Please wait a minute...
Frontiers of Medicine

ISSN 2095-0217

ISSN 2095-0225(Online)

CN 11-5983/R

Postal Subscription Code 80-967

2018 Impact Factor: 1.847

Front. Med.    2020, Vol. 14 Issue (6) : 786-791    https://doi.org/10.1007/s11684-020-0751-3
RESEARCH ARTICLE
Different sites of extranodal involvement may affect the survival of patients with relapsed or refractory non-Hodgkin lymphoma after chimeric antigen receptor T cell therapy
Lili Zhou, Ping Li, Shiguang Ye, Xiaochen Tang, Junbang Wang, Jie Liu(), Aibin Liang()
Department of Hematology, Tongji Hospital of Tongji University, Shanghai 200065, China
 Download: PDF(344 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Factors associated with complete and durable remissions after anti-CD19 chimeric antigen receptor T (CAR-T) cell immunotherapy for relapsed or refractory non-Hodgkin lymphoma (r/r NHL) have not been well characterized. In this study, we found that the different sites of extranodal involvement may affect response, overall survival (OS), and progression-free survival (PFS) in patients with r/r NHL treated with anti-CD19 CAR-T cells. In a cohort of 32 treated patients, 12 (37.5%) and 8 (25%) patients exhibited soft tissue lymphoma and bone marrow (BM) infiltrations, respectively, and 13 (41%) patients exhibited infiltration at other sites. The factors that may affect prognosis were identified through multivariable analysis. As an independent risk factor, soft tissue infiltration was the only factor significantly correlated with adverse prognosis (P<0.05), whereas other factors did not reach statistical significance. Furthermore, the site of extranodal tumor infiltration significantly and negatively affected OS and PFS in patients with r/r NHL treated with anti-CD19 CAR-T cell therapy. PFS and OS in patients with BM involvement were not significantly different from those of patients with lymph node involvement alone. Thus, anti-CD19 CAR-T cell therapy may improve the prognosis of patients with BM infiltration.

