PK Bommareddy, M Shettigar, HL Kaufman. Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol 2018; 18(8): 498–513
https://doi.org/10.1038/s41577-018-0014-6
pmid: 29743717
|
80 |
TS Miest, R Cattaneo. New viruses for cancer therapy: meeting clinical needs. Nat Rev Microbiol 2014; 12(1): 23–34
https://doi.org/10.1038/nrmicro3140
pmid: 24292552
|
81 |
AA Stepanenko, VP Chekhonin. Tropism and transduction of oncolytic adenovirus 5 vectors in cancer therapy: focus on fiber chimerism and mosaicism, hexon and pIX. Virus Res 2018; 257: 40–51
https://doi.org/10.1016/j.virusres.2018.08.012
pmid: 30125593
|
82 |
PM Foreman, GK Friedman, KA Cassady, JM Markert. Oncolytic virotherapy for the treatment of malignant glioma. Neurotherapeutics 2017; 14(2): 333–344
https://doi.org/10.1007/s13311-017-0516-0
pmid: 28265902
|
83 |
D Betancourt, JC Ramos, GN Barber. Retargeting oncolytic vesicular stomatitis virus to human T-cell lymphotropic virus type 1-associated adult T-cell leukemia. J Virol 2015; 89(23): 11786–11800
https://doi.org/10.1128/JVI.01356-15
pmid: 26378177
|
84 |
V Leoni, A Vannini, V Gatta, J Rambaldi, M Sanapo, C Barboni, A Zaghini, P Nanni, PL Lollini, C Casiraghi, G Campadelli-Fiume. A fully-virulent retargeted oncolytic HSV armed with IL-12 elicits local immunity and vaccine therapy towards distant tumors. PLoS Pathog 2018; 14(8): e1007209
https://doi.org/10.1371/journal.ppat.1007209
pmid: 30080893
|
85 |
L Menotti, A Cerretani, H Hengel, G Campadelli-Fiume. Construction of a fully retargeted herpes simplex virus 1 recombinant capable of entering cells solely via human epidermal growth factor receptor 2. J Virol 2008; 82(20): 10153–10161
https://doi.org/10.1128/JVI.01133-08
pmid: 18684832
|
86 |
F Alessandrini, L Menotti, E Avitabile, I Appolloni, D Ceresa, D Marubbi, G Campadelli-Fiume, P Malatesta. Eradication of glioblastoma by immuno-virotherapy with a retargeted oncolytic HSV in a preclinical model. Oncogene 2019; 38(23): 4467–4479
https://doi.org/10.1038/s41388-019-0737-2
pmid: 30755732
|
87 |
T Shibata, H Uchida, T Shiroyama, Y Okubo, T Suzuki, H Ikeda, M Yamaguchi, Y Miyagawa, T Fukuhara, JB Cohen, JC Glorioso, T Watabe, H Hamada, H Tahara. Development of an oncolytic HSV vector fully retargeted specifically to cellular EpCAM for virus entry and cell-to-cell spread. Gene Ther 2016; 23(6): 479–488
https://doi.org/10.1038/gt.2016.17
pmid: 26905369
|
88 |
H Uchida, M Marzulli, K Nakano, WF Goins, J Chan, CS Hong, L Mazzacurati, JY Yoo, A Haseley, H Nakashima, H Baek, H Kwon, I Kumagai, M Kuroki, B Kaur, EA Chiocca, P Grandi, JB Cohen, JC Glorioso. Effective treatment of an orthotopic xenograft model of human glioblastoma using an EGFR-retargeted oncolytic herpes simplex virus. Mol Ther 2013; 21(3): 561–569
https://doi.org/10.1038/mt.2012.211
pmid: 23070115
|
89 |
D Hanahan, RA Weinberg. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646–674
https://doi.org/10.1016/j.cell.2011.02.013
pmid: 21376230
|
90 |
LA Pikor, JC Bell, JS Diallo. Oncolytic viruses: exploiting cancer’s deal with the devil. Trends Cancer 2015; 1(4): 266–277
https://doi.org/10.1016/j.trecan.2015.10.004
pmid: 28741515
|
91 |
FJ Kohlhapp, HL Kaufman. Molecular pathways: mechanism of action for Talimogene Laherparepvec, a new oncolytic virus immunotherapy. Clin Cancer Res 2016; 22(5): 1048–1054
https://doi.org/10.1158/1078-0432.CCR-15-2667
pmid: 26719429
|
92 |
N Martínez-Vélez, E Xipell, B Vera, A Acanda de la Rocha, M Zalacain, L Marrodán, M Gonzalez-Huarriz, G Toledo, M Cascallo, R Alemany, A Patiño, MM Alonso. The oncolytic adenovirus VCN-01 as therapeutic approach against pediatric osteosarcoma. Clin Cancer Res 2016; 22(9): 2217–2225
https://doi.org/10.1158/1078-0432.CCR-15-1899
pmid: 26603261
|
93 |
KA Garant, M Shmulevitz, L Pan, RM Daigle, DG Ahn, SA Gujar, PW Lee. Oncolytic reovirus induces intracellular redistribution of Ras to promote apoptosis and progeny virus release. Oncogene 2016; 35(6): 771–782
https://doi.org/10.1038/onc.2015.136
pmid: 25961930
|
94 |
WH Lin, SH Yeh, WJ Yang, KH Yeh, T Fujiwara, A Nii, SS Chang, PJ Chen. Telomerase-specific oncolytic adenoviral therapy for orthotopic hepatocellular carcinoma in HBx transgenic mice. Int J Cancer 2013; 132(6): 1451–1462
https://doi.org/10.1002/ijc.27770
pmid: 22886913
|
95 |
JM Li, KC Kao, LF Li, TM Yang, CP Wu, YM Horng, WW Jia, CT Yang. MicroRNA-145 regulates oncolytic herpes simplex virus-1 for selective killing of human non-small cell lung cancer cells. Virol J 2013; 10(1): 241
https://doi.org/10.1186/1743-422X-10-241
pmid: 23876001
|
96 |
T Fujiwara, Y Shirakawa, S Kagawa. Telomerase-specific oncolytic virotherapy for human gastrointestinal cancer. Expert Rev Anticancer Ther 2011; 11(4): 525–532
https://doi.org/10.1586/era.10.200
pmid: 21504319
|
97 |
J Hardcastle, K Kurozumi, EA Chiocca, B Kaur. Oncolytic viruses driven by tumor-specific promoters. Curr Cancer Drug Targets 2007; 7(2): 181–189
https://doi.org/10.2174/156800907780058880
pmid: 17346110
|
98 |
W Zhang, K Ge, Q Zhao, X Zhuang, Z Deng, L Liu, J Li, Y Zhang, Y Dong, Y Zhang, S Zhang, B Liu. A novel oHSV-1 targeting telomerase reverse transcriptase-positive cancer cells via tumor-specific promoters regulating the expression of ICP4. Oncotarget 2015; 6(24): 20345–20355
https://doi.org/10.18632/oncotarget.3884
pmid: 25972362
|
99 |
M Taki, S Kagawa, M Nishizaki, H Mizuguchi, T Hayakawa, S Kyo, K Nagai, Y Urata, N Tanaka, T Fujiwara. Enhanced oncolysis by a tropism-modified telomerase-specific replication-selective adenoviral agent OBP-405 (‘Telomelysin-RGD’). Oncogene 2005; 24(19): 3130–3140
https://doi.org/10.1038/sj.onc.1208460
pmid: 15735729
|
100 |