Keywords anti-CD19 chimeric antigen receptor T cell      soft tissue      bone marrow      relapsed or refractory non-Hodgkin lymphoma     
Corresponding Author(s): Jie Liu,Aibin Liang   
Just Accepted Date: 13 May 2020   Online First Date: 12 August 2020    Issue Date: 24 December 2020
 Cite this article:   
Lili Zhou,Ping Li,Shiguang Ye, et al. Different sites of extranodal involvement may affect the survival of patients with relapsed or refractory non-Hodgkin lymphoma after chimeric antigen receptor T cell therapy[J]. Front. Med., 2020, 14(6): 786-791.
 URL:  
https://academic.hep.com.cn/fmd/EN/10.1007/s11684-020-0751-3
https://academic.hep.com.cn/fmd/EN/Y2020/V14/I6/786
Characteristic No. of patients, n (%)
Disease type
DLBCL 24 (75%)
Non-germinal center origin (GCB) 10 (31%)
Mantle cell lymphoma (MCL) 4 (12.5%)
Follicular lymphoma IIIb 1 (3.1%)
Other aggressive lymphomas 3 (9.4%)
Age
≥65 10 (31%)
<65 22 (69%)
Sex
Male 20 (62.5%)
Female 12 (37.5%)
LDH pre-lymphodepletion above the upper limit of normal 19 (59%)
International prognostic index (IPI)
0–1 16 (50%)
2 8 (25%)
3 4 (12.5%)
4–5 4 (12.5%)
Disease stage
I or II 8 (25%)
III or IV 24 (75%)
Extranodal disease
Bone marrow 8 (25%)
Soft tissue 12 (37.5%)
Others (gastrointestinal tract, pleura, adrenal gland, others) 13 (41%)
Previous therapy
Nine or more previous lines of therapy 20 (62.5%)
Previous autologous HSCT
Y 4 (12.5%)
N 28 (87.5%)
Tab.1  Patient characteristics
Fig.1  PFS and OS in patients with r/r NHL after anti-CD19 CAR-T cell therapy. Kaplan–Meier estimates of OS (A) and PFS (B) in patients with NHL who achieved CR and did not achieve CR. The Kaplan–Meier estimates of OS (C) and PFS (D) in patients with bone marrow, soft tissue, lymph node, and others involvement.
OS (95% CI, month) PFS (95% CI, month)
Bone marrow 13 (4.5–29.0) 8 (1.7–28.7)
Other sites 6 (3.3–19.6) 5 (2.6–19.2)
Lymph node 6 (4.6–13.0) 3 (2.3–10.9)
Soft tissue 3 (2.3–6.8) 2 (1.3–4.0)
Tab.2  OS and PFS of invasive tumor sites
Variable OS PFS
P Hazard ratio 95% CI P Hazard ratio 95% CI
LDH* 0.807 1.164 0.344–3.942 0.606 1.254 0.531–2.961
Soft tissue 0.004 13.788 2.344–81.106 0.006 5.006 1.584–15.823
Bone marrow 0.352 0.522 0.133–2.051 0.532 0.683 0.207–2.256
Lymph node 0.748 0.751 0.131–4.297 0.302 1.804 0.588–5.533
Other sites 0.303 0.501 0.135–1.865 0.327 0.613 0.230–1.631
SPD 0.507 1.227 0.671–2.243 0.278 1.299 0.810–2.083
Tab.3  Multivariable analysis of factors affecting OS and PFS in patients with r/r NHL
Fig.2  Kaplan–Meier estimates of OS (A) and PFS (B) in patients with high and low expression of CD19 in peripheral blood.
1 FL Locke, A Ghobadi, CA Jacobson, DB Miklos, LJ Lekakis, OO Oluwole, Y Lin, I Braunschweig, BT Hill, JM Timmerman, A Deol, PM Reagan, P Stiff, IW Flinn, U Farooq, A Goy, PA McSweeney, J Munoz, T Siddiqi, JC Chavez, AF Herrera, NL Bartlett, JS Wiezorek, L Navale, A Xue, Y Jiang, A Bot, JM Rossi, JJ Kim, WY Go, SS Neelapu. Long-term safety and activity of axicabtagene ciloleucel in refractory large B-cell lymphoma (ZUMA-1): a single-arm, multicentre, phase 1–2 trial. Lancet Oncol 2019; 20(1): 31–42
https://doi.org/10.1016/S1470-2045(18)30864-7 pmid: 30518502
2 SS Neelapu, FL Locke, NL Bartlett, LJ Lekakis, DB Miklos, CA Jacobson, I Braunschweig, OO Oluwole, T Siddiqi, Y Lin, JM Timmerman, PJ Stiff, JW Friedberg, IW Flinn, A Goy, BT Hill, MR Smith, A Deol, U Farooq, P McSweeney, J Munoz, I Avivi, JE Castro, JR Westin, JC Chavez, A Ghobadi, KV Komanduri, R Levy, ED Jacobsen, TE Witzig, P Reagan, A Bot, J Rossi, L Navale, Y Jiang, J Aycock, M Elias, D Chang, J Wiezorek, WY Go. Axicabtagene Ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 2017; 377(26): 2531–2544
https://doi.org/10.1056/NEJMoa1707447 pmid: 29226797
3 JN Kochenderfer, RPT Somerville, T Lu, V Shi, A Bot, J Rossi, A Xue, SL Goff, JC Yang, RM Sherry, CA Klebanoff, US Kammula, M Sherman, A Perez, CM Yuan, T Feldman, JW Friedberg, MJ Roschewski, SA Feldman, L McIntyre, MA Toomey, SA Rosenberg. Lymphoma remissions caused by anti-CD19 chimeric antigen receptor T cells are associated with high serum interleukin-15 levels. J Clin Oncol 2017; 35(16): 1803–1813
https://doi.org/10.1200/JCO.2016.71.3024 pmid: 28291388
4 SJ Schuster, J Svoboda, EA Chong, SD Nasta, AR Mato, Ö Anak, JL Brogdon, I Pruteanu-Malinici, V Bhoj, D Landsburg, M Wasik, BL Levine, SF Lacey, JJ Melenhorst, DL Porter, CH June. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med 2017; 377(26): 2545–2554
https://doi.org/10.1056/NEJMoa1708566 pmid: 29226764
5 CJ Turtle, LA Hanafi, C Berger, TA Gooley, S Cherian, M Hudecek, D Sommermeyer, K Melville, B Pender, TM Budiarto, E Robinson, NN Steevens, C Chaney, L Soma, X Chen, C Yeung, B Wood, D Li, J Cao, S Heimfeld, MC Jensen, SR Riddell, DG Maloney. CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. J Clin Invest 2016; 126(6): 2123–2138
https://doi.org/10.1172/JCI85309 pmid: 27111235
6 CA Ramos, R Rouce, CS Robertson, A Reyna, N Narala, G Vyas, B Mehta, H Zhang, O Dakhova, G Carrum, RT Kamble, AP Gee, Z Mei, MF Wu, H Liu, B Grilley, CM Rooney, HE Heslop, MK Brenner, B Savoldo, G Dotti. In vivo fate and activity of second- versus third-generation CD19-specific CAR-T cells in B cell non-Hodgkin’s lymphomas. Mol Ther 2018; 26(12): 2727–2737
https://doi.org/10.1016/j.ymthe.2018.09.009 pmid: 30309819
7 JN Brudno, JN Kochenderfer. Chimeric antigen receptor T-cell therapies for lymphoma. Nat Rev Clin Oncol 2018; 15(1): 31–46
https://doi.org/10.1038/nrclinonc.2017.128 pmid: 28857075
8 AV Hirayama, J Gauthier, KA Hay, JM Voutsinas, Q Wu, T Gooley, D Li, S Cherian, X Chen, BS Pender, RM Hawkins, A Vakil, RN Steinmetz, UH Acharya, RD Cassaday, AG Chapuis, TM Dhawale, PC Hendrie, HP Kiem, RC Lynch, J Ramos, M Shadman, BG Till, SR Riddell, DG Maloney, CJ Turtle. The response to lymphodepletion impacts PFS in patients with aggressive non-Hodgkin lymphoma treated with CD19 CAR T cells. Blood 2019; 133(17): 1876–1887
https://doi.org/10.1182/blood-2018-11-887067 pmid: 30782611
9 M Byrne, OO Oluwole, B Savani, NS Majhail, BT Hill, FL Locke. Understanding and managing large B cell lymphoma relapses after chimeric antigen receptor T cell therapy. Biol Blood Marrow Transplant 2019; 25(11): e344–e351
https://doi.org/10.1016/j.bbmt.2019.06.036 pmid: 31279751
10 International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A predictive model for aggressive non-Hodgkin’s lymphoma. N Engl J Med 1993; 329(14): 987–994
https://doi.org/10.1056/NEJM199309303291402 pmid: 8141877
11 BD Cheson, RI Fisher, SF Barrington, F Cavalli, LH Schwartz, E Zucca, TA Lister; Alliance, Australasian Leukaemia and Lymphoma Group; Eastern Cooperative Oncology Group; European Mantle Cell Lymphoma Consortium; Italian Lymphoma Foundation; European Organisation for Research; Treatment of Cancer/Dutch Hemato-Oncology Group; Grupo Español de Médula Ósea; German High-Grade Lymphoma Study Group; German Hodgkin’s Study Group; Japanese Lymphorra Study Group; Lymphoma Study Association; NCIC Clinical Trials Group; Nordic Lymphoma Study Group; Southwest Oncology Group; United Kingdom National Cancer Research Institute. Recommendations for initial evaluation, staging, and response assessment of Hodgkin and non-Hodgkin lymphoma: the Lugano classification. J Clin Oncol 2014; 32(27): 3059–3068