P Huang, H Kaku, J Chen, Y Kashiwakura, T Saika, Y Nasu, Y Urata, T Fujiwara, M Watanabe, H Kumon. Potent antitumor effects of combined therapy with a telomerase-specific, replication-competent adenovirus (OBP-301) and IL-2 in a mouse model of renal cell carcinoma. Cancer Gene Ther 2010; 17(7): 484–491
https://doi.org/10.1038/cgt.2010.5
pmid: 20168351
|
101 |
M Shayestehpour, S Moghim, V Salimi, S Jalilvand, J Yavarian, B Romani, T Mokhtari-Azad. Targeting human breast cancer cells by an oncolytic adenovirus using microRNA-targeting strategy. Virus Res 2017; 240: 207–214
https://doi.org/10.1016/j.virusres.2017.08.016
pmid: 28867494
|
102 |
MF Leber, MA Baertsch, SC Anker, L Henkel, HM Singh, S Bossow, CE Engeland, R Barkley, B Hoyler, J Albert, C Springfeld, D Jäger, C von Kalle, G Ungerechts. Enhanced control of oncolytic measles virus using microRNA target sites. Mol Ther Oncolytics 2018; 9: 30–40
https://doi.org/10.1016/j.omto.2018.04.002
pmid: 29988512
|
103 |
MF Leber, S Bossow, VH Leonard, K Zaoui, C Grossardt, M Frenzke, T Miest, S Sawall, R Cattaneo, C von Kalle, G Ungerechts. MicroRNA-sensitive oncolytic measles viruses for cancer-specific vector tropism. Mol Ther 2011; 19(6): 1097–1106
https://doi.org/10.1038/mt.2011.55
pmid: 21468006
|
104 |
JA McCart, JM Ward, J Lee, Y Hu, HR Alexander, SK Libutti, B Moss, DL Bartlett. Systemic cancer therapy with a tumor-selective vaccinia virus mutant lacking thymidine kinase and vaccinia growth factor genes. Cancer Res 2001; 61(24): 8751–8757
pmid: 11751395
|
105 |
N Badrinath, J Heo, SY Yoo. Viruses as nanomedicine for cancer. Int J Nanomedicine 2016; 11: 4835–4847
https://doi.org/10.2147/IJN.S116447
pmid: 27703350
|
106 |
R Kanai, C Zaupa, D Sgubin, SJ Antoszczyk, RL Martuza, H Wakimoto, SD Rabkin. Effect of g34.5 deletions on oncolytic herpes simplex virus activity in brain tumors. J Virol 2012; 86(8): 4420–4431
https://doi.org/10.1128/JVI.00017-12
pmid: 22345479
|
107 |
EA McKie, AR MacLean, AD Lewis, G Cruickshank, R Rampling, SC Barnett, PGE Kennedy, SM Brown. Selective in vitro replication of herpes simplex virus type 1 (HSV-1) ICP34.5 null mutants in primary human CNS tumours—evaluation of a potentially effective clinical therapy. Br J Cancer 1996; 74(5): 745–752
https://doi.org/10.1038/bjc.1996.431
pmid: 8795577
|
108 |
DH Kirn, SH Thorne. Targeted and armed oncolytic poxviruses: a novel multi-mechanistic therapeutic class for cancer. Nat Rev Cancer 2009; 9(1): 64–71
https://doi.org/10.1038/nrc2545
pmid: 19104515
|
109 |
DF Pease, RA Kratzke. Oncolytic viral therapy for mesothelioma. Front Oncol 2017; 7: 179
https://doi.org/10.3389/fonc.2017.00179
pmid: 28884088
|
110 |
A Jefferson, VE Cadet, A Hielscher. The mechanisms of genetically modified vaccinia viruses for the treatment of cancer. Crit Rev Oncol Hematol 2015; 95(3): 407–416
https://doi.org/10.1016/j.critrevonc.2015.04.001
pmid: 25900073
|
111 |
UM Lauer, M Schell, J Beil, S Berchtold, U Koppenhöfer, J Glatzle, A Königsrainer, R Möhle, D Nann, F Fend, C Pfannenberg, M Bitzer, NP Malek. Phase I study of oncolytic vaccinia virus GL-ONC1 in patients with peritoneal carcinomatosis. Clin Cancer Res 2018; 24(18): 4388–4398
https://doi.org/10.1158/1078-0432.CCR-18-0244
pmid: 29773661
|
112 |
DB Johnson, I Puzanov, MC Kelley. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy 2015; 7(6): 611–619
https://doi.org/10.2217/imt.15.35
pmid: 26098919
|
113 |
C Grigg, Z Blake, R Gartrell, A Sacher, B Taback, Y Saenger. Talimogene laherparepvec (T-Vec) for the treatment of melanoma and other cancers. Semin Oncol 2016; 43(6): 638–646
https://doi.org/10.1053/j.seminoncol.2016.10.005
pmid: 28061981
|
114 |
SJ Masoud, JB Hu, GM Beasley, JH 4th Stewart, PJ Mosca. Efficacy of Talimogene Laherparepvec (T-VEC) therapy in patients with in-transit melanoma metastasis decreases with increasing lesion size. Ann Surg Oncol 2019; 26(13): 4633–4641
https://doi.org/10.1245/s10434-019-07691-3
|
115 |
Z Zhu, MJ Gorman, LD McKenzie, JN Chai, CG Hubert, BC Prager, E Fernandez, JM Richner, R Zhang, C Shan, E Tycksen, X Wang, PY Shi, MS Diamond, JN Rich, MG Chheda. Zika virus has oncolytic activity against glioblastoma stem cells. J Exp Med 2017; 214(10): 2843–2857
https://doi.org/10.1084/jem.20171093
pmid: 28874392
|
116 |
N Wikan, DR Smith. Zika virus: history of a newly emerging arbovirus. Lancet Infect Dis 2016; 16(7): e119–e126
https://doi.org/10.1016/S1473-3099(16)30010-X
pmid: 27282424
|
117 |
SI Yun, YM Lee. Zika virus: an emerging flavivirus. J Microbiol 2017; 55(3): 204–219
https://doi.org/10.1007/s12275-017-7063-6
pmid: 28243937
|
118 |
C Shan, AE Muruato, BTD Nunes, H Luo, X Xie, DBA Medeiros, M Wakamiya, RB Tesh, AD Barrett, T Wang, SC Weaver, PFC Vasconcelos, SL Rossi, PY Shi. A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nat Med 2017; 23(6): 763–767
https://doi.org/10.1038/nm.4322
pmid: 28394328
|
119 |
Q Chen, J Wu, Q Ye, F Ma, Q Zhu, Y Wu, C Shan, X Xie, D Li, X Zhan, C Li, XF Li, X Qin, T Zhao, H Wu, PY Shi, J Man, CF Qin. Treatment of human glioblastoma with a live attenuated Zika virus vaccine candidate. MBio 2018; 9(5): e01683–18
https://doi.org/10.1128/mBio.01683-18
pmid: 30228241
|
120 |
C Shan, X Xie, PY Shi. Zika virus vaccine: progress and challenges. Cell Host Microbe 2018; 24(1): 12–17
https://doi.org/10.1016/j.chom.2018.05.021
pmid: 30008291
|
121 |
HJ Zeh, S Downs-Canner, JA McCart, ZS Guo, UN Rao, L Ramalingam, SH Thorne, HL Jones, P Kalinski, E Wieckowski, ME O’Malley, M Daneshmand, K Hu, JC Bell, TH Hwang, A Moon, CJ Breitbach, DH Kirn, DL Bartlett. First-in-man study of western reserve strain oncolytic vaccinia virus: safety, systemic spread, and antitumor activity. Mol Ther 2015; 23(1): 202–214
https://doi.org/10.1038/mt.2014.194
pmid: 25292189
|
122 |
CJ Breitbach, NS De Silva, TJ Falls, U Aladl, L Evgin, J Paterson, YY Sun, DG Roy, JL Rintoul, M Daneshmand, K Parato, MM Stanford, BD Lichty, A Fenster, D Kirn, H Atkins, JC Bell. Targeting tumor vasculature with an oncolytic virus. Mol Ther 2011; 19(5): 886–894
https://doi.org/10.1038/mt.2011.26
|
123 |
CJ Breitbach, R Arulanandam, N De Silva, SH Thorne, R Patt, M Daneshmand, A Moon, C Ilkow, J Burke, TH Hwang, J Heo, M Cho, H Chen, FA Angarita, C Addison, JA McCart, JC Bell, DH Kirn. Oncolytic vaccinia virus disrupts tumor-associated vasculature in humans. Cancer Res 2013; 73(4): 1265–1275
https://doi.org/10.1158/0008-5472.CAN-12-2687
pmid: 23393196
|
124 |
O Hamid, B Hoffner, E Gasal, J Hong, RD Carvajal. Oncolytic immunotherapy: unlocking the potential of viruses to help target cancer. Cancer Immunol Immunother 2017; 66(10): 1249–1264
https://doi.org/10.1007/s00262-017-2025-8
pmid: 28712033
|
125 |
JJ Cody, DR Hurst. Promising oncolytic agents for metastatic breast cancer treatment. Oncolytic Virother 2015; 4: 63–73
pmid: 27512671
|
126 |
TM Pearl, JM Markert, KA Cassady, MG Ghonime. Oncolytic virus-based cytokine expression to improve immune activity in brain and solid tumors. Mol Ther Oncolytics 2019; 13: 14–21
https://doi.org/10.1016/j.omto.2019.03.001
pmid: 30997392
|
127 |
JC Roth, KA Cassady, JJ Cody, JN Parker, KH Price, JM Coleman, JO Peggins, PE Noker, NW Powers, SD Grimes, SL Carroll, GY Gillespie, RJ Whitley, JM Markert. Evaluation of the safety and biodistribution of M032, an attenuated herpes simplex virus type 1 expressing hIL-12, after intracerebral administration to aotus nonhuman primates. Hum Gene Ther Clin Dev 2014; 25(1): 16–27
https://doi.org/10.1089/humc.2013.201
pmid: 24649838
|
128 |
DM Patel, PM Foreman, LB Nabors, KO Riley, GY Gillespie, JM Markert. Design of a phase I clinical trial to evaluate M032, a genetically engineered HSV-1 expressing IL-12, in patients with recurrent/progressive glioblastoma multiforme, anaplastic astrocytoma, or gliosarcoma. Hum Gene Ther Clin Dev 2016; 27(2): 69–78
https://doi.org/10.1089/humc.2016.031
pmid: 27314913
|
129 |
Y Wu, J He, Y An, X Wang, Y Liu, S Yan, X Ye, J Qi, S Zhu, Q Yu, J Yin, D Li, W Wang. Recombinant Newcastle disease virus (NDV/Anh-IL-2) expressing human IL-2 as a potential candidate for suppresses growth of hepatoma therapy. J Pharmacol Sci 2016; 132(1): 24–30
https://doi.org/10.1016/j.jphs.2016.03.012
pmid: 27174862
|
130 |
K Hock, J Laengle, I Kuznetsova, A Egorov, B Hegedus, B Dome, T Wekerle, M Sachet, M Bergmann. Oncolytic influenza A virus expressing interleukin-15 decreases tumor growth in vivo. Surgery 2017; 161(3): 735–746
https://doi.org/10.1016/j.surg.2016.08.045
pmid: 27776794
|
131 |
J Puskas, D Skrombolas, A Sedlacek, E Lord, M Sullivan, J Frelinger. Development of an attenuated interleukin-2 fusion protein that can be activated by tumour-expressed proteases. Immunology 2011; 133(2): 206–220
https://doi.org/10.1111/j.1365-2567.2011.03428.x
pmid: 21426339
|
132 |
Z Liu, Y Ge, H Wang, C Ma, M Feist, S Ju, ZS Guo, DL Bartlett. Modifying the cancer-immune set point using vaccinia virus expressing re-designed interleukin-2. Nat Commun 2018; 9(1): 4682
https://doi.org/10.1038/s41467-018-06954-z
pmid: 30410056
|
133 |
K Autio, A Knuuttila, A Kipar, S Pesonen, K Guse, S Parviainen, M Rajamäki, O Laitinen-Vapaavuori, M Vähä-Koskela, A Kanerva, A Hemminki. Safety and biodistribution of a double-deleted oncolytic vaccinia virus encoding CD40 ligand in laboratory Beagles. Mol Ther Oncolytics 2014; 1: 14002
https://doi.org/10.1038/mto.2014.2
pmid: 27119092
|
134 |
JH Huang, SN Zhang, KJ Choi, IK Choi, JH Kim, MG Lee, H Kim, CO Yun. Therapeutic and tumor-specific immunity induced by combination of dendritic cells and oncolytic adenovirus expressing IL-12 and 4-1BBL. Mol Ther 2010; 18(2): 264–274
https://doi.org/10.1038/mt.2009.205
pmid: 19738604
|
135 |
AE Moran, M Kovacsovics-Bankowski, AD Weinberg. The TNFRs OX40, 4-1BB, and CD40 as targets for cancer immunotherapy. Curr Opin Immunol 2013; 25(2): 230–237
https://doi.org/10.1016/j.coi.2013.01.004
pmid: 23414607
|
136 |
E Eriksson, I Milenova, J Wenthe, M Stahle, J Leja-Jarblad, G Ullenhag, A Dimberg, R Moreno, R Alemany, A. LoskogShaping the tumor stroma and sparking immune activation by CD40 and 4–1BB signaling induced by an armed oncolytic virus. Clin Cancer Res 2017; 23(19): 5846–5857
https://doi.org/10.1158/1078-0432.CCR-17-0285
|
137 |
A Rosewell Shaw, M Suzuki. Recent advances in oncolytic adenovirus therapies for cancer. Curr Opin Virol 2016; 21: 9–15
https://doi.org/10.1016/j.coviro.2016.06.009
pmid: 27379906
|
138 |
SA Navarro, E Carrillo, C Griñán-Lisón, A Martín, M Perán, JA Marchal, H Boulaiz. Cancer suicide gene therapy: a patent review. Expert Opin Ther Pat 2016; 26(9): 1095–1104
https://doi.org/10.1080/13543776.2016.1211640
pmid: 27424657
|
139 |
W Zhu, H Zhang, Y Shi, M Song, B Zhu, L Wei. Oncolytic adenovirus encoding tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits the growth and metastasis of triple-negative breast cancer. Cancer Biol Ther 2013; 14(11): 1016–1023
https://doi.org/10.4161/cbt.26043
pmid: 24025362
|
140 |
J Hu, H Wang, J Gu, X Liu, X Zhou. Trail armed oncolytic poxvirus suppresses lung cancer cell by inducing apoptosis. Acta Biochim Biophys Sin (Shanghai) 2018; 50(10): 1018–1027
https://doi.org/10.1093/abbs/gmy096
pmid: 30137199
|
141 |
S Chen, YQ Li, XZ Yin, SZ Li, YL Zhu, YY Fan, WJ Li, YL Cui, J Zhao, X Li, QG Zhang, NY Jin. Recombinant adenoviruses expressing apoptin suppress the growth of MCF7 breast cancer cells and affect cell autophagy. Oncol Rep 2019; 41(5): 2818–2832
https://doi.org/10.3892/or.2019.7077
pmid: 30896879
|
142 |
W Zhou, S Dai, H Zhu, Z Song, Y Cai, JB Lee, Z Li, X Hu, B Fang, C He, X Huang. Telomerase-specific oncolytic adenovirus expressing TRAIL suppresses peritoneal dissemination of gastric cancer. Gene Ther 2017; 24(4): 199–207
https://doi.org/10.1038/gt.2017.2
pmid: 28075429
|
143 |
L Liu, W Wu, G Zhu, L Liu, G Guan, X Li, N Jin, B Chi. Therapeutic efficacy of an hTERT promoter-driven oncolytic adenovirus that expresses apoptin in gastric carcinoma. Int J Mol Med 2012; 30(4): 747–754
https://doi.org/10.3892/ijmm.2012.1077
pmid: 22842823
|
144 |
S Schepelmann, CJ Springer. Viral vectors for gene-directed enzyme prodrug therapy. Curr Gene Ther 2006; 6(6): 647–670
https://doi.org/10.2174/156652306779010679
pmid: 17168697
|
145 |
J Zhang, V Kale, M Chen. Gene-directed enzyme prodrug therapy. AAPS J 2015; 17(1): 102–110
https://doi.org/10.1208/s12248-014-9675-7
pmid: 25338741
|
146 |
S Chalikonda, MH Kivlen, ME O’Malley, XD Eric Dong, JA McCart, MC Gorry, XY Yin, CK Brown, HJ Zeh 3rd, ZS Guo, DL Bartlett. Oncolytic virotherapy for ovarian carcinomatosis using a replication-selective vaccinia virus armed with a yeast cytosine deaminase gene. Cancer Gene Ther 2008; 15(2): 115–125
https://doi.org/10.1038/sj.cgt.7701110
pmid: 18084242
|
147 |
JD Dias, I Liikanen, K Guse, J Foloppe, M Sloniecka, I Diaconu, V Rantanen, M Eriksson, T Hakkarainen, M Lusky, P Erbs, S Escutenaire, A Kanerva, S Pesonen, V Cerullo, A Hemminki. Targeted chemotherapy for head and neck cancer with a chimeric oncolytic adenovirus coding for bifunctional suicide protein FCU1. Clin Cancer Res 2010; 16(9): 2540–2549
https://doi.org/10.1158/1078-0432.CCR-09-2974
pmid: 20388844
|
148 |
J Foloppe, J Kempf, N Futin, J Kintz, P Cordier, C Pichon, A Findeli, F Vorburger, E Quemeneur, P Erbs. The enhanced tumor specificity of TG6002, an armed oncolytic vaccinia virus deleted in two genes involved in nucleotide metabolism. Mol Ther Oncolytics 2019; 14: 1–14
https://doi.org/10.1016/j.omto.2019.03.005
pmid: 31011628
|
149 |
P Erbs, E Regulier, J Kintz, P Leroy, Y Poitevin, F Exinger, R Jund, M Mehtali. In vivo cancer gene therapy by adenovirus-mediated transfer of a bifunctional yeast cytosine deaminase/uracil phosphoribosyltransferase fusion gene. Cancer Res 2000; 60(14): 3813–3822
pmid: 10919655
|
150 |
E Smith, J Breznik, BD Lichty. Strategies to enhance viral penetration of solid tumors. Hum Gene Ther 2011; 22(9): 1053–1060
https://doi.org/10.1089/hum.2010.227
pmid: 21443415
|
151 |
JH Kim, YS Lee, H Kim, JH Huang, AR Yoon, CO Yun. Relaxin expression from tumor-targeting adenoviruses and its intratumoral spread, apoptosis induction, and efficacy. J Natl Cancer Inst 2006; 98(20): 1482–1493
https://doi.org/10.1093/jnci/djj397
pmid: 17047197
|
152 |
S Schäfer, S Weibel, U Donat, Q Zhang, RJ Aguilar, NG Chen, AA Szalay. Vaccinia virus-mediated intra-tumoral expression of matrix metalloproteinase 9 enhances oncolysis of PC-3 xenograft tumors. BMC Cancer 2012; 12(1): 366
https://doi.org/10.1186/1471-2407-12-366
pmid: 22917220
|
153 |
N Dmitrieva, L Yu, M Viapiano, TP Cripe, EA Chiocca, JC Glorioso, B Kaur. Chondroitinase ABC I-mediated enhancement of oncolytic virus spread and antitumor efficacy. Clin Cancer Res 2011; 17(6): 1362–1372
https://doi.org/10.1158/1078-0432.CCR-10-2213
|
154 |
S Guedan, JJ Rojas, A Gros, E Mercade, M Cascallo, R Alemany. Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. Mol Ther 2010; 18(7): 1275–1283
https://doi.org/10.1038/mt.2010.79
pmid: 20442708
|
155 |
A Rodríguez-García, M Giménez-Alejandre, JJ Rojas, R Moreno, M Bazan-Peregrino, M Cascalló, R Alemany. Safety and efficacy of VCN-01, an oncolytic adenovirus combining fiber HSG-binding domain replacement with RGD and hyaluronidase expression. Clin Cancer Res 2015; 21(6): 1406–1418
https://doi.org/10.1158/1078-0432.CCR-14-2213
pmid: 25391696
|
156 |
G Pascual-Pasto, M Bazan-Peregrino, NG Olaciregui, CA Restrepo-Perdomo, A Mato-Berciano, D Ottaviani, K Weber, G Correa, S Paco, M Vila-Ubach, M Cuadrado-Vilanova, H Castillo-Ecija, G Botteri, L Garcia-Gerique, H Moreno-Gilabert, M Gimenez-Alejandre, P Alonso-Lopez, M Farrera-Sal, S Torres-Manjon, D Ramos-Lozano, R Moreno, I Aerts, F Doz, N Cassoux, E Chapeaublanc, M Torrebadell, M Roldan, A König, M Suñol, J Claverol, C Lavarino, T Carmen de, L Fu, F Radvanyi, FL Munier, J Catalá-Mora, J Mora, R Alemany, M Cascalló, GL Chantada, AM Carcaboso. Therapeutic targeting of the RB1 pathway in retinoblastoma with the oncolytic adenovirus VCN-01. Sci Transl Med 2019; 11(476): eaat9321
https://doi.org/10.1126/scitranslmed.aat9321
|
157 |
C Viallard, B Larrivée. Tumor angiogenesis and vascular normalization: alternative therapeutic targets. Angiogenesis 2017; 20(4): 409–426
https://doi.org/10.1007/s10456-017-9562-9
pmid: 28660302
|
158 |
KS Siveen, K Prabhu, R Krishnankutty, S Kuttikrishnan, M Tsakou, FQ Alali, S Dermime, RM Mohammad, S Uddin. Vascular endothelial growth factor (VEGF) signaling in tumour vascularization: potential and challenges. Curr Vasc Pharmacol 2017; 15(4): 339–351
https://doi.org/10.2174/1570161115666170105124038
pmid: 28056756
|
159 |
A Frentzen, YA Yu, N Chen, Q Zhang, S Weibel, V Raab, AA Szalay. Anti-VEGF single-chain antibody GLAF-1 encoded by oncolytic vaccinia virus significantly enhances antitumor therapy. Proc Natl Acad Sci USA 2009; 106(31): 12915–12920
https://doi.org/10.1073/pnas.0900660106
pmid: 19617539
|
160 |
JM Goodwin, AD Schmitt, CM McGinn, BC Fuchs, D Kuruppu, KK Tanabe, M Lanuti. Angiogenesis inhibition using an oncolytic herpes simplex virus expressing endostatin in a murine lung cancer model. Cancer Invest 2012; 30(3): 243–250
https://doi.org/10.3109/07357907.2012.654870
pmid: 22360364
|
161 |
B Hutzen, HK Bid, PJ Houghton, CR Pierson, K Powell, A Bratasz, C Raffel, AW Studebaker. Treatment of medulloblastoma with oncolytic measles viruses expressing the angiogenesis inhibitors endostatin and angiostatin. BMC Cancer 2014; 14(1): 206
https://doi.org/10.1186/1471-2407-14-206
pmid: 24646176
|
162 |
T Tsuji, M Nakamori, M Iwahashi, M Nakamura, T Ojima, T Iida, M Katsuda, K Hayata, Y Ino, T Todo, H Yamaue. An armed oncolytic herpes simplex virus expressing thrombospondin-1 has an enhanced in vivo antitumor effect against human gastric cancer. Int J Cancer 2013; 132(2): 485–494
https://doi.org/10.1002/ijc.27681
pmid: 22729516
|
163 |
A Miller, SJ Russell. The use of the NIS reporter gene for optimizing oncolytic virotherapy. Expert Opin Biol Ther 2016; 16(1): 15–32
https://doi.org/10.1517/14712598.2016.1100162
pmid: 26457362
|
164 |
D Haddad. Genetically engineered vaccinia viruses as agents for cancer treatment, imaging, and transgene delivery. Front Oncol 2017; 7: 96
https://doi.org/10.3389/fonc.2017.00096
pmid: 28589082
|
165 |
E Domingo-Musibay, C Allen, C Kurokawa, JJ Hardcastle, I Aderca, P Msaouel, A Bansal, H Jiang, TR DeGrado, E Galanis. Measles Edmonston vaccine strain derivatives have potent oncolytic activity against osteosarcoma. Cancer Gene Ther 2014; 21(11): 483–490
https://doi.org/10.1038/cgt.2014.54
pmid: 25394505
|
166 |
K Jiang, C Song, L Kong, L Hu, G Lin, T Ye, G Yao, Y Wang, H Chen, W Cheng, MP Barr, Q Liu, G Zhang, C Ding, S Meng. Recombinant oncolytic Newcastle disease virus displays antitumor activities in anaplastic thyroid cancer cells. BMC Cancer 2018; 18(1): 746
https://doi.org/10.1186/s12885-018-4522-3
pmid: 30021550
|
167 |
S Aref, K Bailey, A Fielding. Measles to the rescue: a review of oncolytic measles virus. Viruses 2016; 8(10): 294
https://doi.org/10.3390/v8100294
pmid: 27782084
|
168 |
KW Peng, S Facteau, T Wegman, D O’Kane, SJ Russell. Non-invasive in vivo monitoring of trackable viruses expressing soluble marker peptides. Nat Med 2002; 8(5): 527–531
https://doi.org/10.1038/nm0502-527
pmid: 11984600
|
169 |
S Robinson, E Galanis. Potential and clinical translation of oncolytic measles viruses. Expert Opin Biol Ther 2017; 17(3): 353–363
https://doi.org/10.1080/14712598.2017.1288713
pmid: 28129716
|
170 |
DB Johnson, I Puzanov, MC Kelley. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy 2015; 7(6): 611–619
https://doi.org/10.2217/imt.15.35
pmid: 26098919
|
171 |
J Bell, G McFadden. Viruses for tumor therapy. Cell Host Microbe 2014; 15(3): 260–265
https://doi.org/10.1016/j.chom.2014.01.002
pmid: 24629333
|
172 |
RH Andtbacka, SS Agarwala, DW Ollila, S Hallmeyer, M Milhem, T Amatruda, JJ Nemunaitis, KJ Harrington, L Chen, M Shilkrut, M Ross, HL Kaufman. Cutaneous head and neck melanoma in OPTiM, a randomized phase 3 trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor for the treatment of unresected stage IIIB/IIIC/IV melanoma. Head Neck 2016; 38(12): 1752–1758
https://doi.org/10.1002/hed.24522
pmid: 27407058
|
173 |
IR Eissa, Y Naoe, I Bustos-Villalobos, T Ichinose, M Tanaka, W Zhiwen, N Mukoyama, T Morimoto, N Miyajima, H Hitoki, S Sumigama, B Aleksic, Y Kodera, H Kasuya. Genomic signature of the natural oncolytic herpes simplex virus HF10 and its therapeutic role in preclinical and clinical trials. Front Oncol 2017; 7: 149
https://doi.org/10.3389/fonc.2017.00149
pmid: 28770166
|
174 |
N Martínez-Vélez, M Garcia-Moure, M Marigil, M González-Huarriz, M Puigdelloses, J Gallego Pérez-Larraya, M Zalacaín, L Marrodán, M Varela-Guruceaga, V Laspidea, JJ Aristu, LI Ramos, S Tejada-Solís, R Díez-Valle, C Jones, A Mackay, JA Martínez-Climent, MJ García-Barchino, E Raabe, M Monje, OJ Becher, MP Junier, EA El-Habr, H Chneiweiss, G Aldave, H Jiang, J Fueyo, A Patiño-García, C Gomez-Manzano, MM Alonso. The oncolytic virus Delta-24-RGD elicits an antitumor effect in pediatric glioma and DIPG mouse models. Nat Commun 2019; 10(1): 2235
https://doi.org/10.1038/s41467-019-10043-0
pmid: 31138805
|
175 |
O Nakajima, D Ichimaru, Y Urata, T Fujiwara, T Horibe, M Kohno, K Kawakami. Use of telomelysin (OBP-301) in mouse xenografts of human head and neck cancer. Oncol Rep 2009; 22(5): 1039–1043
pmid: 19787218
|
176 |
CJ Breitbach, K Parato, J Burke, TH Hwang, JC Bell, DH Kirn. Pexa-Vec double agent engineered vaccinia: oncolytic and active immunotherapeutic. Curr Opin Virol 2015; 13: 49–54
https://doi.org/10.1016/j.coviro.2015.03.016
pmid: 25900822
|
177 |
P Singh, SK Pal, A Alex, N Agarwal. Development of PROSTVAC immunotherapy in prostate cancer. Future Oncol 2015; 11(15): 2137–2148
https://doi.org/10.2217/fon.15.120
pmid: 26235179
|
178 |
SA Felt, VZ Grdzelishvili. Recent advances in vesicular stomatitis virus-based oncolytic virotherapy: a 5-year update. J Gen Virol 2017; 98(12): 2895–2911
https://doi.org/10.1099/jgv.0.000980
pmid: 29143726
|
179 |
MC Brown, M Gromeier. Cytotoxic and immunogenic mechanisms of recombinant oncolytic poliovirus. Curr Opin Virol 2015; 13: 81–85
https://doi.org/10.1016/j.coviro.2015.05.007
pmid: 26083317
|
180 |
A Desjardins, M Gromeier, JE Herndon 2nd, N Beaubier, DP Bolognesi, AH Friedman, HS Friedman, F McSherry, AM Muscat, S Nair, KB Peters, D Randazzo, JH Sampson, G Vlahovic, WT Harrison, RE McLendon, D Ashley, DD Bigner. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med 2018; 379(2): 150–161
https://doi.org/10.1056/NEJMoa1716435
pmid: 29943666
|
181 |
MJ Atherton, KB Stephenson, JK Nikota, QN Hu, A Nguyen, Y Wan, BD Lichty. Preclinical development of peptide vaccination combined with oncolytic MG1-E6E7 for HPV-associated cancer. Vaccine 2018; 36(16): 2181–2192
https://doi.org/10.1016/j.vaccine.2018.02.070
pmid: 29544689
|
182 |
J Gong, E Sachdev, AC Mita, MM Mita. Clinical development of reovirus for cancer therapy: an oncolytic virus with immune-mediated antitumor activity. World J Methodol 2016; 6(1):25–42
https://doi.org/10.5662/wjm.v6.i1.25
pmid: 27019795
|
183 |
K Geletneky, JPF Nüesch, A Angelova, I Kiprianova, J Rommelaere. Double-faceted mechanism of parvoviral oncosuppression. Curr Opin Virol 2015; 13: 17–24
https://doi.org/10.1016/j.coviro.2015.03.008
pmid: 25841215
|
184 |
J Hajda, M Lehmann, O Krebs, M Kieser, K Geletneky, D Jäger, M Dahm, B Huber, T Schöning, O Sedlaczek, A Stenzinger, N Halama, V Daniel, B Leuchs, A Angelova, J Rommelaere, CE Engeland, C Springfeld, G Ungerechts. A non-controlled, single arm, open label, phase II study of intravenous and intratumoral administration of ParvOryx in patients with metastatic, inoperable pancreatic cancer: ParvOryx02 protocol. BMC Cancer 2017; 17(1): 576
https://doi.org/10.1186/s12885-017-3604-y
pmid: 28851316
|
185 |
RM Lorence, MS Roberts, JD O’Neil, WS Groene, JA Miller, SN Mueller, MK Bamat. Phase 1 clinical experience using intravenous administration of PV701, an oncolytic Newcastle disease virus. Curr Cancer Drug Targets 2007; 7(2): 157–167
https://doi.org/10.2174/156800907780058853
pmid: 17346107
|
186 |
M Bauzon, T Hermiston. Armed therapeutic viruses — a disruptive therapy on the horizon of cancer immunotherapy. Front Immunol 2014; 5: 74
https://doi.org/10.3389/fimmu.2014.00074
pmid: 24605114
|
187 |
A Nguyen, L Ho, Y Wan. Chemotherapy and oncolytic virotherapy: advanced tactics in the war against cancer. Front Oncol 2014; 4: 145
https://doi.org/10.3389/fonc.2014.00145
pmid: 24967214
|
188 |
SL Topalian, CG Drake, DM Pardoll. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell 2015; 27(4): 450–461
https://doi.org/10.1016/j.ccell.2015.03.001
pmid: 25858804
|
189 |
DM Pardoll. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12(4): 252–264
https://doi.org/10.1038/nrc3239
pmid: 22437870
|
190 |
JE Rosenberg, J Hoffman-Censits, T Powles, MS van der Heijden, AV Balar, A Necchi, N Dawson, PH O’Donnell, A Balmanoukian, Y Loriot, S Srinivas, MM Retz, P Grivas, RW Joseph, MD Galsky, MT Fleming, DP Petrylak, JL Perez-Gracia, HA Burris, D Castellano, C Canil, J Bellmunt, D Bajorin, D Nickles, R Bourgon, GM Frampton, N Cui, S Mariathasan, O Abidoye, GD Fine, R Dreicer. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 2016; 387(10031): 1909–1920
https://doi.org/10.1016/S0140-6736(16)00561-4
pmid: 26952546
|
191 |
HO Alsaab, S Sau, R Alzhrani, K Tatiparti, K Bhise, SK Kashaw, AK Iyer. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol 2017; 8: 561
https://doi.org/10.3389/fphar.2017.00561
pmid: 28878676
|
192 |
Q Wang, X Wu. Primary and acquired resistance to PD-1/PD-L1 blockade in cancer treatment. Int Immunopharmacol 2017; 46: 210–219
https://doi.org/10.1016/j.intimp.2017.03.015
pmid: 28324831
|
193 |
A Kalbasi, A Ribas. Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol 2020; 20(1): 25–39
pmid: 31570880
|
194 |
Z Liu, R Ravindranathan, P Kalinski, ZS Guo, DL Bartlett. Rational combination of oncolytic vaccinia virus and PD-L1 blockade works synergistically to enhance therapeutic efficacy. Nat Commun 2017; 8(1): 14754
https://doi.org/10.1038/ncomms14754
pmid: 28345650
|
195 |
CY Chen, PY Wang, B Hutzen, L Sprague, HM Swain, JK Love, JR Stanek, L Boon, J Conner, TP Cripe. Cooperation of oncolytic herpes virotherapy and PD-1 blockade in murine rhabdomyosarcoma models. Sci Rep 2017; 7(1): 2396
https://doi.org/10.1038/s41598-017-02503-8
pmid: 28539588
|
196 |
J Hardcastle, L Mills, CS Malo, F Jin, C Kurokawa, H Geekiyanage, M Schroeder, J Sarkaria, AJ Johnson, E Galanis. Immunovirotherapy with measles virus strains in combination with anti-PD-1 antibody blockade enhances antitumor activity in glioblastoma treatment. Neuro Oncol 2017; 19(4): 493–502
pmid: 27663389
|
197 |
W Shen, MM Patnaik, A Ruiz, SJ Russell, KW Peng. Immunovirotherapy with vesicular stomatitis virus and PD-L1 blockade enhances therapeutic outcome in murine acute myeloid leukemia. Blood 2016; 127(11): 1449–1458
https://doi.org/10.1182/blood-2015-06-652503
pmid: 26712908
|
198 |
D Saha, RL Martuza, SD Rabkin. Macrophage polarization contributes to glioblastoma eradication by combination immunovirotherapy and immune checkpoint blockade. Cancer Cell 2017; 32(2): 253–267.e5
https://doi.org/10.1016/j.ccell.2017.07.006
pmid: 28810147
|
199 |
L Fend, T Yamazaki, C Remy, C Fahrner, M Gantzer, V Nourtier, X Préville, E Quéméneur, O Kepp, J Adam, A Marabelle, JM Pitt, G Kroemer, L Zitvogel. Immune checkpoint blockade, immunogenic chemotherapy or IFN-a blockade boost the local and abscopal effects of oncolytic virotherapy. Cancer Res 2017; 77(15): 4146–4157
https://doi.org/10.1158/0008-5472.CAN-16-2165
pmid: 28536278
|
200 |
A Ribas, R Dummer, I Puzanov, A VanderWalde, RHI Andtbacka, O Michielin, AJ Olszanski, J Malvehy, J Cebon, E Fernandez, JM Kirkwood, TF Gajewski, L Chen, KS Gorski, AA Anderson, SJ Diede, ME Lassman, J Gansert, FS Hodi, GV Long. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 2017; 170(6): 1109–1119.e10
https://doi.org/10.1016/j.cell.2017.08.027
|
201 |
L Sun, P Funchain, JM Song, P Rayman, C Tannenbaum, J Ko, M Mcnamara, C Marcela Diaz-Montero, B Gastman. Talimogene Laherparepvec combined with anti-PD-1 based immunotherapy for unresectable stage III-IV melanoma: a case series. J Immunother Cancer 2018; 6(1): 36
https://doi.org/10.1186/s40425-018-0337-7
pmid: 29764498
|
202 |
I Puzanov, MM Milhem, D Minor, O Hamid, A Li, L Chen, M Chastain, KS Gorski, A Anderson, J Chou, HL Kaufman, RH Andtbacka. Talimogene Laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J Clin Oncol 2016; 34(22): 2619–2626
https://doi.org/10.1200/JCO.2016.67.1529
pmid: 27298410
|
203 |
J Chesney, I Puzanov, F Collichio, P Singh, MM Milhem, J Glaspy, O Hamid, M Ross, P Friedlander, C Garbe, TF Logan, A Hauschild, C Lebbé, L Chen, JJ Kim, J Gansert, RHI Andtbacka, HL Kaufman. Randomized, open-label phase II study evaluating the efficacy and safety of Talimogene Laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J Clin Oncol 2018; 36(17): 1658–1667
https://doi.org/10.1200/JCO.2017.73.7379
pmid: 28981385
|
204 |
A Wing, CA Fajardo, AD Posey, C Shaw, T Da, RM Young, R Alemany, CH June, S Guedan. Improving CART-cell therapy of solid tumors with oncolytic virus–driven production of a bispecific T-cell engager. Cancer Immunol Res 2018; 6(5): 605–616
https://doi.org/10.1158/2326-6066.CIR-17-0314
|
205 |
K Watanabe, Y Luo, T Da, S Guedan, M Ruella, J Scholler, B Keith, RM Young, B Engels, S Sorsa, M Siurala, R Havunen, S Tähtinen, A Hemminki, CH June. Pancreatic cancer therapy with combined mesothelin-redirected chimeric antigen receptor T cells and cytokine-armed oncolytic adenoviruses. JCI Insight 2018; 3(7): e99573
https://doi.org/10.1172/jci.insight.99573
pmid: 29618658
|
206 |
N Nishio, I Diaconu, H Liu, V Cerullo, I Caruana, V Hoyos, L Bouchier-Hayes, B Savoldo, G Dotti. Armed oncolytic virus enhances immune functions of chimeric antigen receptor-modified T cells in solid tumors. Cancer Res 2014; 74(18): 5195–5205
https://doi.org/10.1158/0008-5472.CAN-14-0697
pmid: 25060519
|
207 |
A Rosewell Shaw, CE Porter, N Watanabe, K Tanoue, A Sikora, S Gottschalk, MK Brenner, M Suzuki. Adenovirotherapy delivering cytokine and checkpoint inhibitor augments CAR T cells against metastatic head and neck cancer. Mol Ther 2017; 25(11): 2440–2451
https://doi.org/10.1016/j.ymthe.2017.09.010
pmid: 28974431
|
208 |
K Tanoue, A Rosewell Shaw, N Watanabe, C Porter, B Rana, S Gottschalk, M Brenner, M Suzuki. Armed oncolytic adenovirus-expressing PD-L1 mini-body enhances antitumor effects of chimeric antigen receptor T cells in solid tumors. Cancer Res 2017; 77(8): 2040–2051
https://doi.org/10.1158/0008-5472.CAN-16-1577
pmid: 28235763
|
209 |
JT Pento. Monoclonal antibodies for the treatment of cancer. Anticancer Res 2017; 37(11): 5935–5939
pmid: 29061772
|
210 |
[No authors listed] Cemiplimab approved for treatment of CSCC. Cancer Discov 2018; 8(12): OF2
https://doi.org/10.1158/2159-8290.CD-NB2018-140
pmid: 30377167
|
211 |
YY Syed. Durvalumab: first global approval. Drugs 2017; 77(12): 1369–1376
https://doi.org/10.1007/s40265-017-0782-5
pmid: 28643244
|
212 |
PC Tumeh, CL Harview, JH Yearley, IP Shintaku, EJ Taylor, L Robert, B Chmielowski, M Spasic, G Henry, V Ciobanu, AN West, M Carmona, C Kivork, E Seja, G Cherry, AJ Gutierrez, TR Grogan, C Mateus, G Tomasic, JA Glaspy, RO Emerson, H Robins, RH Pierce, DA Elashoff, C Robert, A Ribas. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014; 515(7528): 568–571
https://doi.org/10.1038/nature13954
pmid: 25428505
|
213 |
K Taipale, I Liikanen, J Juhila, A Karioja-Kallio, M Oksanen, R Turkki, N Linder, J Lundin, A Ristimäki, A Kanerva, A Koski, T Joensuu, M Vähä-Koskela, A Hemminki. T-cell subsets in peripheral blood and tumors of patients treated with oncolytic adenoviruses. Mol Ther 2015; 23(5): 964–973
https://doi.org/10.1038/mt.2015.17
pmid: 25655312
|
214 |
S Pesonen, I Diaconu, L Kangasniemi, T Ranki, A Kanerva, SK Pesonen, U Gerdemann, AM Leen, K Kairemo, M Oksanen, E Haavisto, SL Holm, A Karioja-Kallio, S Kauppinen, KP Partanen, L Laasonen, T Joensuu, T Alanko, V Cerullo, A Hemminki. Oncolytic immunotherapy of advanced solid tumors with a CD40L-expressing replicating adenovirus: assessment of safety and immunologic responses in patients. Cancer Res 2012; 72(7): 1621–1631
https://doi.org/10.1158/0008-5472.CAN-11-3001
pmid: 22323527
|
215 |
P Letendre, V Monga, M Milhem, Y Zakharia. Ipilimumab: from preclinical development to future clinical perspectives in melanoma. Future Oncol 2017; 13(7): 625–636
https://doi.org/10.2217/fon-2016-0385
pmid: 27882779
|
216 |
JM Pagel, HJ West. Chimeric antigen receptor (CAR) T-cell therapy. JAMA Oncol 2017; 3(11): 1595
https://doi.org/10.1001/jamaoncol.2017.2989
pmid: 28880983
|
217 |
JK Anderson, A Mehta. A review of chimeric antigen receptor T-cells in lymphoma. Expert Rev Hematol 2019; 12(7): 551–561
https://doi.org/10.1080/17474086.2019.1629901
pmid: 31177852
|
218 |
L Mikkilineni, JN Kochenderfer. Chimeric antigen receptor T-cell therapies for multiple myeloma. Blood 2017; 130(24): 2594–2602
https://doi.org/10.1182/blood-2017-06-793869
pmid: 28928126
|
219 |
HJ Jackson, S Rafiq, RJ Brentjens. Driving CAR T-cells forward. Nat Rev Clin Oncol 2016; 13(6): 370–383
https://doi.org/10.1038/nrclinonc.2016.36
pmid: 27000958
|
220 |
KB Long, RM Young, AC Boesteanu, MM Davis, JJ Melenhorst, SF Lacey, DA DeGaramo, BL Levine, JA Fraietta. CAR T cell therapy of non-hematopoietic malignancies: detours on the road to clinical success. Front Immunol 2018; 9: 2740
https://doi.org/10.3389/fimmu.2018.02740
pmid: 30559740
|
221 |
RJ Brentjens, ML Davila, I Riviere, J Park, X Wang, LG Cowell, S Bartido, J Stefanski, C Taylor, M Olszewska, O Borquez-Ojeda, J Qu, T Wasielewska, Q He, Y Bernal, IV Rijo, C Hedvat, R Kobos, K Curran, P Steinherz, J Jurcic, T Rosenblat, P Maslak, M Frattini, M Sadelain. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med 2013; 5(177): 177ra38
https://doi.org/10.1126/scitranslmed.3005930
pmid: 23515080
|
222 |
J Li, W Li, K Huang, Y Zhang, G Kupfer, Q Zhao. Chimeric antigen receptor T cell (CAR-T) immunotherapy for solid tumors: lessons learned and strategies for moving forward. J Hematol Oncol 2018; 11(1): 22
https://doi.org/10.1186/s13045-018-0568-6
pmid: 29433552
|
223 |
TF Gajewski, SR Woo, Y Zha, R Spaapen, Y Zheng, L Corrales, S Spranger. Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr Opin Immunol 2013; 25(2): 268–276
https://doi.org/10.1016/j.coi.2013.02.009
pmid: 23579075
|
224 |
Y Lavin, S Kobayashi, A Leader, ED Amir, N Elefant, C Bigenwald, R Remark, R Sweeney, CD Becker, JH Levine, K Meinhof, A Chow, S Kim-Shulze, A Wolf, C Medaglia, H Li, JA Rytlewski, RO Emerson, A Solovyov, BD Greenbaum, C Sanders, M Vignali, MB Beasley, R Flores, S Gnjatic, D Pe’er, A Rahman, I Amit, M Merad. Innate immune landscape in early lung adenocarcinoma by paired single-cell analyses. Cell 2017; 169(4): 750–765.e17
https://doi.org/10.1016/j.cell.2017.04.014
pmid: 28475900
|
225 |
AI Salter, SR Riddell. A BiTE from cancer’s intracellular menu. Nat Biotechnol 2015; 33(10): 1040–1041
https://doi.org/10.1038/nbt.3370
pmid: 26448086
|
226 |
AM Huehls, TA Coupet, CL Sentman. Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol 2015; 93(3): 290–296
https://doi.org/10.1038/icb.2014.93
pmid: 25367186
|
227 |
J Stieglmaier, J Benjamin, D Nagorsen. Utilizing the BiTE (bispecific T-cell engager) platform for immunotherapy of cancer. Expert Opin Biol Ther 2015; 15(8): 1093–1099
https://doi.org/10.1517/14712598.2015.1041373
pmid: 25971805
|
228 |
EM Scott, MR Duffy, JD Freedman, KD Fisher, LW Seymour. Solid tumor immunotherapy with T cell engager-armed oncolytic viruses. Macromol Biosci 2018; 18(1): 1700187
https://doi.org/10.1002/mabi.201700187
pmid: 28902983
|
229 |
A Cheung, HJ Bax, DH Josephs, KM Ilieva, G Pellizzari, J Opzoomer, J Bloomfield, M Fittall, A Grigoriadis, M Figini, S Canevari, JF Spicer, AN Tutt, SN Karagiannis. Targeting folate receptor alpha for cancer treatment. Oncotarget 2016; 7(32): 52553–52574
https://doi.org/10.18632/oncotarget.9651
pmid: 27248175
|
230 |
SN Zolov, SP Rietberg, CL Bonifant. Programmed cell death protein 1 activation preferentially inhibits CD28.CAR-T cells. Cytotherapy 2018; 20(10): 1259–1266
https://doi.org/10.1016/j.jcyt.2018.07.005
pmid: 30309710
|
231 |
L Cherkassky, A Morello, J Villena-Vargas, Y Feng, DS Dimitrov, DR Jones, M Sadelain, PS Adusumilli. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest 2016; 126(8): 3130–3144
https://doi.org/10.1172/JCI83092
pmid: 27454297
|
232 |
KM Mahoney, PD Rennert, GJ Freeman. Combination cancer immunotherapy and new immunomodulatory targets. Nat Rev Drug Discov 2015; 14(8): 561–584
https://doi.org/10.1038/nrd4591
pmid: 26228759
|
233 |
I Serganova, E Moroz, I Cohen, M Moroz, M Mane, J Zurita, L Shenker, V Ponomarev, R Blasberg. Enhancement of PSMA-directed CAR adoptive immunotherapy by PD-1/PD-L1 blockade. Mol Ther Oncolytics 2017; 4: 41–54
https://doi.org/10.1016/j.omto.2016.11.005
pmid: 28345023
|
234 |
MA Postow, R Sidlow, MD Hellmann. Immune-related adverse events associated with immune checkpoint blockade. N Engl J Med 2018; 378(2): 158–168
https://doi.org/10.1056/NEJMra1703481
pmid: 29320654
|
235 |
IM Svane, EM Verdegaal. Achievements and challenges of adoptive T cell therapy with tumor-infiltrating or blood-derived lymphocytes for metastatic melanoma: what is needed to achieve standard of care? Cancer Immunol Immunother 2014; 63(10): 1081–1091
https://doi.org/10.1007/s00262-014-1580-5
pmid: 25099366
|
236 |
MJ Besser, R Shapira-Frommer, O Itzhaki, AJ Treves, DB Zippel, D Levy, A Kubi, N Shoshani, D Zikich, Y Ohayon, D Ohayon, B Shalmon, G Markel, R Yerushalmi, S Apter, A Ben-Nun, E Ben-Ami, A Shimoni, A Nagler, J Schachter. Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clin Cancer Res 2013; 19(17): 4792–4800
https://doi.org/10.1158/1078-0432.CCR-13-0380
|
237 |
JM Santos, R Havunen, M Siurala, V Cervera-Carrascon, S Tähtinen, S Sorsa, M Anttila, P Karell, A Kanerva, A Hemminki. Adenoviral production of interleukin-2 at the tumor site removes the need for systemic postconditioning in adoptive cell therapy. Int J Cancer 2017; 141(7): 1458–1468
https://doi.org/10.1002/ijc.30839
pmid: 28614908
|
238 |
S Hamano, Y Mori, M Aoyama, H Kataoka, M Tanaka, M Ebi, E Kubota, T Mizoshita, S Tanida, RN Johnston, K Asai, T Joh. Oncolytic reovirus combined with trastuzumab enhances antitumor efficacy through TRAIL signaling in human HER2-positive gastric cancer cells. Cancer Lett 2015; 356(2 Pt B): 846–854
https://doi.org/10.1016/j.canlet.2014.10.046
pmid: 25444894
|
239 |
G Tan, H Kasuya, TT Sahin, K Yamamura, Z Wu, Y Koide, Y Hotta, T Shikano, S Yamada, A Kanzaki, T Fujii, H Sugimoto, S Nomoto, Y Nishikawa, M Tanaka, N Tsurumaru, T Kuwahara, S Fukuda, T Ichinose, T Kikumori, S Takeda, A Nakao, Y Kodera. Combination therapy of oncolytic herpes simplex virus HF10 and bevacizumab against experimental model of human breast carcinoma xenograft. Int J Cancer 2015; 136(7): 1718–1730
https://doi.org/10.1002/ijc.29163
pmid: 25156870
|
240 |
PK Bommareddy, S Aspromonte, A Zloza, SD Rabkin, HL Kaufman. MEK inhibition enhances oncolytic virus immunotherapy through increased tumor cell killing and T cell activation. Sci Transl Med 2018; 10(471): eaau0417
https://doi.org/10.1126/scitranslmed.aau0417
pmid: 30541787
|
241 |
S Abdullahi, M Jäkel, SJ Behrend, K Steiger, G Topping, T Krabbe, A Colombo, V Sandig, TS Schiergens, WE Thasler, J Werner, SF Lichtenthaler, RM Schmid, O Ebert, J Altomonte. A novel chimeric oncolytic virus vector for improved safety and efficacy as a platform for the treatment of hepatocellular carcinoma. J Virol 2018; 92(23): e01386-18
https://doi.org/10.1128/JVI.01386-18
pmid: 30232179
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|