https://doi.org/10.1200/JCO.2013.54.8800 pmid: 25113753
12 A Del Gobbo, S Fiori, G Ercoli, A Di Bernardo, A Parafioriti, S Fabris, A Iurlo, A Neri, S Bosari, U Gianelli. Primary soft tissue lymphomas: description of seven cases and review of the literature. Pathol Oncol Res 2017; 23(2): 281–286
https://doi.org/10.1007/s12253-016-0096-z pmid: 27480544
13 E Derenzini, B Casadei, C Pellegrini, L Argnani, S Pileri, PL Zinzani. Non-Hodgkin lymphomas presenting as soft tissue masses: a single center experience and meta-analysis of the published series. Clin Lymphoma Myeloma Leuk 2013; 13(3): 258–265
https://doi.org/10.1016/j.clml.2012.10.003 pmid: 23246162
14 AL Suárez, M Pulitzer, S Horwitz, A Moskowitz, C Querfeld, PL Myskowski. Primary cutaneous B-cell lymphomas: part I. Clinical features, diagnosis, and classification. J Am Acad Dermatol 2013; 69(3): 329.e1–329.e13
https://doi.org/10.1016/j.jaad.2013.06.012
15 Z Yao, L Deng, ZY Xu-Monette, GC Manyam, P, Jain A Tzankov, C Visco, G Bhagat, J Wang, K Dybkaer, W Tam, ED Hsi, JH van Krieken, M Ponzoni, AJM Ferreri, MB Moller, JN Winter, MA Piris, L Fayad, Y Liu, Y Song, RZ Orlowski, H, Kantarjian LJ Medeiros, Y Li, J Cortes, KH Young. Concordant bone marrow involvement of diffuse large B-cell lymphoma represents a distinct clinical and biological entity in the era of immunotherapy. Leukemia 2018; 32(2): 353–363
https://doi.org/10.1038/leu.2017.222 pmid: 28745330
16 JN Kochenderfer, ME Dudley, SA Feldman, WH Wilson, DE Spaner, I Maric, M Stetler-Stevenson, GQ Phan, MS Hughes, RM Sherry, JC Yang, US Kammula, L Devillier, R Carpenter, DA Nathan, RA Morgan, C Laurencot, SA Rosenberg. B-cell depletion and remissions of malignancy along with cytokine-associated toxicity in a clinical trial of anti-CD19 chimeric-antigen-receptor-transduced T cells. Blood 2012; 119(12): 2709–2720
https://doi.org/10.1182/blood-2011-10-384388 pmid: 22160384
[1] Ping Li, Ningxin Dong, Yu Zeng, Jie Liu, Xiaochen Tang, Junbang Wang, Wenjun Zhang, Shiguang Ye, Lili Zhou, Alex Hongsheng Chang, Aibin Liang. Chimeric antigen receptor T-cell therapy: a promising treatment modality for relapsed/refractory mantle cell lymphoma[J]. Front. Med., 2020, 14(6): 811-815.
[2] Hang Xiang,Xiaomei Zhang,Chao Yang,Wenhuan Xu,Xin Ge,Rong Zhang,Ya Qiu,Wanjun Sun,Fan Li,Tianyuan Xiang,Haixu Chen,Zheng Wang,Qiang Zeng. Autologous bone marrow stem cell transplantation for the treatment of ulcerative colitis complicated with herpes zoster: a case report[J]. Front. Med., 2016, 10(4): 522-526.
[3] Wen Xue,Yan Sheng,Xiangqin Weng,Yongmei Zhu,Yan Zhao,Pengpeng Xu,Xiaochun Fei,Xiaoyan Chen,Li Wang,Weili Zhao. Clinical characteristics and prognostic factors of patients with mature T-cell lymphoid malignancies: a single-institution study of 225 cases[J]. Front. Med., 2015, 9(4): 468-477.
[4] Joseph Cannova,Peter Breslin S.J.,Jiwang Zhang. Toll-like receptor signaling in hematopoietic homeostasis and the pathogenesis of hematologic diseases[J]. Front. Med., 2015, 9(3): 288-303.
[5] Somanath Padhi, Renu G’ Boy Varghese, Anita Ramdas, Manjiri Dilip Phansalkar, RajLaxmi Sarangi. Hemophagocytic lymphohistiocytosis: critical reappraisal of a potentially under-recognized condition[J]. Front Med, 2013, 7(4): 492-498.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed