Please wait a minute...
Frontiers of Physics

ISSN 2095-0462

ISSN 2095-0470(Online)

CN 11-5994/O4

Postal Subscription Code 80-965

2018 Impact Factor: 2.483

Front. Phys.    2019, Vol. 14 Issue (6) : 63301    https://doi.org/10.1007/s11467-019-0912-5
VIEWPOINT
A collection of 505 papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers
Zbigniew Tylczyński()
Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, Poznań, Poland
 Download: PDF(1615 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

This collection presents 505 papers on ferroelectricity in single crystals, ceramics and polymers in which pointed or elliptical hysteresis loops would testify to their ferroelectric properties. In some papers, the authors ensure that ferroelectricity can occur even in materials that do not have a polar axis of symmetry.

Keywords ferroelectricity      hysteresis loop      single crystals      multiferroic      polymers     
Corresponding Author(s): Zbigniew Tylczyński   
Issue Date: 27 August 2019
 Cite this article:   
Zbigniew Tylczyński. A collection of 505 papers on false or unconfirmed ferroelectric properties in single crystals, ceramics and polymers[J]. Front. Phys. , 2019, 14(6): 63301.
 URL:  
https://academic.hep.com.cn/fop/EN/10.1007/s11467-019-0912-5
https://academic.hep.com.cn/fop/EN/Y2019/V14/I6/63301
1 J. Valasek, Piezoelectric and allied phenomena in Rochelle salt, Phys. Rev. 17(4), 475 (1921)
https://doi.org/10.1103/PhysRev.17.475
2 F. Jona and G. Shirane, Ferroelectric Crystals, Pergamon Press Ltd., Oxford, 1962
3 J. F. Scott, Ferroelectrics go bananas, J. Phys.: Condens. Matter 20(2), 021001 (2008)
https://doi.org/10.1088/0953-8984/20/02/021001
4 A. Loidl, S. Krohns, J. Hemberger, and P. Lunkenheimer, Bananas go paraelectric, J. Phys.: Condens. Matter 20(19), 191001 (2008)
https://doi.org/10.1088/0953-8984/20/19/191001
5 L. Pintilie and M. Alexe, Ferroelectric-like hysteresis loop in nonferroelectric system, Appl. Phys. Lett. 87(11), 112903 (2005)
https://doi.org/10.1063/1.2045543
6 H. Kliem and B. Martin, Pseudo-ferroelectric properties by pace charge polarization, J. Phys.: Condens. Matter 20(32), 321001 (2008)
https://doi.org/10.1088/0953-8984/20/32/321001
7 B. Martin and H. Kliem, Electrode effects in solid electrolyte capacitors, J. Appl. Phys. 98(7), 074102 (2005)
https://doi.org/10.1063/1.2077844
8 H. Diamant, K. Drenck, and R. Pepinsky, Bridge for accurate measurement of ferroelectric hysteresis, Rev. Sci. Instr. 28(1), 30 (1957)
https://doi.org/10.1063/1.1715701
9 L. Corbellini, J. Plathier, C. Lacroix, C. Harnagea, D. Menard, and A. Pignolet, Hysteresis loops revisited: An efficient method to analyze ferroic materials, J. Appl. Phys. 120(12), 124101 (2016)
https://doi.org/10.1063/1.4963756
10 M. Fukunaga and Y. Noda, New technique for measuring ferroelectric and antiferroelectric hysteresis loops, J. Phys. Soc. Jpn. 77(6), 064706 (2008)
https://doi.org/10.1143/JPSJ.77.064706
11 V. Chithambaram, S. Jerome Das, S. Krishnan, M. Basheer Ahamed, and R. Arivudai Nambi, Growth and characterization of urea-oxalic acid crystals by solution growth technique, Eur. Phys. J. Appl. Phys. 64(2), 20201 (2013)
https://doi.org/10.1051/epjap/2013130108
12 R. E. Vizhi, R. Dhivya, and D. R. Babu, Synthesis, grown, optical and mechanical studies of ferroelectric urea-oxalic acid single crystals, J. Cryst. Growth 452, 213 (2016)
https://doi.org/10.1016/j.jcrysgro.2016.04.038
13 R. Dhivya, R. E. Vizhi, and D. R. Babu, Investigation on nucleation kinetics, growth and characterization of urea oxalic acid – ferroelectric single crystal, J. Cryst. Growth 468, 84 (2017)
https://doi.org/10.1016/j.jcrysgro.2016.12.045
14 S. Krishnan, J. Raj, R. Robert, and A. Ramanand, Growth and characterization of succinic acid single crystals, Cryst. Res. Technol. 42(11), 1087 (2007)
https://doi.org/10.1002/crat.200710981
15 S. Krishnan, C. J. Raj, and S. J. Das, Growth and characterization of novel ferroelectric urea-succinic acid single crystal, J. Cryst. Growth 310(14), 3313 (2008)
https://doi.org/10.1016/j.jcrysgro.2008.03.039
16 R. Dhivya, R. Ezhil Vizhi, and D. R. Babu, Nucleation kinetic of urea succinic acid – ferroelectric single crystal, AIP Conf. Proc. 1665, 100020 (2016)
https://doi.org/10.1063/1.4918048
17 B. K. Singh, N. Sinha, N. Singh, K. Kumar, M. K. Gupta, and B. Kumar, Structural, dielectric, optical and ferroelectric property of urea succinic acid crystals grown in aqueous solution containing maleic acid, J. Phys. Chem. Solids 71(12), 1774 (2010)
https://doi.org/10.1016/j.jpcs.2010.09.010
18 R. Priya, S. Krishnan, G. Bhagavannarayana, and S. Jerome Das, Growth and characterization of novel ferroelectric bis (methylammonium) tetrachlorozincate, Physica B 406(8), 1345 (2011)
https://doi.org/10.1016/j.physb.2010.12.057
19 S. Suresh, A. Ramanand, D. Jayaraman, S. M. Priya, and R. Vasanthakumari, Synthesis, structural and dielectric properties of ferroelectric dichloridoglycine zinc dihydrate single crystals, J. Miner. Mater. Charact. Eng. 10(04), 339 (2011)
https://doi.org/10.4236/jmmce.2011.104024
20 B. Uma, Rajnikant, K. SakthiMurugesan, S. Krishnan, and B. MiltonBoaz, Growth, structural, optical, thermal and dielectric properties of a novel semi-organic nonlinear optical crystal: Dichloro-diglycine zinc II, Progr. Nat. Sci.: Mater. Inter. 24, 378 (2014)
https://doi.org/10.1016/j.pnsc.2014.07.001
21 M. Shakir, B. K. Singh, B. Kumar, and G. Bhagavannarayana, Ferroelectricity in glycine picrate: An astonishing observation in a centrosymmetric crystal,Appl. Phys. Lett. 95(25), 252902 (2009)
https://doi.org/10.1063/1.3275714
22 C. Balarew, V. Spasov, and S. Tepavitcharova, Pyro- and ferroelectric properties of nGly·MeCl2·2H2O (Me= Mn, Co; n= 1, 2), Ferroelectrics 158(1), 157 (1994)
https://doi.org/10.1080/00150199408216009
23 P. Justin and K. Anitha, Influence of formic acid on optical and electrical properties of glycine crystal, Mater. Res. Express 4(11), 115101 (2017)
https://doi.org/10.1088/2053-1591/aa959e
24 M. Ben Bechir, K. Karoui, M. Tabellout, K. Guidara, and A. Ben Rhaiem, Electric and dielectric studies of the [N(CH3)3H]2CuCl4 compound at low temperature, J. Alloys. Compounds 588, 551 (2014)
https://doi.org/10.1016/j.jallcom.2013.11.141
25 J. Y. Park, J. H. Park, Y. K. Jeong, and H. M. Jang, Dynamic magnetoelectric coupling in “electronic ferroelectric” LuFe2O4, Appl. Phys. Lett. 91(15), 152903 (2007)
https://doi.org/10.1063/1.2798597
26 E. Jerusha, R. I. Shyam Kumar, S. S. Kirupavathy, and R. Gopalakrishnan, Investigations on the growth and characterisation of an isomorphous ammonium tetroxalate dihydrate superacid crystal, Optik (Stuttg.) 127(9), 3896 (2016)
https://doi.org/10.1016/j.ijleo.2016.01.091
27 M. Ben Bechir, K. Karoui, A. Bulou, M. Tabellout, K. Guidara, and A. Ben Rhaiem, [N(CH3)3H]2ZnCl4: Ferroelectric properties and characterization of phase transitions by Raman spectroscopy, J. Appl. Phys. 116(21), 214104 (2014)
https://doi.org/10.1063/1.4903303
28 S. Yadava, B. K. Pandey, S. P. Dubey, and J. P. Seth, Ferroelectricity and phase transitions in disodium hydrogen orthophosphste, Asian J. Chem. 20, 2051 (2008)
29 H. M. Mande and P. S. Ghalsasi, Designing chiral, propolar structures for observing ferroelectricity: Molecular analogue of KNO3, Cryst. Growth Des. 16(1), 3 (2016)
https://doi.org/10.1021/acs.cgd.5b01236
30 C. C. Desai and A. H. Patel, Some aspects of the electrical conductivity of ferroelectric rubidium hydrogen tartrate single crystals, J. Mater. Sci. Lett. 6(9), 1066 (1987)
https://doi.org/10.1007/BF01729134
31 H. Cui, Z. Wang, K. Takahashi, Y. Okano, H. Kobayashi, and A. Kobayashi, Ferroelectric porous molecular crystal, [Mn3(HCOO)6](C2H5OH), exhibiting ferrimagnetic transition, J. Am. Chem. Soc. 128(47), 15074 (2006)
https://doi.org/10.1021/ja0665390
32 H. Tokoro and S. Ohkoshi, Novel magnetic functionalities of Prussian blue analogs, Dalton Trans. 40(26), 6825 (2011)
https://doi.org/10.1039/c0dt01829e
33 V. Subhashini, S. Ponnusamy, and C. Muthamizhchelvan, Growth, optical, thermal, piezo and ferroelectric studies on ethylenediamine ditartrate dihydrate (EDADTDH) single crystals, J. Cryst. Growth 312(7), 1040 (2010)
https://doi.org/10.1016/j.jcrysgro.2010.01.014
34 S. Kalyanaraman, P. M. Shajinshinu, and S. Vijayalakshmi, Refractive index, band gap energy, dielectric constant and polarizability calculations of ferroelectric Ethylenediaminium Tetrachlorozincate crystal, J. Phys. Chem. Solids 86, 108 (2015)
https://doi.org/10.1016/j.jpcs.2015.07.007
35 M. Loganayaki and P. Murugakoothan, Studies on dielectric and ferroelectric behaviour of L-alanine single crystal, Asian J. Chem. 23, 5089 (2011)
36 B. Want and R. Samad, Dielectric, ferroelectric and optical behaviour of terbium hydrogen tartrate trihydrate crystals, J. Mater. Sci. 49(14), 4891 (2014)
https://doi.org/10.1007/s10853-014-8190-7
37 G. Ray, S. Kumar, N. Sinha, and B. Kumar, Enhanced dielectric piezo-/ferro-/electric properties of dye doped sodium acid phthalate crystal, Curr. Appl. Phys. 17(5), 813 (2017)
https://doi.org/10.1016/j.cap.2017.03.007
38 E. Jerusha, R. I. S. Kumar, S. S. Kirupavathy, and R. Gopalakrishnan, Investigations on the growth and characterisation of an isomorphous ammonium tetroxalate dihydrate superacid crystal, Optik (Stuttg.) 127(9), 3896 (2016)
https://doi.org/10.1016/j.ijleo.2016.01.091
39 B. Uma, K. S. Murugesan, S. Krishnan, S. J. Das, and B. M. Boaz, Optical and dielectric studies on organic nonlinear optical 2-furoic acid single crystals, Optik (Stuttg.) 124(17), 2754 (2013)
https://doi.org/10.1016/j.ijleo.2012.08.075
40 I. B. Hadj Sadok, F. Hajlaoui, K. Karoui, N. Audebrand, T. Roisnel, and N. Zouari, Crystal structure, optical and electrical properties of metal-halide compound [C7H16N2][ZnCl4], J. Phys. Chem. Solids 129, 71 (2019)
https://doi.org/10.1016/j.jpcs.2018.12.039
41 O. M. Mailoud, A. H. Elsayed, H. A. El Fetouh, and A. H. A. ELazm, Synthesis and characterization of paramagnetic isotropic glycine manganese chloride single crystal with various dopant concentrations, Results Phys. 12, 925 (2019)
https://doi.org/10.1016/j.rinp.2018.11.008
42 N. Bhuvaneswari and K. Venkatachalam, Structural, vibrational and physical properties on tetramethyammonium cadmium bromide ferroelectric single crystals, Asian J. Chem. 30(2), 386 (2018)
https://doi.org/10.14233/ajchem.2018.21011
43 S. Yadava, B. K. Pandey, S. P. Dubey, and R. N. Gupta, Dielectric behaviour of lead nitrate with its phase transition, Asian J. Chem. 20, 731 (2008)
44 C. C. Desai and K. N. Patel, Synthesis and characterization of ferroelectric magnesium hydrogen phosphate single crystals, Cryst. Res. Technol. 24(7), 681 (1989)
https://doi.org/10.1002/crat.2170240709
45 R. Dhivya, R. Ezhil Vizhi, and D. Rajan Babu, Investigation on nucleation kinetics, growth and characterization of urea oxalic acid – ferroelectric single crystal, J. Cryst. Growth 468, 84 (2017)
https://doi.org/10.1016/j.jcrysgro.2016.12.045
46 S. Krishnan, C. J. Raj, S. Dinakaran, R. Uthrakumar, R. Robert, and S. J. Das, Optical, thermal, dielectric and ferroelectric behaviour of sodium acid phthalate (SAP) single crystals, J. Phys. Chem. Solids 69(11), 2883 (2008)
https://doi.org/10.1016/j.jpcs.2008.06.146
47 C. C. Stoumpos, Ch. D. Malliakas, and M. G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorg. Chem. 52(15), 9019 (2013)
https://doi.org/10.1021/ic401215x
48 S. Fujimoto, N. Yasuda, H. Hibino, and P. S. Narayanan, Ferroelectricity in lithium potassium sulphate, J. Phys. D Appl. Phys. 17(2), L35 (1984)
https://doi.org/10.1088/0022-3727/17/2/003
49 J. Dalal and B. Kumar, Remarkable enhancement in dielectric, piezoelectric, ferroelectric and SHG properties by iron doping in sodium para-nitrophenolate dihydrate single crystals, Mater. Lett. 165, 99 (2016)
https://doi.org/10.1016/j.matlet.2015.11.113
50 J. Dalal, N. Sinha, H. Yadav, and B. Kumar, Structural, electrical, ferroelectric and mechanical properties with Hirshfeld surface analysis of novel NLO semiorganic sodium p-nitrophenolate dihydrate piezoelectric single crystal, RSC Advances 5(71), 57735 (2015)
https://doi.org/10.1039/C5RA10501C
51 A. C. Sajikumar, S. Vinu, and C. Krishnan, Studies on structural, optical and thermal properties of L-histidine doped potassium hydrogen phthalate single crystal, Inter. J. Engn. Res. Technol. 4(01), 525 (2015)
52 A. C. Sajikumar, S. Vinu, and C. Krishnan, Growth and characterization of barium doped potassium hydrogen phthalate single crystal, Int. J. Eng. Res. Appl. 5, 50 (2015)
53 R. E. Vizhi and D. R. Babu, A study on structural, optical, mechanical and ferroelectric properties of triglycine barium nitrate single crystals, Ferroelectr. Lett. Sect. 40(1–3), 1 (2013)
https://doi.org/10.1080/07315171.2013.813821
54 V. Duraikkan, S. A. Bahadur, N. Nallamuthu, S. Athimoolam, and A. Manikandan, Investigation of phase transition in some ferroelectrics calcium and zinc doped diammonium dibromodichlorinate, J. Inorg. Organomet. Polym. Mater. 27(1), 363 (2017)
https://doi.org/10.1007/s10904-016-0480-x
55 S. C. Abrahams, J. Ravez, A. Simon, A. Reller, and H. R. Oswald, Cu(OH)2: A new ferroelectric, J. Appl. Cryst. 28(5), 594 (1995)
https://doi.org/10.1107/S0021889895004766
56 A. C. Y. Pan, H. D. Mai, and G. Y. Yang, A new zeotype borogermanate β-K2B2Ge3O10: Synthesis, structure, property and conformational polymorphism, Microporous Mesoporous Mater. 168, 183 (2013)
https://doi.org/10.1016/j.micromeso.2012.09.004
57 T. G. J. Cao, W. H. Fang, S. T. Zheng, and G. Y. Yang, (CH3NH3)2[Ge(B4O9)]: An organically-templated chiral borogermanate with second-order nonlinear and ferroelectric properties, Inorg. Chem. Commun. 13(9), 1047 (2010)
https://doi.org/10.1016/j.inoche.2010.06.007
58 J. H. Zhang, F. Kong, and J. G. Mao, Ba3[Ge2B7O16(OH)2](OH)(H2O) and Ba3Ge2B6O16: Novel alkaline-earth borogermanates based on two types of polymeric borate units and GeO4 tetrahedra, Inorg. Chem. 50(7), 3037 (2011)
https://doi.org/10.1021/ic1025697
59 C. Jiang, N. Zhong, C. Luo, H. Lin, Y. Zhang, H. Peng, and C. G. Duan, (Diisopropylammonium)2MnBr4: A multifunctional ferroelectric with efficient green-emission and excellent gas sensing properties, Chem. Commun. (Camb.) 53(44), 5954 (2017)
https://doi.org/10.1039/C7CC01107E
60 P. S. L. Mageshwari, R. Priya, S. Krishnan, V. Joseph, and S. J. Das, Optical, dielectric and ferroelectric behaviour on doped lithium sulphate crystals, Optik (Stuttg.) 125(10), 2289 (2014)
https://doi.org/10.1016/j.ijleo.2013.10.121
61 S. Moitra and T. Kar, Second harmonic generation of a new nonlinear optical material L-valine hydrobromide, J. Cryst. Growth 310(21), 4539 (2008)
https://doi.org/10.1016/j.jcrysgro.2008.07.109
62 N. Tyagi, N. Sinha, H. Yadav, and B. Kumar, Growth, morphology, structure and characterization of L-histidinium dihydrogen arsenate orthoarsenic acid single crystal, Acta Crystallogr. B 72(4), 593 (2016)
https://doi.org/10.1107/S2052520616007629
63 K. Thukral, N. Vijayan, B. Singh, I. Bdikin, D. Haranath, K. K. Maurya, J. Philip, H. Soumya, P. Sreekanth, and G. Bhagavannarayana, Growth, structural and mechanical analysis of a single crystal of L-prolinium tartrate: A promising material for nonlinear optical applications, CrystEngComm 16(39), 9245 (2014)
https://doi.org/10.1039/C4CE01232A
64 S. Kumar, N. Sinha, H. Yadav, and B. Kumar, Growth, structural, dielectric, ferroelectric, and mechanical properties of L-prolinium tartrate single crystal, J. Mater. Sci. 51(16), 7614 (2016)
https://doi.org/10.1007/s10853-016-0040-3
65 U. Charoen-In and P. Manyum, Growth of ferroelectric crystals: 4-aminopyridinium hydrogen maleate single crystals and their characterization, Ceram. Int. 41, S76 (2015)
https://doi.org/10.1016/j.ceramint.2015.03.203
66 D. W. Fu, Y. M. Song, G. X. Wang, Q. Ye, R. G. Xiong, T. Akutagawa, T. Nakamura, P. W. H. Chan, and S. D. Huang, Dielectric anisotropy of a homochiral trinuclear nickel(II) complex, J. Am. Chem. Soc. 129(17), 5346 (2007)
https://doi.org/10.1021/ja0701816
67 Z. Sun, T. Chen, J. Luo, and M. Hong, Bis(imidazolium) L-tartrate: A hydrogen-bonded displacive-type molecular ferroelectric material, Angew. Chem. Int. Ed. 51(16), 3871 (2012)
https://doi.org/10.1002/anie.201200407
68 K. Senthilkumar, S. M. Babu, B. Kumar, and G. Bhagavannarayana, Effect of rare earth ions on the properties of glycine phosphite single crystals, J. Cryst. Growth 362, 343 (2013)
https://doi.org/10.1016/j.jcrysgro.2011.10.031
69 K. Senthilkumar, S. M. Babu, B. Kumar, and G. Bhagavannarayana, Improvement in structural, dielectric, ferroelectric and mechanical properties in metal ions doped glycine phosphite single crystals, Ferroelectrics 437(1), 126 (2012)
https://doi.org/10.1080/00150193.2012.741992
70 A. Shanthi, C. Krishnan, and P. Selvarajan, Studies on growth and characterization of a novel nonlinear optical and ferroelectric material, N,N-dimethylurea picrate single crystal, J. Cryst. Growth 393, 7 (2014)
https://doi.org/10.1016/j.jcrysgro.2013.12.011
71 B. Uma, R. S. Selvaraj, S. Krishnan, and B. M. Boaz, Growth and characterization of a novel organic nonlinear optical material: L-alanine 2-furoic acid, Optik (Stuttg.) 125(2), 651 (2014)
https://doi.org/10.1016/j.ijleo.2013.07.074
72 J. Dalal and B. Kumar, Bulk crystal growth, optical, mechanical and ferroelectric properties of new semiorganic nonlinear optical and piezoelectric Lithium nitrate monohydrate oxalate single crystal, Opt. Mater. 51, 139 (2016)
https://doi.org/10.1016/j.optmat.2015.11.033
73 C. F. Sun, C. L. Hu, and J. G. Mao, PbPt(IO3)6(H2O): A new polar material with two types of stereoactive lonepairs and a very large SHG response, Chem. Commun. (Camb.) 48(35), 4220 (2012)
https://doi.org/10.1039/c2cc30326d
74 Y. Yamamura, E. Saito, H. Saitoh, N. Hoshino, and K. Saito, New organic ferroelectrics: Cocrystal of 5; 5′- dimethyl-2; 2′-bipyridine and bromanilic acid, Chem. Lett. 41(1), 119 (2012)
https://doi.org/10.1246/cl.2012.119
75 M. Vij, H. K. Sonia, H. K. Verma, M. S. Jayalakshmy, B. Singh, S. Verma, and K. K. Maurya, Nonlinear optical single crystal of L-cystine hydrochloride: Insights into the crystalline perfection, thermal, mechanical and optical properties for device fabrication, Physica B 550, 250 (2018)
https://doi.org/10.1016/j.physb.2018.09.013
76 S. Sonia, N. Vijayan, M. Vij, P. Kumar, B. Singh, S. Das, R. Rajnikant, and H. Soumya, Assessment of the imperative features of an L-arginine 4-nitrophenolate 4- nitrophenol dihydrate single crystal for nonlinear optical applications., Mater. Chem. Front. 1(6), 1107 (2017)
https://doi.org/10.1039/C6QM00217J
77 V. Duraikkan, S. A. Bahadur, N. Nallamuthu, S. Athimoolam, and A. Manikandan, Investigation of phase transition in some ferroelectrics calcium and zinc doped diammonium dibromodichlorinate, J. Inorg. Organomet. Polym. 27(1), 363 (2017)
https://doi.org/10.1007/s10904-016-0480-x
78 N. M. Khusayfan, Ferroelectric properties of Ce doped hydroxyapatite nanoceramics, J. Alloys Compd. 685, 350 (2016)
https://doi.org/10.1016/j.jallcom.2016.05.273
79 R. AL-Wafi, Ferroelectric properties of Sr doped hydroxyapatite bioceramics for biotechnological applications, J. Alloys Compd. 689, 169 (2016)
https://doi.org/10.1016/j.jallcom.2016.07.285
80 A. A. Hendi, Hydroxyapatite based nanocomposite ceramics, J. Alloys Compd. 712, 147 (2017)
https://doi.org/10.1016/j.jallcom.2017.04.021
81 R. V. K. Mangalam, P. Mandal, E. Suard, and A. Sundaresan, Ferroelectricity in ordered perovskite BaBi3+0.5(Bi5+0.2Nb5+0.3)O3with Bi3+:6s2 lone pair at the B-site, Chem. Mater. 19(17), 4114 (2007)
https://doi.org/10.1021/cm071130a
82 A. M. Kusainova, P. Lightfoot, W. Zhou, S. Y. Stefanovich, A. V. Mosunov, and V. A. Dolgikh, Ferroelectric properties and crystal structure of the layered intergrowth phase Bi3Pb2Nb2O11Cl, Chem. Mater. 13(12), 4731 (2001)
https://doi.org/10.1021/cm011145n
83 C. Jin, Ferroelectric behavior of nonlinear optical material MnTeMoO6, Optik (Stuttg.) 130, 1021 (2017)
https://doi.org/10.1016/j.ijleo.2016.11.113
84 Z. Zhong, W. Ding, W. Hou, Y. Chen, X. Chen, Y. Zhu, and N. Min, Preparation, characterization, and ferroelectric properties of the alkylamine-intercalated layered perovskite-type oxides (CnH2n+1NH3–Sr2Nb3O10, n= 1–6), Chem. Mater. 13(2), 538 (2001)
https://doi.org/10.1021/cm0003471
85 V. Isaza-Zapata, A. Arias, C. Maya, W. Martínez, A. Agudelo, B. Álvarez, A. Gómez, and J. L. Izquierdo, Ferroelectric response of Na0.9Li0.1NbO3 at room temperature, J. Phys. Conf. Ser. 850, 012009 (2017)
https://doi.org/10.1088/1742-6596/850/1/012009
86 O. Khamman, J. Jainumpone, A. Watcharapasorn, and S. Ananta, Fabrication, phase formation and microstructure of Ni4Nb2O9 ceramics fabricated by using the twostage sintering technique, J. Korean Phys. Soc. 69(3), 365 (2016)
https://doi.org/10.3938/jkps.69.365
87 R. N. P. Kumar, R. N. P. Choudhary, and B. P. Singh, Structural, dielectric and electrical properties of Te modified barium stannates using impedance analysis, J. Mater. Sci. 42(19), 8306 (2007)
https://doi.org/10.1007/s10853-006-1244-8
88 P. R. Das, R. N. P. Choudhary, and B. K. Samantray, Diffuse ferroelectric phase transition in Na2Pb2Sm2W2Ti4 Nb4O30 ceramics, Mater. Chem. Phys. 101(1), 228 (2007)
https://doi.org/10.1016/j.matchemphys.2006.04.005
89 P. R. Das, B. N. Parida, R. Padhee, and R. N. P. Choudhary, Structural and dielectric properties of Na2Pb2Nd2W2Ti4V4O30 ferroelectric ceramics, Indian J. Phys. 90(2), 155 (2016)
https://doi.org/10.1007/s12648-015-0738-0
90 X. M. Chen, Y. T. Lu, D. Z. Jin, and X. Q. Liu, Dielectric and ferroelectric characterization of Na(Ta, Nb)O3 solid solution ceramics, J. Electroceram. 15(1), 21 (2005)
https://doi.org/10.1007/s10832-005-0373-9
91 Y.-D. Hou, Y. Shi, H.-Y. Ge, M.-K. Zhu, and H. Yan, Comparative studies of ferroelectric behavior in rutile type FeTiTaO6 and AlTiTaO6, Mater. Res. Bull. 47(2), 184 (2012)
https://doi.org/10.1016/j.materresbull.2011.11.050
92 L. Biswal, P. R. Das, B. Behera, and R. N. P. Choudhury, Structural, dielectric and conductivity studies of Na2Pb2La2W2Ti4Nb4O30 ferroelectric ceramic, J. Electroceram. 29(3), 204 (2012)
https://doi.org/10.1007/s10832-012-9763-y
93 X. Tian, S. Qu, Y. Zhou, B. Xu, and Z. Xu, Effects of Mn-addition on the microstructure and ferroelectric properties of high-temperature CaBi2Nb2O9 ceramics, J. Inorg. Organomet. Polym. 23(4), 877 (2013)
https://doi.org/10.1007/s10904-013-9860-7
94 S. J. Patwe, V. Katari, N. P. Salke, S. K. Deshpande, R. Rao, M. K. Gupta, R. Mittal, S. N. Achary, and A. K. Tyag, Structural and electrical properties of layered perovskite type Pr2Ti2O7: Experimental and theoretical investigations, J. Mater. Chem. C 3(17), 4570 (2015)
https://doi.org/10.1039/C5TC00242G
95 X. L. Zhu, Y. Bai, X. Q. Liu, and X. M. Chen, Ferroelectric and dielectric properties in Ba5SmFe1.5Nb8.5O30 tungsten bronze ceramics, Adv. Appl. Ceramics 112(7), 412 (2013)
https://doi.org/10.1179/1743676113Y.0000000101
96 Z. Lei, T. Chen, W. Li, M. Liu, W. Ge, and Y. Lu, Cobalt-substituted seven-layer aurivillius Bi8Fe4Ti3O24 ceramics: Enhanced ferromagnetism and ferroelectricity, Crystals (Basel) 7(3), 76 (2017)
https://doi.org/10.3390/cryst7030076
97 P. R. Das, L. Biswal, B. Behera, and R. N. P. Choudhary, Structural and electrical properties of Na2Pb2Eu2W2Ti4X4O30 (X= Nb, Ta) ferroelectric ceramics, Mater. Res. Bull. 44(6), 1214 (2009)
https://doi.org/10.1016/j.materresbull.2009.01.013
98 O. Subohi, G. S. Kumar, M. M. Malik, and R. Kurchania, Synthesis of bismuth titanate with urea as fuel by solution combustion route and its dielectric and ferroelectric properties, Optik (Stuttg.) 125(2), 820 (2014)
https://doi.org/10.1016/j.ijleo.2013.07.066
99 P. A. Jha, P. K. Jha, A. K. Jha, and R. K. Dwivedi, Dielectric behavior of (1–x)BaZr0.025Ti0.975O3–(x)BiFeO3 solid solutions, Mater. Res. Bull. 48(1), 101 (2013)
https://doi.org/10.1016/j.materresbull.2012.10.017
100 K. Nakagawa, H. Tokoro, and S. Ohkoshi, Observation of ferroelectricity in paramagnetic copper octacyanomolybdate, Inorg. Chem. 47(23), 10810 (2008)
https://doi.org/10.1021/ic8016563
101 B. Kaur, K. Singh, O. P. Pandey, and S. Thakur, Influence of modifier on dielectric and ferroelectric properties of aluminosilicate glasses, J. Non-Cryst. Solids 465, 26 (2017)
https://doi.org/10.1016/j.jnoncrysol.2017.03.032
102 B. W. Li, M. Osada, T. C. Ozawa, and T. Sasaki, Rb-BiNb2O7: A new lead-free high-Tc ferroelectric, Chem. Mater. 24(16), 3111 (2012)
https://doi.org/10.1021/cm3013039
103 R. Muduli, P. Kumar, R. K. Panda, and S. Panigrahi, Dielectric, ferroelectric and impedance spectroscopic studies of Mn and W modified AgNbO3 ceramics, Mater. Chem. Phys. 180, 422 (2016)
https://doi.org/10.1016/j.matchemphys.2016.06.026
104 W. Zhang, N. Kumada, Y. Yonesaki, T. Takei, N. Kinomura, T. Hayashi, M. Azuma, and M. Takano, Ferroelectric perovskite-type barium copper niobate: BaCu1/3Nb2/3O3, J. Solid State Chem. 179(12), 4052 (2006)
https://doi.org/10.1016/j.jssc.2006.08.008
105 M. Pastor and K. Biswas, Synthesis and electrical characterization of Ba(Cd1/3Nb2/3)O3 ferroelectric compound, Mater. Chem. Phys. 139(2–3), 634 (2013)
https://doi.org/10.1016/j.matchemphys.2013.02.010
106 C. Hu, L. Fang, X. Peng, C. Li, B. Wu, and L. Liu, Dielectric and ferroelectric properties of tungsten bronze ferroelectrics in SrO–Pr2O3–TiO2–Nb2O5 system, Mater. Chem. Phys. 121(1–2), 114 (2010)
https://doi.org/10.1016/j.matchemphys.2010.01.014
107 N. V. Quyet, L. H. Bac, and D. D. Dung, Enhancement of the electrical-field-induced strain in lead-free Bi0.5(Na,K)0.5TiO3-based piezoelectric ceramics: Role of the phase transition, J. Korean Phys. Soc. 66(8), 1317 (2015)
https://doi.org/10.3938/jkps.66.1317
108 X. Tian, S. Qu, Y. Zhou, B. Xu, and Z. Xu, Effects of Mn-addition on the microstructure and ferroelectric properties of high-temperature CaBi2Nb2O9 ceramics, J. Inorg. Organomet. Polym. 23(4), 877 (2013)
https://doi.org/10.1007/s10904-013-9860-7
109 S. K. Ramasesha, A. K. Singh, and K. B. R. Varma, Effect of pressure on dielectric and ferroelectric properties of bismuth vanadate, Mater. Chem. Phys. 48(2), 136 (1997)
https://doi.org/10.1016/S0254-0584(97)80107-1
110 C. A. Diaz-Moreno, Y. Ding, J. Portelles, J. Heiras, A. H. Macias, A. Syeed, A. Paez, C. Li, J. López, and R. Wicker, Optical properties of ferroelectric lanthanum lithium niobite, Ceram. 44, 4727 (2018)
https://doi.org/10.1016/j.ceramint.2017.12.055
111 Q. Yin, Z. Sun, S. Shi, J. Yang, C. Tian, and M. Bao, Structure and electrical properties of lead-free piezoelectric ceramics Bi0.5Na0.5TiO3- Ba0.94Sr0.06(Sn0.08Ti0.92)O3, Asian J. Chem. 26(6), 1698 (2014)
https://doi.org/10.14233/ajchem.2014.17328
112 S. Somwan, A. Ngamjarurojana, and A. Limpichaipanit, Dielectric, ferroelectric and induced strain behavior of PLZT 9/65/35 ceramics modified by Bi2O3 and CuO codoping, Ceram. Int. 42(9), 10690 (2016)
https://doi.org/10.1016/j.ceramint.2016.03.181
113 P. S. Sahoo, A. Panigrahi, S. K. Patri, and R. N. P. Choudhary, Structural, dielectric, electrical and piezoelectric properties of Ba4SrRTi3V7O30 (R= Sm, Dy) ceramics, Cent. Eur. J. Phys. 6, 843 (2008)
https://doi.org/10.2478/s11534-008-0112-3
114 P. S. Sahoo and A. Panigrahi, Dielectric properties of Ba3Sr2DyTi3V7O30 ceramics, Cent. Eur. J. Phys. 8(4), 639 (2010)
https://doi.org/10.2478/s11534-009-0130-9
115 S. K. Barik, R. N. P. Choudhary, and P. K. Mahapatra, Structural and dielectric studies of lead-free ceramics: Na1/2Y1/2TiO3, Cent. Eur. J. Phys. 6(4), 849 (2008)
https://doi.org/10.2478/s11534-008-0106-1
116 B. Behera, P. Nayak, and R. N. P. Choudhary, Structural and electrical properties of KCa2Nb5O15 ceramics,Cent. Eur. J. Phys. 6, 289 (2008)
https://doi.org/10.2478/s11534-008-0030-4
117 O. Subohi, G. S. Kumar, M. M. Malik, and R. Kurchania, Study of influence of fuel on dielectric and ferroelectric properties of bismuth titanate ceramics synthesized using solution based combustion technique, Mater. Res. Express 2(3), 036302 (2015)
https://doi.org/10.1088/2053-1591/2/3/036302
118 X. Tian, S. Qu, B. Wang, and Z. Xu, Microstructure and electrical properties of ultra high temperature (1–x)CaBi2Nb2O9–xNa0.5Bi2.5Nb2O9 ceramics, Mater. Res. Innov. 19(3), 171 (2015)
https://doi.org/10.1179/1433075X14Y.0000000234
119 C. Huang, W. Wong-Ng, W. F. Liu, X. N. Zhang, Y. Jiang, P. Wu, B. Y. Tong, H. Zhao, and S. Y. Wang, Major improvement of ferroelectric and optical properties in Na-doped Ruddlesden–Popper layered hybrid improper ferroelectric compound, Ca3Ti2O7, J. Alloys Compd. 770, 582 (2019)
https://doi.org/10.1016/j.jallcom.2018.08.172
120 N. Kumar, A. Shukla, N. Kumar, S. Sahoo, S. Hajra, and R. N. P. Choudhary, Structural, electrical and ferroelectric characteristics of Bi(Fe0.9La0.1)O3, Ceram. Int. 44(17), 21330 (2018)
https://doi.org/10.1016/j.ceramint.2018.08.185
121 P. Gupta, P. K. Mahapatra, and R. N. P. Choudhary, Structural and electrical characteristics of an aurivillius family compound Bi2LaTiVO9, Cryst. Res. Technol. 53(12), 1800045 (2018)
https://doi.org/10.1002/crat.201800045
122 H. Wattanasarn, S. Sansupan, P. Srinuanlae, A. Namthaisong, S. Phewphong, W. Phontankham, T. Sumphao, J. Kongphimai, W. Chaiphaksa, and J. Kaewkhao, Effect of Fe2O3-dopped on ferroelectric properties of (55–x)SiO2:xFe2O3:1Al2O3:6.3CaO:0.2Sb2O3. 13B2O3:4.5BaO:20Na2O, Mater. Today 5, 13934 (2018)
https://doi.org/10.1016/j.matpr.2018.02.043
123 Y. Qiao, Y. Zhou, S. Wang, L. Yuan, Y. Du, D. Lu, G. Che, and H. Che, Composition dependent magnetic and ferroelectric properties of hydrothermally synthesized GdFe1–xCrxO3 (0.1≤x≤0.9) perovskites, Dalton Trans. 46(18), 5930 (2017)
https://doi.org/10.1039/C7DT00032D
124 S. Madolappa, A. V. Anupama, P. W. Jaschin, K. B. R. Varma, and B. Sahoo, Magnetic and ferroelectric characteristics of Gd3+ and Ti4+ co-doped BiFeO3 ceramics, Bull. Mater. Sci. 39(2), 593 (2016)
https://doi.org/10.1007/s12034-016-1176-0
125 S. R. Mohapatra, B. Sahu, M. Chandrasekhar, P. Kumar, S. D. Kaushik, S. Rath, and A. K. Singh, Effect of cobalt substitution on structural, impedance, ferroelectric and magnetic properties of multiferroic Bi2Fe4O9 ceramics, Ceram. Int. 42(10), 12352 (2016)
https://doi.org/10.1016/j.ceramint.2016.05.008
126 X. Wang, J. Yu, J. C. Zhang, X. Yan, C. Song, Y. Long, K. Ruan, and X. Li, Structural evolution, magnetization enhancement, and ferroelectric properties of Er3+- doped SmFeO3, Ceram. Int. 43(18), 16903 (2017)
https://doi.org/10.1016/j.ceramint.2017.09.091
127 D. Varshney, P. Sharma, S. Satapathy, and P. K. Gupta, Structural, electrical and magnetic properties of Bi0.825Pb0.175FeO3, and Bi0.725La0.1Pb0.175FeO3 multiferroics, Mater. Res. Bull. 49, 345 (2014)
https://doi.org/10.1016/j.materresbull.2013.09.018
128 Y. Han, W. Mao, C. Quan, X. Wang, J. Yang, T. Yang, X. Li, and W. Huang, Enhancement of magnetic and ferroelectric properties of BiFeO3 by Er and transition element (Mn, Co) co-doping, Mater. Sci. Eng. B 188, 26 (2014)
https://doi.org/10.1016/j.mseb.2014.05.012
129 T. Kaur, J. Sharma, S. Kumar, and A. K. Srivastava, Optical and multiferroic properties of Gd-Co substituted barium hexaferrite, Cryst. Res. Technol. 52(9), 1700098 (2017)
https://doi.org/10.1002/crat.201700098
130 P. T. Lin, X. Li, L. Zhang, J. H. Yin, X. W. Cheng, Z. H. Wang, Y. C. Wu, and G. H. Wu, La-doped BiFeO3. Synthesis and multiferroic property study, Chin. Phys. B 23(4), 047701 (2014)
https://doi.org/10.1088/1674-1056/23/4/047701
131 B. Chatterjee, H. Kevin, G. D. Dwivedi, H. D. Yang, S. Chatterjee, and A. K. Ghosh, Enhancement of ferromagnetic and ferroelectric properties in Co-doped BiFeO3, Asian J. Chem. 23(12), 5563 (2011)
132 L. Yi, Coexistence of magnetic and ferroelectric properties in Y0.1Co1.9MnO4, Chin. Phys. B 19(7), 077201 (2010)
https://doi.org/10.1088/1674-1056/19/7/077201
133 N. Raju, S. S. Kumar Reddy, J. Ramesh, C. G. Reddy, P. Y. Reddy, K. R. Reddy, V. G. Sathe, and V. R. Reddy, Magnetic, ferroelectric, and spin phonon coupling studies of Sr3Co2Fe24O41 multiferroic Z-type hexaferrite, J. Appl. Phys. 120(5), 054103 (2016)
https://doi.org/10.1063/1.4960444
134 Z. M. Tian, S. L. Yuan, X. L. Wang, X. F. Zheng, S. Y. Yin, C. H. Wang, and L. Liu, Size effect on magnetic and ferroelectric properties in Bi2Fe4O9 multiferroic ceramics, J. Appl. Phys. 106(10), 103912 (2009)
https://doi.org/10.1063/1.3259392
135 Z. M. Tian, Y. Qiu, S. L. Yuan, M. S. Wu, S. X. Huo, and H. N. Duan, Enhanced multiferroic properties in Tidoped Bi2Fe4O9 ceramics, J. Appl. Phys. 108(6), 064110 (2010)
https://doi.org/10.1063/1.3478705
136 M. Naveed-Ul-Haq, V. V. Shvartsman, G. Constantinescu, H. Trivedi, S. Salamon, J. Landers, H. Wende, and D. C. Lupascu, Effect of Al3+ modification on cobalt ferrite and its impact on the magnetoelectric effect in BCZT–CFO multiferroic composites, J. Mater. Sci. 52(23), 13402 (2017)
https://doi.org/10.1007/s10853-017-1444-4
137 J. S. Kim, C. I. Cheon, W.-S. Oh, and P. W. Jang, Crystal structure and multiferroic properties of the BiFeO3– PrFeO3–DyFeO3–BaTiO3 system, phys. stat. sol. (b) 241(7), 1629 (2004)
https://doi.org/10.1002/pssb.200304576
138 M. Muneeswaran, R. Dhanalakshmi, and N. V. Giridharan, Effect of Tb substitution on structural, optical, electrical and magnetic properties of BiFeO3, J. Mater. Sci. Mater. Electron. 26(6), 3827 (2015)
https://doi.org/10.1007/s10854-015-2909-3
139 Y. Qiu, Z. J. Zou, R. R. Sang, H. Wang, D. Xue, Z. M. Tian, G. S. Gong, and S. L. Yuan, Enhanced magnetic and ferroelectric properties in Cr doped Bi2Fe4O9 ceramics, J. Mater. Sci. Mater. Electron. 26(3), 1732 (2015)
https://doi.org/10.1007/s10854-014-2600-0
140 Y. Ma, Y. J. Wu, Y. Q. Lin, and X. M. Chen, Microstructures and multiferroic properties of YFe1–xMnxO3 ceramics prepared by spark plasma sintering, J. Mater. Sci. Mater. Electron. 21(8), 838 (2010)
https://doi.org/10.1007/s10854-009-0004-3
141 S. Samantaray and B. K. Roul, Dielectric and magnetic properties of DyMnO3 ceramics, J. Mater. Sci. Mater. Electron. 24(9), 3387 (2013)
https://doi.org/10.1007/s10854-013-1260-9
142 J. A. Moreira, A. Almeida, W. S. Ferreira, M. R. Chaves, J. B. Oliveira, J. M. Machado da Silva, M. A. Sá, S. M. F. Vilela, and P. B. Tavares, Ferroelectricity in antiferromagnetic phases of Eu1–xYxMnO3, Solid State Commun. 151(5), 368 (2011)
https://doi.org/10.1016/j.ssc.2010.12.018
143 S. Huang, L. R. Shi, Z. M. Tian, S. L. Yuan, C. M. Zhu, G. S. Gong, and Y. Qiu, Effect of Al3+ substitution on the structural, magnetic, and electric properties in multiferroic Bi2Fe4O9 ceramics, J. Solid State Chem. 227, 79 (2015)
https://doi.org/10.1016/j.jssc.2015.03.025
144 A. Mitra, A. S. Mahapatra, A. Mallick, A. Shaw, M. Ghosh, and P. K. Chakrabarti, Simultaneous enhancement of magnetic and ferroelectric properties of LaFeO3 by co-doping with Dy3+ and Ti4+, J. Alloys Compd. 726, 1195 (2017)
https://doi.org/10.1016/j.jallcom.2017.08.074
145 P. P. Rout, S. K. Pradhan, S. K. Das, S. Samantaray, and B. K. Roul, Enhancement of magnetic and ferroelectric behaviour in (Ca, Co) co-doped HoMnO3 multiferroics, J. Magn. Magn. Mater. 345, 106 (2013)
https://doi.org/10.1016/j.jmmm.2013.06.035
146 Y. Tian, F. Xue, Q. Fu, D. Zhou, Y. Hu, L. Zhou, Z. Zheng, and Z. Xin, Impedance spectroscopy and ferromagnetic properties of Bi0.8Gd0.2FeO3 multiferroics, J. Magn. Magn. Mater. 435, 154 (2017)
https://doi.org/10.1016/j.jmmm.2017.03.024
147 B. K. Vashisth, J. S. Bangruwa, A. Beniwal, S. P. Gairola, A. Kumar, N. Singh, and V. Verma, Modified ferroelectric/magnetic and leakage current density properties of Co and Sm co-doped bismuth ferrites, J. Alloys Compd. 698, 699 (2017)
https://doi.org/10.1016/j.jallcom.2016.12.278
148 S. K. Das, and B. K. Roul, Room temperature magnetism and ferroelectricity in BaTi0.95–xHf0.05CoxO3 ceramics, J. Magn. Magn. Mater. 363, 77 (2014)
https://doi.org/10.1016/j.jmmm.2014.03.046
149 X. Yuan, L. Shi, J. Zhao, S. Zhou, Y. Li, C. Xie, and J. Sr Guo, Sr and Pb co-doping effect on the crystal structure, dielectric and magnetic properties of BiFeO3 multiferroic compounds, J. Alloys Compd. 708, 93 (2017)
https://doi.org/10.1016/j.jallcom.2017.02.288
150 K. K. Bharathi, J. A. Chelvane, and G. Markandeyulu, Magnetoelectric properties of Gd and Nd-doped nickel ferrite, J. Magn. Magn. Mater. 321(22), 3677 (2009)
https://doi.org/10.1016/j.jmmm.2009.07.011
151 R. N. Bhowmik and A. K. Sinh, Improvement of room temperature electric polarization and ferrimagnetic properties of Co1.25Fe1.75O4 ferrite by heat treatment, J. Magn. Magn. Mater. 421, 120 (2017)
https://doi.org/10.1016/j.jmmm.2016.08.014
152 S. R. Wadgane, S. E. Shirsath, A. S. Gaikwad, S. Satpute, A. B. Kadam, and R. H. Kadam, Ferroand magneto-electric characteristics in YFeO3–Y3Fe5O12 nanocomposites, J. Magn. Magn. Mater. 457, 103 (2017)
https://doi.org/10.1016/j.jmmm.2017.12.055
153 J. Roa-Rojas, C. Salazar, D. Llamosa, A. A. León-Vanegas, D. A. L. Téllez, P. Pureur, F. T. Dias, and V. N. Vieira, Magnetoelectric response of new Sr2TiMnO6 manganite-like material, J. Magn. Magn. Mater. 320(14), e104 (2008)
https://doi.org/10.1016/j.jmmm.2008.02.023
154 S. S. Yadava, A. Khare, P. Gautam, A. Kumar, and K. D. Mandal, Dielectric, ferroelectric and magnetic study of iron doped hexagonal Ba4YMn3–xO11.5–δ(BYMO) and its dependence on temperature as well as frequency, New J. Chem. 41(11), 4611 (2017)
https://doi.org/10.1039/C6NJ04071C
155 A. Rathi, H. Borkar, P. K. Rout, A. Gupta, H. K. Singh, A. Kumar, B. Gahtori, R. P. Pant, and G. A. Basheed, Antisite disorder-driven large electric polarization in multiferroic Nd2CoMnO6, J. Phys. D Appl. Phys. 50(46), 465001 (2017)
https://doi.org/10.1088/1361-6463/aa8b57
156 M. G. Masud, A. Ghosh, J. Sannigrahi, and B. K. Chaudhuri, Observation of relaxor ferroelectricity and multiferroic behaviour in nanoparticles of the ferromagnetic semiconductor La2NiMnO6, J. Phys.: Condens. Matter 24(29), 295902 (2012)
https://doi.org/10.1088/0953-8984/24/29/295902
157 Z. Wang, R. Gao, X. Deng, G. Chen, W. Cai, and C. Fu, Dielectric and ferroelectric properties of LaFeO3 particles derived from metal organic frameworks precursor, Ceram. Int. 45(2), 1825 (2019)
https://doi.org/10.1016/j.ceramint.2018.10.071
158 A. Mitra, A. S. Mahapatra, A. Mallick, A. Shaw, N. Bhakta, and P. K. Chakrabarti, Improved magneto-electric properties of LaFeO3 in La0.8Gd0.2Fe0.97Nb0.03O3, Ceram. Int. 44(4), 4442 (2018)
https://doi.org/10.1016/j.ceramint.2017.12.045
159 M. S. Alam, R. Hossain, and M. A. Basith, Enhanced multiferroism in Gd-doped BiMn2O5 ceramics, Ceram. Int. 44(2), 1594 (2018)
https://doi.org/10.1016/j.ceramint.2017.10.080
160 K. Praveena, P. Bharathi, H. L. Liu, and K. B. R. Varma, Structural, multiferroic properties and enhanced magnetoelectric coupling in Sm1–xCaxFeO3, Ceram. Int. 42(12), 13572 (2016)
https://doi.org/10.1016/j.ceramint.2016.05.150
161 S. R. Mohapatra, B. Sahu, M. Chandrasekhar, P. Kumar, S. D. Kaushik, S. Rath, and A. K. Singh, Effect of cobalt substitution on structural, impedance, ferroelectric and magnetic properties of multiferroic Bi2Fe4O9 ceramics, Ceram. Int. 42(10), 12352 (2016)
https://doi.org/10.1016/j.ceramint.2016.05.008
162 A. Durán, J. M. Jiménez, M. Solórzano, and R. Falconi, Improvement of the ferroelectric properties of Ti-doped YCrO3ceramic, J. Phys. Chem. Solids 123, 228 (2018)
https://doi.org/10.1016/j.jpcs.2018.08.001
163 R. Tursun, Y. C. Su, Q. S. Yu, J. Tan, T. Hu, Z. B. Luo, and J. Zhang, Effect of doping on the structural, magnetic, and ferroelectric properties of Ni1–xAxTiO3 (A= Mn, Fe, Co, Cu, Zn; x= 0, 0.05, and 0.1), J. Alloys Compd. 773, 288 (2019)
https://doi.org/10.1016/j.jallcom.2018.09.133
164 K. L. Routray, D. Sanyal, and D. Behera, Gamma irradiation induced structural, electrical, magnetic and ferroelectric transformation in bismuth doped nanosized cobalt ferrite for various applications, Mater. Res. Bull. 110, 126 (2019)
https://doi.org/10.1016/j.materresbull.2018.10.019
165 A. S. Mahapatra and P. K. Chakrabarti, Enhanced magnetic and ferroelectric properties of La0.9Tb0.1FeO3, Mater. Sci. Eng. 240, 140 (2019)
https://doi.org/10.1016/j.mseb.2019.01.018
166 P. P. Khirade, S. D. Birajdar, A. V. Raut, and K. M. Jadhav, Multiferroic iron doped BaTiO3 nanoceramics synthesized by sol-gel auto combustion: Influence of iron on physical properties, Ceram. Int. 42(10), 12441 (2016)
https://doi.org/10.1016/j.ceramint.2016.05.021
167 M. Naveed-Ul-Haq, V. V. Shvartsman, G. Constantinescu, H. Trivedi, S. Salamon, J. Landers, H. Wende, and D. C. Lupascu, Effect of Al3+ modification on cobalt ferrite and its impact on the magnetoelectric effect in BCZT–CFO multiferroic composites, J. Mater. Sci. 52(23), 13402 (2017)
https://doi.org/10.1007/s10853-017-1444-4
168 R. Pattanayak, S. Kuila, S. Raut, S. P. Ghosh, S. Dhal, and S. Panigrahi, Observation of grain size effect on multiferroism and magnetoelectric coupling of Na0.5Bi0.5TiO3–BaFe12O19 novel composite system, J. Magn. Magn. Mater. 444, 401 (2017)
https://doi.org/10.1016/j.jmmm.2017.08.048
169 R. Rani, J. K. Juneja, S. Singh, K. K. Raina, and C. Prakash, Study of 0.1Ni0.8Zn0.2Fe2O4– 0.9Pb1–3x/2LaxZr0.65Ti0.35O3 magnetoelectric composites, J. Magn. Magn. Mater. 325, 47 (2013)
https://doi.org/10.1016/j.jmmm.2012.08.011
170 S. Dipti, S. Singh, J. K. Juneja, K. K. Raina, R. K. Kotnala, and C. Prakash, Study of xCo0.8Ni0.2Fe2O4+(1–x) Pb0.99625La0.0025Zr0.55Ti0.45O3 magnetoelectric composites, J. Magn. Magn. Mater. 407, 279 (2016)
https://doi.org/10.1016/j.jmmm.2016.01.098
171 J. H. Peng, M. Hojamberdiev, H. G. Li, D. L. Mao, Y. J. Zhao, P. Liu, J. P. Zhou, and G. Q. Zhu, Electrical, magnetic, and direct and converse magnetoelectric properties of (1–x)Pb(Zr0.52Ti0.48)O3–(x)CoFe2O4 (PZT–CFO) magnetoelectric composites, J. Magn. Magn. Mater. 378, 298 (2015)
https://doi.org/10.1016/j.jmmm.2014.11.060
172 S. Jangra, S. Sanghi, A. Agarwal, M. Rangi, K. Kaswan, and S. Khasa, Improved structural, dielectric and magnetic properties of Ca2+ and Nb5+ co-substituted BiFeO3 multiferroics, J. Alloys Compd. 722, 606 (2017)
https://doi.org/10.1016/j.jallcom.2017.06.132
173 A. S. Kumar, C. S. Chitra Lekha, S. Vivek, V. Saravanan, K. Nandakumar, and S. S. Nair, Multiferroic and magnetoelectric properties of Ba0.85Ca0.15Zr0.1Ti0.9O3–CoFe2O4 core–shell nanocomposite, J. Magn. Magn. Mater. 418, 294 (2016)
https://doi.org/10.1016/j.jmmm.2016.02.065
174 N. S. Negi, A. Sharma, J. Shah, and R. K. Kotnala, Investigation on impedance response, magnetic and ferroelectric properties of 0.20(Co1–xZnxFe2–yMnyO4)–0.80(Pb0.70Ca0.30TiO3) magnetoelectric composites, Mater. Chem. Phys. 148(3), 1221 (2014)
https://doi.org/10.1016/j.matchemphys.2014.09.051
175 M. Kumar, S. Shankar, O. Parkash, and O. P. Thakur, Dielectric and multiferroic properties of 0.75BiFeO3– 0.25BaTiO3 solid solution,J. Mater. Sci. Mater. Electron. 25(2), 888 (2014)
https://doi.org/10.1007/s10854-013-1661-9
176 T. Ramesh, V. Rajendar, and S. R. Murthy, CoFe2O4–BaTiO3 multiferroic composites: Role of ferrite and ferroelectric phases on the structural, magneto dielectric properties, J. Mater. Sci. Mater. Electron. 28(16), 11779 (2017)
https://doi.org/10.1007/s10854-017-6983-6
177 Y. Liu, Y. Wu, D. Li, Y. Zhang, J. Zhang, and J. Yang, A study of structural, ferroelectric, ferromagnetic, dielectric properties of NiFe2O4–BaTiO3 multiferroic composites, J. Mater. Sci. Mater. Electron. 24(6), 1900 (2013)
https://doi.org/10.1007/s10854-012-1032-y
178 Y. Liu, Y. Wu, D. Li, Y. Zhang, J. Zhang, and J. Yang, A study of structural, ferroelectric, ferromagnetic, dielectric properties of NiFe2O4–BaTiO3 multiferroic composites, J. Mater. Sci. Mater. Electron. 24(6), 1900 (2013)
https://doi.org/10.1007/s10854-012-1032-y
179 L. K. Pradhan, R. Pandey, R. Kumar, and M. Kar, Lattice strain induced multiferroicity in PZT–CFO particulate composite, J. Appl. Phys. 123(7), 074101 (2018)
https://doi.org/10.1063/1.5008607
180 R. Sharma, P. Pahuja, and R. P. Tandon, Structural, dielectric, ferromagnetic, ferroelectric and ac conductivity studies of the BaTiO3–CoFe1.8Zn0.2O4 multiferroic particulate composites, Ceram. Int. 40(7), 9027 (2014)
https://doi.org/10.1016/j.ceramint.2014.01.115
181 X. Qi, J. Zhou, Z. Yue, Z. Gui, L. Li, and S. Buddhudu, A ferroelectric ferromagnetic composite material with significant permeability and permittivity, Adv. Funct. Mater. 14(9), 920 (2004)
https://doi.org/10.1002/adfm.200305086
182 A. S. Mahapatra, A. Mitra, A. Mallick, A. Shaw, and P. K. Chakrabarti, Structural, magnetic, dielectric and magneto-dielectric properties of (Ba-TiO3)0.70(Li0.3Zn0.4Fe2.3O4)0.30, Mater. Res. Bull. 102, 226 (2018)
https://doi.org/10.1016/j.materresbull.2018.02.034
183 S. K. Mandal, S. Chakraborty, P. Dey, B. Saha, and T. K. Nath, Zn doped NiFe2O4–Pb (Zr0.58Ti0.42)O3 multiferroic nanocomposites: Magnetoelectric coupling, dielectric and electrical transport, J. Alloys Compd. 747, 834 (2018)
https://doi.org/10.1016/j.jallcom.2018.03.042
184 R. G. Ganapathi, R. B. Lakshmi, K. C. Arun, K. K. N. Chidambara, K. Samatha, M. K. Sreeramachandra, and P. D. Madhava, Ferroelectric and dielectric properties of BaTi0.9Zr0.1O3 doped with Li0.5Fe2.5O4 ceramics, Physica B 539, 44 (2018)
https://doi.org/10.1016/j.physb.2018.03.053
185 J. S. Bangruwa, B. K. Vashisth, N. Singh, N. Singh, and V. Verma, A systematic study of structural, magnetic and electric properties of perovskite-spinel composites prepared by sol-gel technique, J. Alloys Compd. 739, 319 (2018)
https://doi.org/10.1016/j.jallcom.2017.12.281
186 R. Pandey, L. K. Pradhan, and M. Kar, Structural, magnetic, and electrical properties of (1–x)Bi0.85La0.15FeO3–(x)CoFe2O4 multiferroic composites, J. Phys. Chem. Solids 115, 42 (2018)
https://doi.org/10.1016/j.jpcs.2017.12.001
187 H. Mana-ay, J. Anthoniappen, C. S. Tu, R. Sarmiento-Jr, C.-S. Chen, P.-Y. Chen, and F. M. Ruiz, Improved microstructure and ferroelectric properties in B-site Ti4+- substituted (Bi0.86Sm0.14)FeO3 polycrystalline ceramics, Mater. Chem. Phys. 225, 272 (2019)
https://doi.org/10.1016/j.matchemphys.2018.12.092
188 S. Shankar, M. Kumar, A. K. Ghosh, O. P. Thakur, and M. Jayasimhadri, Anomalous ferroelectricity and strong magnetoelectric coupling in CoFe2O4-ferroelectric composites, J. Alloys Compd. 779, 918 (2019)
https://doi.org/10.1016/j.jallcom.2018.11.252
189 A. Ghani, S. Yang, S. S. Rajput, S. Ahmed, A. Murtaza, C. Zhou, Y. Zhang, X. Song, and X. Ren, Enhanced multiferroic properties of lead-free (1–x)GaFeO3–xCo0.5Zn0.5Fe2O4 composities,J. Appl. Phys. 124(15), 154101 (2018)
https://doi.org/10.1063/1.5044675
190 R. Rani, J. K. Juneja, S. Singh, K. K. Raina, and C. Prakash, Dielectric, ferroelectric, magnetic and magnetoelectric properties of 0.1Ni0.8Zn0.2Fe2O4–0.9Pb1–3x/2SmxZr0.65Ti0.35O3 magnetoelectric composites, Ceram. Int. 39(7), 7845 (2013)
https://doi.org/10.1016/j.ceramint.2013.03.045
191 H. F. Zhang, S. W. Or, and H. L. W. Chan, Dielectric and magnetic properties of fine grained ferromagnetic– ferroelectric composites, Mater. Res. Innov. 12(3), 142 (2008)
https://doi.org/10.1179/143307508X333668
192 H. Y. Dai, Z. P. Chen, T. Li, C. M. Wang, Y. Li, and Y. S. Guo, Influence of samarium substitution on structural and multiferroic properties of bismuth ferrite ceramics, Mater. Res. Innov. 17(2), 62 (2013)
https://doi.org/10.1179/1433075X12Y.0000000008
193 R. Xu, S. Hang, F. Wang, Q. Zhang, Z. Li, Z. Wang, R. Gao, W. Cai, and C. Fu, The study of microstructure, dielectric and multiferroic properties of (1–x)Co0.8Cu0.2Fe2O4–(x)Ba0.6Sr0.4TiO3 composites, J. Electron. Mater. 48(1), 386 (2019)
https://doi.org/10.1007/s11664-018-6718-3
194 V. N. Shut, V. M. Laletin, S. R. Syrtsov, V. L. Trublovsky, Yu. V. Medvedeva, K. I. Yanushkevich, M. V. Bushinskii, and T. V. Petlitskaya, Structure, ferroelectric, and magnetoelectric properties of bulk PZT– NiFe1.9Co0.02O4– composites, Phys. Solid State 60(9), 1744 (2018)
https://doi.org/10.1134/S1063783418090317
195 A. S. Dzunuzovic, M. M. Vijatovic Petrovic, J. D. Bobic, N. I. Ilic, M. Ivanov, R. Grigalaitis, J. Banys, and B. D. Stojanovic, Magneto-electric properties of xNi0.7Zn0.3Fe2O4–(1–x)BaTiO3 multiferroic composites, Ceram. Int. 44(1), 683 (2018)
https://doi.org/10.1016/j.ceramint.2017.09.229
196 M. K. Sharif, M. A. Khan, M. F. Warsi, M. Ramzan, and A. Hussain, Structural and ferroelectric properties of hafnium substituted BiFeO3 multiferroics synthesized via auto combustion technique, Ceram. Int. 44(17), 20648 (2018)
https://doi.org/10.1016/j.ceramint.2018.08.057
197 X. Wang, Z. Wang, Q. Hu, C. Zhang, D. Wang, and L. Li, Room temperature multiferroic properties of Fedoped nonstoichiometric SrTiO3 ceramics at both A and B sites, Solid State Commun. 289, 22 (2019)
https://doi.org/10.1016/j.ssc.2018.12.001
198 S. Atiq, M. Faizan, A. H. Khan, A. Mahmood, S. M. Ramay, and S. Naseem, Co-existence of magnetic and electric ferroic orders in La-substituted BiFeO3, Results Phys. 12, 1269 (2019)
https://doi.org/10.1016/j.rinp.2019.01.011
199 D. Ginting, S. C. Yu, T. L. Phan, N. V. Dang, T. D. Thanh, and V. D. Lam, Electron-spin-resonance spectra and ferroelectricity of BaTi1–xFexO3, J. Korean Phys. Soc. 62(12), 2128 (2013)
https://doi.org/10.3938/jkps.62.2128
200 A. Kumar, K. L. Yadav, S. Kumar, N. Kumar, A. Mishra, N. Kumar, U. Shankar, T. Mehrotra, G. Sharma, R. Kumar, and G. D. Adhikary, Magnetic, ferroelectric, and magnetodielectric properties of BiFeO3 ceramic codoped with Eu and Gd, J. Phys. Chem. Solids 124, 19 (2019)
https://doi.org/10.1016/j.jpcs.2018.08.037
201 L. G. Wang, W. J. Kong, X. X. Wang, J. X. Lei, and Y. Y. Liang, Room-temperature multiferroic properties of Ba2+ doped 0.7Bi0.5Na0.5TiO3–0.3NiFe2O4 ceramics, Ceram. Int. 45(1), 1135 (2019)
https://doi.org/10.1016/j.ceramint.2018.09.294
202 F. N. Sayed, B. P. Mandal, O. D. Jayakumar, A. Arya, R. M. Kadam, A. Dixit, R. Naik, and A. K. Tyagi, Rare examples of fluoride-based multiferroic materials in Mnsubstituted BaMgF4 systems: Experimental and theoretical studies, Inorg. Chem. 50(22), 11765 (2011)
https://doi.org/10.1021/ic201835q
203 A. Stroppa, P. Jain, P. Barone, M. Marsman, J. M. Perez-Mato, A. K. Cheetham, H. W. Kroto, and S. Picozzi, Electric control of magnetization and interplay between orbital ordering and ferroelectricity in a multiferroic metal–organic framework, Angew. Chem. Int. Ed. 50(26), 5847 (2011)
https://doi.org/10.1002/anie.201101405
204 J. R. Sahu, A. Ghosh, A. Sundaresan, and C. N. R. Rao, Multiferroic properties of ErMnO3, Mater. Res. Bull. 44(11), 2123 (2009)
https://doi.org/10.1016/j.materresbull.2009.07.005
205 L. J. Wang, S. M. Feng, J. L. Zhu, R. C. Yu, C. Q. Jin, W. Yu, X. H. Wang, and L. T. Li, Ferroelectricity of multiferroic hexagonal TmMnO3 ceramics synthesized under high pressure, Appl. Phys. Lett. 91(17), 172502 (2007)
https://doi.org/10.1063/1.2800816
206 J. H. Choi, J. S. Kim, and C. I. Cheon, Effect of process condition on the ferroelectric properties in BiFeO3–(Bi,K)TiO3 ceramics, J. Korean Phys. Soc. 65(3), 382 (2014)
https://doi.org/10.3938/jkps.65.382
207 W. Yansen, K. J. Parwanta, D. Hadiyawarman, D. Kim, Y. Gwan, J. Kim, C. Liu, C. U. Jung, and B. W. Lee, Effects of bismuth donor doping on the phase structure and the magnetic and ferroelectric properties of Fedoped BaTiO3, J. Korean Phys. Soc. 63(3), 306 (2013)
https://doi.org/10.3938/jkps.63.306
208 P. Jarupoom and P. Jaita, Enhanced magnetic performance of lead-free (Bi0.5Na0.5)TiO3–CoFe2O4 magnetoelectric ceramics, Electron. Mater. Lett. 11(5), 788 (2015)
https://doi.org/10.1007/s13391-015-4497-z
209 T. Amjad, I. Sadiq, A. B. Javaid, S. Riaz, S. Naseem, and M. Nadeem, Investigation of structural, electrical, electrical polarization and dielectric properties of CTAB assisted Ni2+ substituted R-type nano-hexaferrites, J. Alloys Compd. 770, 1112 (2019)
https://doi.org/10.1016/j.jallcom.2018.08.114
210 C. W. Baek, N. K. Oh, G. Han, W. H. Yoon, J. W. Kim, J. J. Choi, B. D. Han, D. S. Park, K. D. Sung, J. H. Jung, D. Y. Jeong, J. J. Kim, and J. Ryu, Effect of Ba(Cu1/3Nb2/3)O3 content on multiferroic properties in BiFeO3 ceramics, Mater. Sci. Eng. 177(6), 451 (2012)
https://doi.org/10.1016/j.mseb.2012.02.016
211 Z. M. Tian, Y. S. Zhang, S. L. Yuan, M. S. Wu, C. H. Wang, Z. Z. Ma, S. X. Huo, and H. N. Duan, Enhanced multiferroic properties and tunable magnetic behavior in multiferroic BiFeO3–Bi0.5Na0.5TiO3 solid solutions, Mater. Sci. Eng. 177(1), 74 (2012)
https://doi.org/10.1016/j.mseb.2011.07.012
212 C. S. Devi, M. B. Suresh, G. S. Kumar, and G. Prasad, Microstructural and high temperature dielectric, ferroelectric and complex impedance spectroscopic properties of BiFeO3 modified NBT-BT lead free ferroelectric ceramics, Mater. Sci. Eng. 228, 38 (2018)
https://doi.org/10.1016/j.mseb.2017.11.005
213 J. Singh, A. Agarwal, S. Sanghi, T. Bhasin, M. Yadav, U. Bhakar, and O. Singh, Effect of Ba and Ho codoping on crystal structure, phase transformation, magnetic properties and dielectric properties of BiFeO3, Curr. Appl. Phys. 19(3), 321 (2019)
https://doi.org/10.1016/j.cap.2018.12.014
214 J. S. Hwang, Y. J. Yoo, Y. P. Lee, J. H. Kang, K. H. Lee, B. W. Lee, and S. Y. Park, Reinforced magnetic properties of Ni-doped BiFeO3 ceramic, J. Korean Phys. Soc. 69(3), 282 (2016)
https://doi.org/10.3938/jkps.69.282
215 D. L. Golić, A. Radojković, J. Ćirković, A. Dapčević, D. Pajić, N. Tasić, S. M. Savić, M. Počuča-Nešić, S. Marković, G. Branković, Z. M. Stanojević, and Z. Branković, Structural, ferroelectric and magnetic properties of BiFeO3 synthesized by sonochemically assisted hydrothermal and hydro-evaporation chemical methods,J. Eur. Ceram. Soc. 36(7), 1623 (2016)
https://doi.org/10.1016/j.jeurceramsoc.2016.01.031
216 H. Paik, H.-C. Kim, K. No, Y.-I. Kim, D. P. Cann, and J. Hong, Structural and physical properties of room temperature stable multiferroic properties of single-phase (Bi0.9La0.1)FeO3–Pb(Fe0.5Nb0.5)O3 solid solution systems, . Appl. Phys. 105, 07D919 (2009)
https://doi.org/10.1063/1.3072034
217 A. Kumar, P. Sharma, and D. Varshney, Structural and ferroic properties of La, Nd, and Dy doped BiFeO3 ceramics, J. Ceram. 2015, 869071 (2015)
https://doi.org/10.1155/2015/869071
218 A. Kumar, P. Sharma, W. Yang, J. Shen, D. Varshney, and Q. Li, Effect of La and Ni substitution on structure, dielectric and ferroelectric properties of BiFeO3 ceramics, Ceram. Int. 42(13), 14805 (2016)
https://doi.org/10.1016/j.ceramint.2016.06.113
219 R. D. Liu, L. H. He, L. Q. Yan, Z. C. Wang, Y. Sun, Y. T. Liu, D. F. Chen, S. Zhang, Y. G. Zhao, and F. W. Wang, Al-doping-induced magnetocapacitance in the multiferroic AgCrS2, Chin. Phys. B 24(12), 127507 (2015)
https://doi.org/10.1088/1674-1056/24/12/127507
220 A. Gautam and V. S. Rangra, Effect of Ba ions substitution on multiferroic properties of BiFeO3 perovskite, Cryst. Res. Technol. 45(9), 953 (2010)
https://doi.org/10.1002/crat.201000050
221 A. Beniwal, J. S. Bangruwa, B. Vasisth, S. P. Gairola, and V. Verma, Modification in structural, electrical and magnetic properties of Pr doped bismuth ferrites, Inter. J. Engn. Res. Technol. 5(03), 56 (2016)
https://doi.org/10.17577/IJERTV5IS030101
222 Y. Ma and X. M. Chen, Enhanced multiferroic characteristics in NaNbO3-modified BiFeO3 ceramics, J. Appl. Phys. 105(5), 054107 (2009)
https://doi.org/10.1063/1.3081648
223 Z. Z. Ma, Z. M. Tian, J. Q. Li, C. H. Wang, S. X. Huo, H. N. Duan, and S. L. Yuan, Enhanced polarization and magnetization in multiferroic (1–x)BiFeO3–xSrTiO3 solid solution, Solid State Sci. 13(12), 2196 (2011)
https://doi.org/10.1016/j.solidstatesciences.2011.10.008
224 A. K. Pradhan, K. Zhang, D. Hunter, J. B. Dadson, G. B. Loiutts, P. Bhattacharya, R. Katiyar, J. Zhang, D. J. Sellmyer, U. N. Roy, Y. Cui, and A. Burger, Magnetic and electrical properties of single-phase multiferroic BiFeO3,J. Appl. Phys. 97(9), 093903 (2005)
https://doi.org/10.1063/1.1881775
225 J. Wu, S. Mao, Z. G. Ye, Z. Xie, and L. Zheng, Roomtemperature ferromagnetic/ferroelectric BiFeO3 synthesized by a self-catalyzed fast reaction process, J. Mater. Chem. 20(31), 6512 (2010)
https://doi.org/10.1039/c0jm00729c
226 M. M. Kumar, V. R. Palkar, K. Srinivas, and S. V. Suryanarayana, Ferroelectricity in a pure BiFeO3 ceramic, Appl. Phys. Lett. 76(19), 2764 (2000)
https://doi.org/10.1063/1.126468
227 Y. P. Wang, L. Zhou, M. F. Zhang, X. Y. Chen, J. M. Liu, and Z. G. Liu, Room-temperature saturated ferroelectric polarization in BiFeO3 ceramics synthesized by rapid liquid phas, sintering, Appl. Phys. Lett. 84(10), 1731 (2004)
https://doi.org/10.1063/1.1667612
228 P. N. Francis, S. Dhanuskodi, M. S. Jayalakshmy, M. Muneeswaran, J. Philip, and N. V. Giridharan, Optical limiting and magnetoelectric coupling in multiferroic BiFeO3 nanoparticles, Mater. Chem. Phys. 216, 93 (2018)
https://doi.org/10.1016/j.matchemphys.2018.05.062
229 J. Xu, D. Xie, C. Yin, T. Feng, X. Zhang, G. Li, H. Zhao, Y. Zhao, S. Ma, T. L. Ren, Y. Guan, X. Gao, and Y. Zhao, Enhanced dielectric and multiferroic properties of single-phase Y and Zr co-doped BiFeO3 ceramics, J. Appl. Phys. 114(15), 154103 (2013)
https://doi.org/10.1063/1.4825216
230 S. Zhang, W. Luo, L. Wang, D. Wang, and Y. Ma, Simultaneously improved magnetization and polarization in BiFeO3 based multiferroic composites, J. Appl. Phys. 107(5), 054110 (2010)
https://doi.org/10.1063/1.3332040
231 S. Chandel, P. Thakur, S. S. Thakur, A. Sharma, J. H. Hsu, M. Tomar, V. Gupta, and A. Thakur, Investigation of excess and deficiency of iron in BiFeO3, Mater. Chem. Phys. 204, 207 (2018)
https://doi.org/10.1016/j.matchemphys.2017.10.042
232 Y. Li, J. Yu, J. Li, C. Zheng, Y. Wu, Y. Zhao, M. Wang, and Y. Wang, Influence of Dy-doping on ferroelectric and dielectric properties in Bi1.05–xDyxFeO3 ceramics, J. Mater. Sci. Mater. Electron. 22(4), 323 (2011)
https://doi.org/10.1007/s10854-010-0136-5
233 J. Xu, G. Ye, M. Zeng, Y. Deng, X. Chang, J. Sun, and Q. Wang, Enhanced multiferroic properties of Nd and Co co-doped BiFeO3 ceramics, J. Mater. Sci. Mater. Electron. 26(9), 6907 (2015)
https://doi.org/10.1007/s10854-015-3308-5
234 Q. Yao, X. Xu, S. Peng, Y. Zhu, Z. Wang, Y. Ma, X. Wang, W. Mao, and X. Li, Structural, optical and multiferroic properties of Eu, Ba co-doped BiFeO3, J. Mater. Sci. Mater. Electron. 28(1), 463 (2017)
https://doi.org/10.1007/s10854-016-5543-9
235 A. S. Prima, I. B. Shameem Banu, and Z. Mohammed, Effect of novel (Gd, Cu) substitution on the electrical properties and magnetoelectric coupling of bismuth ferrite ceramics,J. Mater. Sci. Mater. Electron. 28(12), 8467 (2017)
https://doi.org/10.1007/s10854-017-6567-5
236 M. Kumar, S. Shankar, O. P. Thakur, and A. K. Ghosh, Studies on magnetoelectric coupling and magnetic properties of (1–x)BiFeO3–xBaTiO3 solid solutions, J. Mater. Sci. Mater. Electron. 26(3), 1427 (2015)
https://doi.org/10.1007/s10854-014-2557-z
237 M. Banerjee, A. Mukherjee, A. Banerjee, D. Das, and S. Basu, Enhancement of multiferroic properties and unusual magnetic phase transition in Eu doped bismuth ferrite nanoparticles, New J. Chem. 41(19), 10985 (2017)
https://doi.org/10.1039/C7NJ02769A
238 S. K. Satpathy, S. Sen, and B. Behera, Dielectric, electrical and magnetic properties of La doped BiFeO3– PbZrO3 composites, J. Mater. Sci. Mater. Electron. 28(12), 9102 (2017)
https://doi.org/10.1007/s10854-017-6644-9
239 R. R. Raut, P. H. Salame, J. T. Kolte, C. S. Ulhe, and P. Goplan, Giant dielectric response and magnetoelectric behavior of 95BiFeO3–5BaTiO3 (95BFO–5BT) ceramics, J. Mater. Sci. Mater. Electron. 27(1), 730 (2016)
https://doi.org/10.1007/s10854-015-3810-9
240 K. Sen, K. Singh, A. Gautam, and M. Singh, Dispersion studies of La substitution on dielectric and ferroelectric properties of multiferroic BiFeO3 ceramic, Ceram. Int. 38(1), 243 (2012)
https://doi.org/10.1016/j.ceramint.2011.06.059
241 D. S. García-Zaleta, A. M. Torres-Huerta, M. A. Domínguez-Crespo, J. A. Matutes-Aquino, A. M. González, and M. E. Villafuerte-Castrejón, Solid solutions of La-doped BiFeO3 obtained by the Pechini method with improvement in their properties, Ceram. Int. 40(7), 9225 (2014)
https://doi.org/10.1016/j.ceramint.2014.01.143
242 H. Y. Dai, J. Chen, T. Li, D. W. Liu, R. Z. Xue, H. W. Xiang, and Z. P. Chen, Effect of BaTiO3 doping on the structural, electrical and magnetic properties of BiFeO3 ceramics, J. Mater. Sci. Mater. Electron. 26(6), 3717 (2015)
https://doi.org/10.1007/s10854-015-2890-x
243 I. B. Shameem Banu and S. D. Lakshmi, Simultaneous enhancement of room temperature multiferroic properties of BiFeO3 by Nd doping at Bi site and Co doping at Fe site, J. Mater. Sci. Mater. Electron. 28(21), 16044 (2017)
https://doi.org/10.1007/s10854-017-7504-3
244 W. Zheng, L. Zhang, Y. Lin, Z. Shi, F. Cao, G. Yuan, and J. Yu, Ferroic phase transitions and switching properties of modified BiFeO3–SrTiO3 multiferroic perovskites, J. Mater. Sci. Mater. Electron. 27(11), 12067 (2016)
https://doi.org/10.1007/s10854-016-5355-y
245 T. Murtaza, J. Ali, M. S. Khan, and K. Asokan, Structural, electrical and magnetic properties of multiferroic BiFeO3–SrTiO3 composites, J. Mater. Sci. Mater. Electron. 29(3), 2110 (2018)
https://doi.org/10.1007/s10854-017-8123-8
246 M. Sahni, N. Kumar, M. Kumar, and S. Singh, Effect of Sr substitution on structural, dielectric, magnetic and magnetoelectric properties of rapid liquid sintered BiFe0.8Ti0.2O3 ceramics, J. Mater. Sci. Mater. Electron. 25(11), 4743 (2014)
https://doi.org/10.1007/s10854-014-2227-1
247 R. Gupta, S. Verma, V. Singh, and K. K. Bamzai, Preparation, structural, electrical, and ferroelectric properties of lead niobate–lead zirconate–lead titanate ternary system, J. Ceram. 2015, 835150 (2015)
https://doi.org/10.1155/2015/835150
248 H. Y. Dai, L. T. Gu, X. Y. Xie, T. Li, Z. P. Chen, and Z. J. Li, The structure, defects, electrical and magnetic properties of BiFe1–xZrxO3 multiferroic ceramics, J. Mater. Sci. Mater. Electron. 29(3), 2275 (2018)
https://doi.org/10.1007/s10854-017-8143-4
249 B. Dhanalakshmi, K. Pratap, B. P. Rao, and P. S. V. Subba Rao, Effects of Mn doping on structural, dielectric and multiferroic properties of BiFeO3 nanoceramics, J. Alloys Compd. 676, 193 (2016)
https://doi.org/10.1016/j.jallcom.2016.03.208
250 R. Mazumder and A. Sen, Effect of Pb-doping on dielectric properties of BiFeO3 ceramics, J. Alloys Compd. 475(1–2), 577 (2009)
https://doi.org/10.1016/j.jallcom.2008.07.082
251 G. L. Song, Y. C. Song, J. Su, X. H. Song, N. Zhang, T. X. Wang, and F. G. Chang, Crystal structure refinement, ferroelectric and ferromagnetic properties of Ho3+ modified BiFeO3 multiferroic material, J. Alloys Compd. 696, 503 (2017)
https://doi.org/10.1016/j.jallcom.2016.11.155
252 P. Saxena, A. Kumar, P. Sharma, and D. Varshney, Improved dielectric and ferroelectric properties of dualsite substituted rhombohedral structured BiFeO3 multiferroics, J. Alloys Compd. 682, 418 (2016)
https://doi.org/10.1016/j.jallcom.2016.04.299
253 H. Deng, M. Zhang, Z. Hu, Q. Xie, Q. Zhong, J. Wei, and H. Yan, Enhanced dielectric and ferroelectric properties of Ba and Ti co-doped BiFeO3 multiferroic ceramics, J. Alloys Compd. 582, 273 (2014)
https://doi.org/10.1016/j.jallcom.2013.07.187
254 K. S. Kumar, P. Aswini, and C. Venkateswaran, Effect of Tb–Mn substitution on the magnetic and electrical properties of BiFeO3 ceramics, J. Magn. Magn. Mater. 364, 60 (2014)
https://doi.org/10.1016/j.jmmm.2014.04.008
255 P. Sharma and V. Verma, Structural, magnetic and electrical properties of La and Mn co-substituted BFO samples prepared by the sol–gel technique, J. Magn. Magn. Mater. 374, 18 (2015)
https://doi.org/10.1016/j.jmmm.2014.08.002
256 W. S. Kim, Y. K. Jun, K. H. Kim, and S. H. Hong, Enhanced magnetization in Co and Ta-substituted BiFeO3 ceramics, J. Magn. Magn. Mater. 321(19), 3262 (2009)
https://doi.org/10.1016/j.jmmm.2009.05.059
257 A. Anju, A. Agarwal, P. Aghamkar, and B. Lal, Structural and multiferroic properties of barium substituted bismuth ferrite nanocrystallites prepared by sol–gel method, J. Magn. Magn. Mater. 426, 800 (2017)
https://doi.org/10.1016/j.jmmm.2016.09.103
258 Y. A. Chaudhari, A. Singh, C. M. Mahajan, P. P. Jagtap, E. M. Abuassaj, R. Chatterjee, and S. T. Bendre, Multiferroic properties in Zn and Ni co-doped BiFeO3 ceramics by solution combustion method (SCM), J. Magn. Magn. Mater. 347, 153 (2013)
https://doi.org/10.1016/j.jmmm.2013.08.003
259 M. Manikandan, K. S. Kumar, N. Aparnadevi, N. P. Shanker, and C. Venkateswaran, Multiferroicity in polar phase LiNbO3 at room temperature, J. Magn. Magn. Mater. 391, 156 (2015)
https://doi.org/10.1016/j.jmmm.2015.04.099
260 Y. Chaudhari, C. M. Mahajan, A. Singh, P. Jagtap, R. Chatterjee, and S. Bendre, Multiferroic properties of nanocrystalline BiFe1–xNixO3 (x= 0.0–0.15) perovskite ceramics, J. Magn. Magn. Mater. 395, 329 (2015)
https://doi.org/10.1016/j.jmmm.2015.07.098
261 M. M. El-Desoky, M. S. Ayoua, M. M. Mostafa, and M. A. Ahmed, Multiferroic properties of nanostructured barium doped bismuth ferrite, J. Magn. Magn. Mater. 404, 68 (2016)
https://doi.org/10.1016/j.jmmm.2015.12.020
262 A. S. Priya, I. B. S. Banu, and S. Anwar, Influence of Dy and Cu doping on the room temperature multiferroic properties of BiFeO3, J. Magn. Magn. Mater. 401, 333 (2016)
https://doi.org/10.1016/j.jmmm.2015.10.059
263 S. T. Dadami, S. Matteppanavar, I. Shivaraja, S. Rayaprol, B. Angadi, and B. Sahoo, Investigation on structural, Mössbauer and ferroelectric properties of (1–x)PbFe0.5Nb0.5O3–(x)BiFeO3 solid solution, J. Magn. Magn. Mater. 418, 122 (2016)
https://doi.org/10.1016/j.jmmm.2016.01.092
264 A. G. Lone and R. N. Bhowmik, Study of room temperature ferromagnetic and ferroelectric properties in α- Fe1.6Ga0.4O3 alloy, J. Magn. Magn. Mater. 379, 244 (2015)
https://doi.org/10.1016/j.jmmm.2014.12.020
265 V. Verma, A. Beniwal, A. Ohlan, and R. Tripathi, Structural, magnetic and ferroelectric properties of Pr doped multi-ferroics bismuth ferrites, J. Magn. Magn. Mater. 394, 385 (2015)
https://doi.org/10.1016/j.jmmm.2015.06.067
266 J. Pal, S. Kumar, L. Singh, M. Singh, and A. Singh, Detailed investigation on structural, dielectric, magnetic and magnetodielectric properties of BiFeO3–BaSrTiO3 solid solutions, J. Magn. Magn. Mater. 441, 339 (2017)
https://doi.org/10.1016/j.jmmm.2017.05.047
267 M. Banerjee, A. Mukherjee, A. Banerjee, D. Das, and S. Basu, Enhancement of multiferroic properties and unusual magnetic phase transition in Eu doped bismuth ferrite nanoparticles, New J. Chem. 41(19), 10985 (2017)
https://doi.org/10.1039/C7NJ02769A
268 S. S. Yadava, A. Khare, P. Gautam, A. Kumar, and K. D. Mandal, Dielectric, ferroelectric and magnetic study of iron doped hexagonal Ba4YMn3O11.5–δ(BYMO) and its dependence on temperature as well as frequency, New J. Chem. 41(11), 4611 (2017)
https://doi.org/10.1039/C6NJ04071C
269 H. Dai, F. Ye, Z. Chen, T. Li, and D. Liu, The effect of ion doping at different sites on the structure, defects and multiferroic properties of BiFeO3 ceramics, J. Alloys Compd. 734, 60 (2018)
https://doi.org/10.1016/j.jallcom.2017.11.012
270 A. Anwar, M. A. Basith, and S. Choudhury, From bulk to nano: A comparative investigation of structural, ferroelectric and magnetic properties of Sm and Ti co-doped BiFeO3 multiferroics, Mater. Res. Bull. 111, 93 (2019)
https://doi.org/10.1016/j.materresbull.2018.11.003
271 S. R. Wadgane, S. T. Alone, A. Karim, G. Vats, S. E. Shirsath, and R. H. Kadam, Magnetic field induced polarization and magnetoelectric effect in Na0.5Bi0.5TiO3–Co0.75Zn0.25Cr0.2Fe1.8O4 multiferroic composite, J. Magn. Magn. Mater. 471, 388 (2019)
https://doi.org/10.1016/j.jmmm.2018.10.011
272 X. Peng, Y. Pu, Y. Guo, Z. J. Dong, Y. Shi, and L. Zhang, Effect of Y2O3 dopant on dielectric, magnetic, magnetodielectric properties of Bi0.95La0.05Fe0.95Ti0.05O3 ceramics, J. Alloys Compd. 773, 970 (2019)
https://doi.org/10.1016/j.jallcom.2018.09.178
273 M. Nadeem, W. Khan, S. Khan, S. Husain, and A. Ansari, Tailoring dielectric properties and multiferroic behavior of nanocrystalline BiFeO3 via Ni doping, J. Appl. Phys. 124(16), 164105 (2018)
https://doi.org/10.1063/1.5050946
274 H. Zhao, H. Wang, Z. Cheng, Q. Fu, H. Tao, Z. Ma, T. Jia, H. Kimura, and H. Li, Electric and magnetic properties of Aurivillius-phase compounds: Bi5Ti3XO15 (X= Cu, Mn, Ni, V), Ceram. Int. 44(11), 13226 (2018)
https://doi.org/10.1016/j.ceramint.2018.04.148
275 A. Amouri, N. Abdelmoula, and H. Khemakhem, Improved multiferroic properties in (1–x)BiFeO3–(x)BaTi0.95(Yb0.5Nb0.5)0.05O3 system (0≤x≤0.3), J. Magn. Magn. Mater. 417, 302 (2016)
https://doi.org/10.1016/j.jmmm.2016.05.088
276 A. K. Yadav, P. Rajput, O. Alshammari, M. Khan, Anita, G. Kumar, S. Kumar, P. M. Shirage, S. Biring, and S. Sen, Structural distortion, ferroelectricity and ferromagnetism in Pb(Ti1–xFex)O3, J. Alloys Compd. 701, 619 (2017)
https://doi.org/10.1016/j.jallcom.2017.01.127
277 S. Sahoo, P. K. Mahapatra, R. N. P. Choudhary, and P. Alagarsamy, Influence of compositional variation on structural, electrical and magnetic characteristics of (Ba1–xGd)(Ti1–xFex)O3 (0.2≤x≤0.5), Mater. Res. Express 5(1), 016101 (2018)
https://doi.org/10.1088/2053-1591/aa9efb
278 G. H. Jaffari, M. Aftab, A. Samad, F. Mumtaz, M. S. Awan, and S. I. Shah, Effects of dopant induced defects on structural, multiferroic and optical properties of Bi1–xPbxFeO3 (0≤x≤0.3) ceramics, Mater. Res. Express 5(1), 016103 (2018)
https://doi.org/10.1088/2053-1591/aaa14f
279 A. Anwar, M. A. Basith, and S. Choudhury, From bulk to nano: A comparative investigation of structural, ferroelectric and magnetic properties of Sm and Ti co-doped BiFeO3 multiferroics, Mater. Res. Bull. 111, 93 (2019)
https://doi.org/10.1016/j.materresbull.2018.11.003
280 P. Uniyal and K. L. Yadav, Study of dielectric, magnetic and ferroelectric properties in Bi1–xGdxFeO3, Mater. Lett. 62(17–18), 2858 (2008)
https://doi.org/10.1016/j.matlet.2008.01.103
281 S. Sharma, A. Mishra, P. Saravanan, O. P. Pandey, and P. Sharma, Effect of Gd-substitution on the ferroelectric and magnetic properties of BiFeO3 processed by high-energy ball milling, J. Magn. Magn. Mater. 418, 188 (2016)
https://doi.org/10.1016/j.jmmm.2016.03.006
282 C. Zhang, M. Shang, M. Liu, L. Ge, H. Yuan, and S. Feng, Multiferroicity in SmFeO3 synthesized by hydrothermal method, J. Alloys Compd. 665, 152 (2016)
https://doi.org/10.1016/j.jallcom.2016.01.042
283 R. Muduli, R. Pattanayak, S. Raut, P. Sahu, V. Senthil, S. Rath, P. Kumar, S. Panigrahi, and R. K. Panda, Dielectric, ferroelectric and impedance spectroscopic studies in TiO2-doped AgNbO3 ceramic, J. Alloys Compd. 664, 715 (2016)
https://doi.org/10.1016/j.jallcom.2015.12.259
284 M. Manikandan, A. Muthukumaran, and C. Venkateswaran, Intrinsic magneto-dielectric effect in the diluted magnetic ferroelectric fluoride BaMg1–xMnxF4 (0≤x≤0.07), J. Magn. Magn. Mater. 393, 40 (2015)
https://doi.org/10.1016/j.jmmm.2015.05.053
285 C. X. Chen, Y. K. Liu, and R. K. Zheng, Magnetic and ferroelectric properties of SmBi4Fe0.5Co0.5Ti3O15 compounds prepared with different synthesis methods, J. Mater. Sci. Mater. Electron. 28(11), 7562 (2017)
https://doi.org/10.1007/s10854-017-6446-0
286 J. D. Bobić, R. M. Katiliute, M. Ivanom, M. M. V. Petrović, N. I. Ilić, A. S. Džunuzović, J. Banys, and B. D. Stojanović, Dielectric, ferroelectric and magnetic properties of La doped Bi5Ti3FeO15 ceramics, J. Mater. Sci. Mater. Electron. 27(3), 2448 (2016)
https://doi.org/10.1007/s10854-015-4044-6
287 S. Liu, S. Yan, H. Luo, L. Yao, Z. Hu, S. Huang, and L. Deng, Enhanced magnetoelectric coupling in La-modified Bi5Co0.5Fe0.5Ti3O15 multiferroic ceramics, J. Mater. Sci. 53(2), 1014 (2018)
https://doi.org/10.1007/s10853-017-1604-6
288 S. Das, R. C. Sahoo, K. P. Bera, and T. K. Nath, Doping effect on ferromagnetism, ferroelectricity and dielectric constant in sol-gel derived Bi1–xNdxFe1–yCoyO3 nanoceramics, J. Magn. Magn. Mater. 451, 226 (2018)
https://doi.org/10.1016/j.jmmm.2017.11.039
289 H. Paik, H. Hwang, K. No, S. Kwon, and D. P. Cann, Room temperature multiferroic properties of single-phase (Bi0.9La0.1)FeO3-Ba(Fe0.5Nb0.5)O3 solid solution ceramics, Appl. Phys. Lett. 90(4), 042908 (2007)
https://doi.org/10.1063/1.2434182
290 X. Jia, J. Zhang, and J. Wang, Dielectric, ferroelectric and ferromagnetic properties of multiferroic (1–x)Ba0.99Ca0.01Zr0.02Ti0.98O3–xBiFeO3 ceramics, Ferroelctrics Lett. 44(4–6), 113 (2017)
https://doi.org/10.1080/07315171.2017.1397460
291 M. A. Jalaja and S. Dutta, Switchable photovoltaic properties of multiferroic KBiFe2O5, Mater. Res. Bull. 88, 9 (2017)
https://doi.org/10.1016/j.materresbull.2016.12.008
292 S. Mohanty, A. Kumar, and R. N. P. Choudhary, Studies of structural, dielectric, electrical and ferroelectric characteristics of BiFeO3 and (Bi0.5K0.5)(Fe0.5Ta0.5)O3, J. Mater. Sci. Mater. Electron. 26(12), 9640 (2015)
https://doi.org/10.1007/s10854-015-3630-y
293 M. M. Sutar, S. R. Jigajeni, A. N. Tarale, S. B. Kulkarni, and P. B. Joshi, Magnetoelectric and magnetodielectric effect in BST–LSMO ferromagnetic/ferroelectric composites, J. Mater. Sci. Mater. Electron. 25(9), 3771 (2014)
https://doi.org/10.1007/s10854-014-2088-7
294 W. Cai, C. Fu, G. Chen, R. Gao, and X. Deng, Dielectric and ferroelectric properties of xBaZr0.52Ti0.48O3–(1–x)BiFeO3 solid solution ceramics, J. Mater. Sci. Mater. Electron. 26(1), 322 (2015)
https://doi.org/10.1007/s10854-014-2403-3
295 K. Praveena and K. B. R. Varma, Ferroelectric and optical properties of Ba5Li2Ti2Nb8O30 ceramics potential for memory applications, J. Mater. Sci. Mater. Electron. 25(7), 3103 (2014)
https://doi.org/10.1007/s10854-014-1990-3
296 R. Castañeda, G. Rojas-George, J. Silva, M. E. Fuentes-Montero, J. A. Matutes-Aquino, A. Reyes-Rojas, and L. Fuentes, Effects of Ni doping on ferroelectric and ferromagnetic properties of Bi0.75Ba0.25FeO3, Ceram. Int. 39(7), 8527 (2013)
https://doi.org/10.1016/j.ceramint.2013.03.055
297 K. L. Manjusha and K. L. Yadav, Enhanced dielectric, ferroelectric and magnetodielectric properties in three phase 0.45Bi0.9La0.1FeO3–0.55Co0.5Ni0.5Fe2O4–BaTiO3 composite, J. Mater. Sci. Mater. Electron. 27(6), 6347 (2016)
https://doi.org/10.1007/s10854-016-4569-3
298 Y. Guo, P. Xiao, L. Luo, N. Jiang, F. Lei, Q. Zheng, and D. Lin, Structure, ferroelectric and piezoelectric properties of Bi0.5(Na0.8K0.2)0.5TiO3 modified BiFeO3–BaTiO3 lead-free piezoelectric ceramics, J. Mater. Sci. Mater. Electron. 25(9), 3753 (2014)
https://doi.org/10.1007/s10854-014-2086-9
299 S. Dash, R. Padhee, P. R. Das, and R. N. P. Choudhary, Enhancement of dielectric and electrical properties of NaNbO3-modified BiFeO3, J. Mater. Sci. Mater. Electron. 24(9), 3315 (2013)
https://doi.org/10.1007/s10854-013-1249-4
300 S. Godara and B. Kumar, Effect of Ba–Nb co-doping on the structural, dielectric, magnetic and ferroelectric properties of BiFeO3 Nanoparticles, Ceram. Int. 41(5), 6912 (2015)
https://doi.org/10.1016/j.ceramint.2015.01.145
301 T. Ramesh, V. Rajendar, and S. R. Murthy, CoFe2O4– BaTiO3 multiferroic composites: Role of ferrite and ferroelectric phases on the structural, magneto dielectric properties, J. Mater. Sci. Mater. Electron. 28(16), 11779 (2017)
https://doi.org/10.1007/s10854-017-6983-6
302 S. Ahmed and S. K. Barik, Preparation of novel (Sb1/2Na1/2)(Fe2/3W1/3)O3 compound by solid state reaction technique and their multiferroic property, J. Mater. Sci. Mater. Electron. 27(10), 10294 (2016)
https://doi.org/10.1007/s10854-016-5112-2
303 V. Anbarasu, M. Dhilip, K. Saravana Kumar, and K. Sivakumar, Effect of trivalent transition metal ion substitution in multifunctional properties of Dy2O3 system, J. Mater. Sci. Mater. Electron. 28(12), 8976 (2017)
https://doi.org/10.1007/s10854-017-6628-9
304 S. Nath, S. K. Barik, and R. N. P. Choudhary, Dielectric relaxation and magnetic characteristics of (La1/2Li1/2)(Fe1/2V1/2)O3 multiferroics, J. Mater. Sci. Mater. Electron. 26(10), 8199 (2015)
https://doi.org/10.1007/s10854-015-3481-6
305 S. Nath, S. K. Barik, and R. N. P. Choudhary, Electrical and ferroelectric characteristics of (LaLi)1/2(Fe2/3Mo1/3)O3, J. Mater. Sci. Mater. Electron. 27(8), 8717 (2016)
https://doi.org/10.1007/s10854-016-4894-6
306 B. Want, M. D. Rather, and R. Samad, Dielectric, ferroelectric and magnetic behavior of BaTiO3–BaFe12O19 composite, J. Mater. Sci. Mater. Electron. 27(6), 5860 (2016)
https://doi.org/10.1007/s10854-016-4503-8
307 M. Wang, and G. Tan, Multiferroic properties of Pb2Fe2O5 ceramics, Mater. Res. Bull. 46(3), 438 (2011)
https://doi.org/10.1016/j.materresbull.2010.11.031
308 V. G. Kostishyn, L. V. Panina, L. V. Kozitov, A. V. Timofeev, A. K. Zyuzin, and A. N. Kovalev, Synthesis of Hexagonal BaFe12O19 and SrFe12O19 Ferrite Ceramics with Multiferroic Properties, Inorg. Mater.: Appl. Res. 6(5), 461 (2015)
https://doi.org/10.1134/S207511331505007X
309 V. G. Kostishyn, L. V. Panina, A. V. Timofeev, L. V. Kozhitov, A. N. Kovalev, and A. K. Zyuzin, Dual ferroic properties of hexagonal ferrite ceramics BaFe12O19 and SrFe12O19, J. Magn. Magn. Mater. 400, 327 (2016)
https://doi.org/10.1016/j.jmmm.2015.09.011
310 Z. Guo, L. Pan, C. Bi, H. Qiu, X. Zhao, L. Yang, and M. Y. Rafique, Structural and multiferroic properties of Fe-doped Ba0.5Sr0.5TiO3 solids, J. Magn. Magn. Mater. 325, 24 (2013)
https://doi.org/10.1016/j.jmmm.2012.08.023
311 O. Subohi, C. R. Bowen, M. M. Malik, and R. Kurchania, Dielectric spectroscopy and ferroelectric properties of magnesium modified bismuth titanate ceramics, J. Alloys Compd. 688, 27 (2016)
https://doi.org/10.1016/j.jallcom.2016.07.173
312 P. Gupta, R. Padhee, P. K. Mahapatra, R. N. P. Choudhary, and S. Das, Structural and electrical properties of Bi3TiVO9 ferroelectric ceramics, J. Alloys Compd. 731, 1171 (2018)
https://doi.org/10.1016/j.jallcom.2017.10.123
313 A. Lavado and M. G. Stachiotti, Fe3+/Nb5+ co-doping effects on the properties of Aurivillius Bi4Ti3O12 ceramics, J. Alloys Compd. 731, 914 (2018)
https://doi.org/10.1016/j.jallcom.2017.10.112
314 W. Cai, C. Fu, W. Hu, G. Chen, and X. Deng, Effects of microwave sintering power on microstructure, dielectric, ferroelectric and magnetic properties of bismuth ferrite ceramics, J. Alloys Compd. 554, 64 (2013)
https://doi.org/10.1016/j.jallcom.2012.11.154
315 T. Ahmad and I. H. Lone, Citrate precursor synthesis and multifunctional properties of YCrO3 nanoparticles, New J. Chem. 40(4), 3216 (2016)
https://doi.org/10.1039/C5NJ02763B
316 K. Praveena and K. B. R. Varma, Enhanced electric field tunable magnetic properties of lead-free Na0.5Bi0.5TiO3–MnFe2O4 multiferroic composites, J. Mater. Sci. Mater. Electron. 25(12), 5403 (2014)
https://doi.org/10.1007/s10854-014-2320-5
317 V. Anbarasu, A. Manigandan, T. Karthik, and K. Sivakumar, Inducing multiferroic behaviour in the diamagnetic Y2O3 system, J. Mater. Sci. Mater. Electron. 23(6), 1201 (2012)
https://doi.org/10.1007/s10854-011-0573-9
318 S. K. Pradhan, S. N. Das, S. Bhuyan, C. Behera, and R. N. P. Choudhary, Structural and electrical properties of lead reduced lanthanum modified BiFeO3–PbTiO3 solid solution, J. Mater. Sci. Mater. Electron. 28(2), 1186 (2017)
https://doi.org/10.1007/s10854-016-5645-4
319 K. Mukhopadhyay, A. S. Mahapatra, and P. K. Chakrabarti, Multiferroic behavior, enhanced magnetization and exchange bias effect of Zn substituted nanocrystalline LaFeO3 (La1–xZnxFeO3, x= 0.10 and 0.30), J. Magn. Magn. Mater. 329, 133 (2013)
https://doi.org/10.1016/j.jmmm.2012.09.063
320 R. Das and K. Mandal, Magnetic, ferroelectric and magnetoelectric properties of Ba-doped BiFeO3, J. Magn. Magn. Mater. 324(11), 1913 (2012)
https://doi.org/10.1016/j.jmmm.2012.01.022
321 A. Jain, A. K. Panwar, and A. K. Jha, Significant enhancement in structural, dielectric, piezoelectric and ferromagnetic properties of Ba0.9Sr0.1Zr0.1Ti0.9O3– CoFe2O4 multiferroic composites, Mater. Res. Bull. 100, 367 (2018)
https://doi.org/10.1016/j.materresbull.2017.12.054
322 S. Jindal, S. Devi, K. M. Batoo, G. Kumar, and A. Vasishth, Impact of copper substitution on the structural, ferroelectric and magnetic properties of tungsten bronze ceramics, Physica B 537, 87 (2018)
https://doi.org/10.1016/j.physb.2018.02.008
323 P. Tirupathi and A. Chandra, Observation of bi-relaxor characteristic in multiferroic 0.70Bi0.90Ca0.10FeO3–0.30PbTiO3 ceramics, J. Phys. D Appl. Phys. 46(37), 375304 (2013)
https://doi.org/10.1088/0022-3727/46/37/375304
324 L. H. Yin, W. H. Song, X. L. Jiao, W. B. Wu, X. B. Zhu, Z. R. Yang, J. M. Dai, R. L. Zhang, and Y. P. Sun, Multiferroic and magnetoelectric properties of Bi1–xBaxFe1–xMnxO3 system, J. Phys. D Appl. Phys. 42(20), 205402 (2009)
https://doi.org/10.1088/0022-3727/42/20/205402
325 G. H. Jaffari, M. Aftab, A. Samad, F. Mumtaz, M. S. Awan, and S. I. Shah, Effects of dopant induced defects on structural, multiferroic and optical properties of Bi1–xPbxFeO3 (0≤x≤0.3) ceramics, Matter. Res. Expr. 5(1), 016103 (2018)
https://doi.org/10.1088/2053-1591/aaa14f
326 X. Q. Chen, F. J. Yang, W. Q. Cao, D. Y. Wang, and K. Chen, Room-temperature magnetoelectric coupling in Bi4(Ti1Fe2)O12– system, J. Phys. D Appl. Phys. 43(6), 065001 (2010)
https://doi.org/10.1088/0022-3727/43/6/065001
327 X. Chen, C. Wei, J. Xiao, Y. Xue, X. Zeng, F. Yang, P. Li, and Y. He, Room temperature multiferroic properties and magnetocapacitance effect of modified ferroelectric Bi4Ti3O12 ceramic, J. Phys. D Appl. Phys. 46(42), 425001 (2013)
https://doi.org/10.1088/0022-3727/46/42/425001
328 S. K. Patri and R. N. P. Choudhary, Phase transition in Bi8Fe6Ti3O27 multiferroic ceramics, Cent. Eur. J. Phys. 6, 450 (2008)
https://doi.org/10.2478/s11534-008-0064-7
329 S. Sahoo, P. K. Mahapatra, R. N. P. Choudhary, and P. Alagarsamy, Influence of compositional variation on structural, electrical and magnetic characteristics of (Ba1–xGd)(Ti1–xFex)O3 (0.2≤x≤0.5), Matter. Res. Expr. 5(1), 016101 (2018)
https://doi.org/10.1088/2053-1591/aa9efb
330 N. Kumar, A. Shukla, and R. N. P. Choudhary, Structural, dielectric, electrical and magnetic characteristics of lead-free multiferroic: Bi(Cd0.5Ti0.5)O3–BiFeO3 solid solution, J. Alloys Compd. 747, 895 (2018)
https://doi.org/10.1016/j.jallcom.2018.03.114
331 R. Samantaray, R. J. Clark, E. S. Choi, H. Zhou, and N. S. Dalal, M3–x(NH4)xCrO8 (M= Na, K, Rb, Cs): A new family of Cr5+ based magnetic ferroelectrics,J. Am. Chem. Soc. 133(11), 3792 (2011)
https://doi.org/10.1021/ja1117683
332 R. Samantaray, R. J. Clark, E. S. Choi, and N. S. Dalal, Elucidating the mechanism of multiferroicity in (NH4)3Cr(O2)4 and its tailoring by alkali metal substitution, J. Am. Chem. Soc. 134(38), 15953 (2012)
https://doi.org/10.1021/ja3065705
333 S. J. Kim, S. H. Han, H. G. Kim, A. Y. Kim, J. J. Kim, and C. J. Cohen, Multiferroic properties of Tidoped BiFeO3 ceramics, J. Korean Phys. Soc. 56(1(2)), 439 (2010)
https://doi.org/10.3938/jkps.56.439
334 N. H. Kim, E. J. Yoon, C. I. Cheon, and J. S. Kim, Multiferroic properties of a bismuth layer structured Bi3.25La0.75Ti3O12–(La0.7Sr0.3)MnO3 solid solution at low temperatures, J. Korean Phys. Soc. 56(1(2)), 393 (2010)
https://doi.org/10.3938/jkps.56.393
335 S. Liu, S. Yan, H. Luo, L. Yao, Z. Hu, S. Huang, and L. Deng, Enhanced magnetoelectric coupling in La-modified Bi5Co0.5Fe0.5Ti3O15 multiferroic ceramics, J. Mater. Sci. 53(2), 1014 (2018)
https://doi.org/10.1007/s10853-017-1604-6
336 Y. J. Wu, S. P. Gu, Y. Q. Lin, Z. J. Hong, X. Q. Liu, and X. M. Chen, Multiferroic ceramics in BaO–Y2O3– Fe2O3–Nb2O5 system, Ceram. Int. 36(8), 2415 (2010)
https://doi.org/10.1016/j.ceramint.2010.07.022
337 Y. Ma, X. M. Chen, Y. J. Wu, and Y. Q. Lin, Dielectric relaxation and enhanced multiferroic properties in YMn0.8Fe0.2O3 ceramics prepared by in situ spark plasma sintering, Ceram. Int. 36(2), 727 (2010)
https://doi.org/10.1016/j.ceramint.2009.11.002
338 T. Karthik, A. Srinivas, V. Kamaraj, and V. Chandrasekeran, Influence of in-situ magnetic field pressing on the structural and multiferroic behaviour of BiFeO3 ceramics, Ceram. Int. 38(2), 1093 (2012)
https://doi.org/10.1016/j.ceramint.2011.08.036
339 K. Sen, K. Singh, A. Gautam, and M. Singh, Dispersion studies of La substitution on dielectric and ferroelectric properties of multiferroic BiFeO3 ceramic, Ceram. Int. 38(1), 243 (2012)
https://doi.org/10.1016/j.ceramint.2011.06.059
340 A. Prasatkhetragarn, P. Muangkonkad, P. Aommongkol, P. Jantaratana, N. Vittayakorn, and R. Yimnirun, Investigation on ferromagnetic and ferroelectric properties of (La, K)-doped BiFeO3–BaTiO3 solid solution, Ceram. Int. 39, S249 (2013)
https://doi.org/10.1016/j.ceramint.2012.10.071
341 H. Dai, Z. Chen, R. Xue, T. Li, J. Chen, and H. Xiang, Structural and electric properties of polycrystalline Bi1–xErxFeO3 ceramics, Ceram. Int. 39(5), 5373 (2013)
https://doi.org/10.1016/j.ceramint.2012.12.043
342 V. Kumar, A. Gaur, N. Sharma, J. Shah, and R. K. Kotnala, High temperature dielectric and magnetic response of Ti and Pr doped BiFeO3 ceramics, Ceram. Int. 39(7), 8113 (2013)
https://doi.org/10.1016/j.ceramint.2013.03.084
343 H. Dai, R. Xue, Z. Chen, T. Li, J. Chen, and H. Xiang, Effect of Eu, Ti co-doping on the structural and multiferroic properties of BiFeO3 ceramics, Ceram. Int. 40(10), 15617 (2014)
https://doi.org/10.1016/j.ceramint.2014.07.080
344 H. Bouzidi, H. Chaker, M. Es-souni, C. Chaker, and H. Khemakhem, Structural, Raman, ferroelectric and magnetic studies of the (1–x)BF–xBCT multiferroic system, J. Alloys Compd. 772, 877 (2019)
https://doi.org/10.1016/j.jallcom.2018.09.105
345 X. Chen, J. Xiao, J. Yao, Z. Kang, F. Yang, and X. Zeng, Room temperature magnetoelectric coupling study in multiferroic Bi4NdTi3Fe0.7Ni0.3O15 prepared by a multicalcination procedure, Ceram. Int. 40(5), 6815 (2014)
https://doi.org/10.1016/j.ceramint.2013.11.144
346 J. Wei, M. Zhang, H. Deng, S. Chu, M. Du, and H. Yan, Effect of Cr doping on ferroelectric and magnetic properties of Bi0.8Ba0.2FeO3, Ceram. Int. 41(7), 8665 (2015)
https://doi.org/10.1016/j.ceramint.2015.03.079
347 G. Zerihun, S. Huang, G. Gong, and S. Yuan, Influence of Eu doping on the magnetoelectric and dielectric properties of BiFeO3–Bi0.5Na0.5TiO3 ceramics, Ceram. Int. 41(5), 6589 (2015)
https://doi.org/10.1016/j.ceramint.2015.01.105
348 J. Wei, Y. Liu, X. Bai, C. Li, Y. Liu, Z. Xu, P. Gemeiner, R. Haumont, I. C. Infante, and B. Dkhil, Crystal structure, leakage conduction mechanism evolution and enhanced multiferroic properties in Y-doped BiFeO3 ceramics, Ceram. Int. 42(12), 13395 (2016)
https://doi.org/10.1016/j.ceramint.2016.05.106
349 M. Wu, W. Wang, X. Jiao, G. Wei, L. He, S. Han, Y. Liu, and D. Chen, Structural and multiferroic properties of Pr and Ti co-doped BiFeO3 ceramics, Ceram. Int. 42(13), 14675 (2016)
https://doi.org/10.1016/j.ceramint.2016.06.091
350 A. Beniwal, J. S. Bangruwa, R. Walia, and V. Verma, A systematic study on multiferroics Bi1–xCexFe1–yMnyO3. Structural, magnetic and electrical properties, Ceram. Int. 42(8), 10373 (2016)
https://doi.org/10.1016/j.ceramint.2016.03.169
351 W. Mao, W. Chen, X. Wang, Y. Zhu, Y. Ma, H. Xue, L. Chu, J. Yang, X. Li, and W. Huang, Influence of Eu and Sr co-substitution on multiferroic properties of BiFeO3, Ceram. Int. 42(11), 12838 (2016)
https://doi.org/10.1016/j.ceramint.2016.05.048
352 S. Ahmed and S. Kumar Barik, Enhanced electric and magnetic properties of (BiLi)1/2(Fe2/3W1/3)O3 multiferroic as compared to BiFeO3, Ceram. Int. 42(5), 5659 (2016)
https://doi.org/10.1016/j.ceramint.2015.12.090
353 A. S. Mahapatra, K. Mukhopadhyay, M. Ghosh, P. K. Mallick, T. Matsumoto, A. Taguchi, Y. Tanioku, K. Yoshimura, and P. K. Chakrabarti, Enhanced magnetoelectric property and Raman spectroscopy of nanocrystalline AlxGa1–xFeO3 (x= 0.05, 0.10 and 0.20), Ceram. Int. 42(14), 15904 (2016)
https://doi.org/10.1016/j.ceramint.2016.07.064
354 Y. Gu, J. Zhao, W. Zhang, H. Zheng, L. Liu, and W. Chen, Structural transformation and multiferroic properties of Sm and Ti co-doped BiFeO3 ceramics with Fe vacancies, Ceram. Int. 43(17), 14666 (2017)
https://doi.org/10.1016/j.ceramint.2017.07.187
355 P. Xiong, J. Yang, Y. F. Qin, W. J. Huang, X. W. Tang, L. H. Yin, W. H. Song, J. M. Dai, X. B. Zhu, and Y. P. Sun, Room temperature multiferroicity in Aurivillius compounds Bi6Fe2–xNixTi3O18 (0≤x≤1), Ceram. Int. 43(5), 4405 (2017)
https://doi.org/10.1016/j.ceramint.2016.12.087
356 T. Wang, H. Deng, X. Meng, H. Cao, W. Zhou, P. Shen, Y. Zhang, P. Yang, and J. Chu, Tunable polarization and magnetization at room-temperature in narrow bandgap Aurivillius Bi6Fe2–xCox/2Nix/2Ti3O18, Ceram. Int. 43(12), 8792 (2017)
https://doi.org/10.1016/j.ceramint.2017.04.010
357 X. Zuo, M. Zhang, E. He, P. Zhang, J. Yang, X. Zhu, and J. Dai, Magnetic, dielectric, and magneto-dielectric properties of Aurivillius Bi7Fe2CrTi3O21 ceramic, Ceram. Int. 44(5), 5319 (2018)
https://doi.org/10.1016/j.ceramint.2017.12.150
358 J. D. Bobić, M. Ivanov, N. I. Ilić, A. S. Dzunuzović, M. M. V. Petrović, J. Banys, A. Ribic, Z. Despotovic, and B. D. Stojanovic, PZT-nickel ferrite and PZT-cobalt ferrite comparative study: Structural, dielectric, ferroelectric and magnetic properties of composite ceramics, Ceram. Int. 44(6), 6551 (2018)
https://doi.org/10.1016/j.ceramint.2018.01.057
359 S. Chandel, P. Thakur, S. S. Thakur, V. Kanwar, M. Tomar, V. Gupta, and A. Thakur, Effect of non-magnetic Al3+ doping on structural, optical, electrical, dielectric and magnetic properties of BiFeO3 ceramics, Ceram. Int. 44(5), 4711 (2018)
https://doi.org/10.1016/j.ceramint.2017.12.053
360 N. Kumar, A. Shukla, N. Kumar, R. N. P. Choudhary, and A. Kumar, Structural, electrical, and multiferroic characteristics of lead-free multiferroic: Bi(Co0.5Ti0.5)O3–BiFeO3 solid solution, RSC Advances 8(64), 36939 (2018)
https://doi.org/10.1039/C8RA02306A
361 W. Hu, Y. Chen, H. Yuan, G. Li, Y. Qiao, Y. Qin, and S. Feng, Structure, magnetic, and ferroelectric properties of Bi1–xGdxFeO3 nanoparticles, J. Phys. Chem. C 115(18), 8869 (2011)
https://doi.org/10.1021/jp1103142
362 A. Chaudhuri and K. Mandal, Study of structural, ferromagnetic and ferroelectric properties of nanostructured barium doped bismuth ferrite, J. Magn. Magn. Mater. 353, 57 (2014)
https://doi.org/10.1016/j.jmmm.2013.09.049
363 S. V. Vijayasundaram, G. Suresh, R. A. Mondal, and R. Kanagadurai, Substitution-driven enhanced magnetic and ferroelectric properties of BiFeO3 nanoparticles, J. Alloys Compd. 658, 726 (2016)
https://doi.org/10.1016/j.jallcom.2015.10.250
364 W. Mao, Q. Yao, Y. Fan, Y. Wang, X. Wang, Y. Pu, and X. Li, Combined experimental and theoretical investigation on modulation of multiferroic properties in BiFeO3 ceramics induced by Dy and transition metals co-doping, J. Alloys Compd. 784, 117 (2019)
https://doi.org/10.1016/j.jallcom.2018.12.381
365 H. Bai, J. Li, Y. Wu, Y. Hong, K. Shi, Q. Meng, Z. Zhou, D. Jia, R. Guo, and A. S. Bhalla, Structural, dielectric, ferroelectric, and ferromagnetic properties of multiferroic ceramics (1–x)Ba(Zr0.2Ti0.8)O3–xBa0.7Ca0.3FeTaO5, Ferroelectrics 534(1), 164 (2018)
https://doi.org/10.1080/00150193.2018.1472970
366 S. Dash, R. N. P. Choudhary, and M. N. Goswami, Modification of ferroelectric and resistive properties of (Bi0.5Na0.5)(Nb0.5Fe0.5)O3–PVDF composite, J. Polym. Res. 22(4), 54 (2015)
https://doi.org/10.1007/s10965-015-0696-4
367 U. Naresh, R. J. Kumar, and K. C. B. Naidu, Optical, magnetic and ferroelectric properties of Ba0.2Cu0.8–xLaxFe2O4 (x= 0.2–0.6) nanoparticles, Ceram. Int. 45(6), 7515 (2019)
https://doi.org/10.1016/j.ceramint.2019.01.044
368 M. Muneeswaran, S. H. Lee, D. H. Kim, B. S. Jung, S. H. Chang, J. W. Jang, B. C. Choi, J. H. Jeong, N. V. Giridharan, and C. Venkateswaran, Structural, vibrational, and enhanced magneto-electric coupling in Hosubstituted BiFeO3, J. Alloys Compd. 750, 276 (2018)
https://doi.org/10.1016/j.jallcom.2018.03.365
369 F. Xue, Y. Tian, L. Tang, P. Guo, Z. Luo, and W. Li, Rietveld refinement and multiferroic properties of Gd andTi co-doped BiFeO3, Ferroelectr. Lett. Sect. 45(1–3), 30 (2018)
https://doi.org/10.1080/07315171.2018.1499357
370 X. Yuan, L. Shi, J. Zhao, S. Zhou, J. Guo, S. Pan, X. Miao, L. Wu, Tuning ferroelectric, dielectric, and magnetic properties of BiFeO3 Ceramics by Ca and Pb Codoping, phys. stat. sol. (b) 256(3), 1800499 (2019)
https://doi.org/10.1002/pssb.201800499
371 M. Hemeda, A. Tawfik, D. E. El Refaey, A. H. El-Sayed, and S. Mohamed, Electric and magnetic properties of [(NCZF)1–x(Na(ac.ac))x] nanocomposite, J. Miner. Mater. Charact. Eng. 7, 559 (2017)
https://doi.org/10.4236/ojapps.2017.710040
372 T. Kanai, S. Ohkoshi, A. Nakajima, T. Watanabe, and K. Hashimoto, A ferroelectric ferromagnet composed of (PLZT)x(BiFeO3)1–x solid solution, Adv. Mater. 13(7), 487 (2001)
https://doi.org/10.1002/1521-4095(200104)13:7<487::AID-ADMA487>3.0.CO;2-L
373 J. Li, X. K. Lan, X. Q. Song, W. Z. Lu, X. H. Wang, F. Shi, and W. Lei, Crystal structures, dielectric properties and ferroelectricity in stuffed tridymite-type BaAl2–2x(Zn0.5Si0.5)2xO4 solid solutions, Dalton Trans. 48(11), 3625 (2019)
https://doi.org/10.1039/C8DT05098H
374 V. Singh, S. Sharma, R. K. Dwivedi, M. Kumar, R. K. Kotnala, N. C. Mehra, and R. P. Tandon, Structural, dielectric, ferroelectric and magnetic properties of Bi0.80A0.20FeO3 (A= Pr, Y) multiferroics, J. Supercond. Nov. Magn. 26(3), 657 (2013)
https://doi.org/10.1007/s10948-012-1775-y
375 M. Kumar, K. L. Yadav, and G. D. Varma, Large magnetization and weak polarization in sol–gel derived BiFeO3 ceramics, Mater. Lett. 62(8–9), 1159 (2008)
https://doi.org/10.1016/j.matlet.2007.07.075
376 M. Kumar and K. L. Yadav, Study of room temperature magnetoelectric coupling in Ti substitutedbismuth ferrite system, J. Appl. Phys. 100(7), 074111 (2006)
https://doi.org/10.1063/1.2349491
377 T. Acharyaa and R. N. P. Choudhary, Inducing ferroelectricity and magneto-electric effect in the iron titanate ilmenite by modifying with bismuth and lead titanate, J. Alloys Compd. 788, 495 (2019)
https://doi.org/10.1016/j.jallcom.2019.02.157
378 Z. Li, W. Qi, J. Cao, Y. Li, G. Viola, C. Jia, and H. Yan, Multiferroic properties of single phase Bi3NbTiO9 based textured ceramics, J. Alloys Comp. 788, 701 (2019)
https://doi.org/10.1016/j.jallcom.2019.02.241
379 L. Zia, G. H. Jaffari, N. A. Awan, J. U. Rahman, and S. Lee, Electrical response of mixed phase (1– x)BiFeO3–xPbTiO3 solid solution: Role of tetragonal phase and tetragonality, J. Alloys Compd. 786, 98 (2019)
https://doi.org/10.1016/j.jallcom.2019.01.357
380 W. Maoa, Q. Yaob, Y. Fanb, Y. Wangb, X. Wanga, Y. Pua, and X. Li, Combined experimental and theoretical investigation on modulation of multiferroic properties in BiFeO3 ceramics induced by Dy and transition metals co-doping, J. Alloys Compd. 784, 117 (2019)
https://doi.org/10.1016/j.jallcom.2018.12.381
381 T. Okubo, R. Kawajiri, T. Mitani, T. Shimoda, A mixed-valence coordination polymer featuring twodimensional ferroelectric order: {[CuI4CuII(Et2dtc)2Cl3] [CuII(Et2dtc)2]2(FeCl4)}n(Et2dtc–= diethyldithiocarbamate), J. Am. Chem. Soc. 127(50), 17598 (2005)
https://doi.org/10.1021/ja056030p
382 S. Ohkoshi, H. Tokoro, T. Matsuda, H. Takahashi, H. Irie, and K. Hashimoto, Coexistence of ferroelectricity and ferromagnetism in a rubidium manganese hexacyanoferrate, Angew. Chem. Int. Ed. 46(18), 3238 (2007)
https://doi.org/10.1002/anie.200604452
383 P. Bhatt, S. S. Meena, M. D. Mukadam, B. P. Mandal, A. K. Chauhan, and S. M. Yusuf, Synthesis of CoFe Prussian blue analogue/polyvinylidene fluoride nanocomposite material with improved thermal stability and ferroelectric properties, New J. Chem. 42(6), 4567 (2018)
https://doi.org/10.1039/C8NJ00451J
384 K. I. Shivakumar, K. Swathi, T. C. Das Goudappagouda, A. Kumar, R. D. Makde, K. Vanka, K. S. Narayan, S. S. Babu, and G. J. Sanjayan, Mixed-stack charge transfer crystals of pillar[5]quinone and tetrathiafulvalene exhibiting ferroelectric features, Chemistry 23(51), 12630 (2017)
https://doi.org/10.1002/chem.201702577
385 R. H. Hu, Y. Sui, J. W. Wen, Z. G. Luo, and L. J. Zhong, A new type of organic ferroelectric N-dehydroabietyl-4-bromobenzamide, Asian J. Chem. 27(7), 2627 (2015)
https://doi.org/10.14233/ajchem.2015.18628
386 C. Y. Pan, S. Hu, D. G. Li, P. Ouyang, F. H. Zhao, and Y. Y. Zheng, The first ferroelectric templated borate: [Ni(en)2pip][B5O6(OH)4]2, Dalton Trans. 39(25), 5772 (2010)
https://doi.org/10.1039/b925906f
387 X. Z. Li, Z. R. Qu, and R. G. Xiong, A new chiral schiff base with ferroelectric property, Chin. J. Chem. 26(11), 1959 (2008)
https://doi.org/10.1002/cjoc.200890350
388 F. Du, H. Zhang, C. Tian, and S. Du, Synthesis and structure of two acentric heterometallic inorganic–organic hybrid frameworks with both nonlinear optical and ferroelectric properties, Cryst. Growth Des. 13(4), 1736 (2013)
https://doi.org/10.1021/cg400060t
389 W. Zhang, H. Y. Ye, H. L. Cai, J. Z. Ge, R. G. Xiong, and S. D. Huang, Discovery of new ferroelectrics: [H2dbco]2·[Cl3]·[CuCl3(H2O)2]·H2O (dbco= 1; 4-diazabicyclo[ 2.2.2]octane), J. Am. Chem. Soc. 132(21), 7300 (2010)
https://doi.org/10.1021/ja102573h
390 J. Wang, J. Q. Tao, X. J. Xu, and C. Y. Tan, Synthesis, crystal structure, and properties of a cadmium(II) complex with the flexible ligand (1_H-[2; 2 ]biimidazoly-1-yl)-acetic acid, Z. Anorg. Allg. Chem. 638(9), 1261 (2012)
https://doi.org/10.1002/zaac.201200043
391 Y. M. Xie, J. H. Liu, X. Y. Wu, Z. G. Zhao, Q. S. Zhang, F. Wang, S. C. Chen, and C. Z. Lu, New ferroelectric and nonlinear optical porous coordination polymer constructed from a rare (CuBr)∞ castellated chain, Cryst. Growth Des. 8(11), 3914 (2008)
https://doi.org/10.1021/cg800624z
392 D. S. Liu, Y. Sui, W. T. Chen, and P. Feng, Two new nonlinear optical and ferroelectric Zn(II) compounds based on nicotinic acid and tetrazole derivative ligands, Cryst. Growth Des. 15(8), 4020 (2015)
https://doi.org/10.1021/acs.cgd.5b00637
393 L. Song, S. W. Du, J. D. Lin, H. Zhou, and T. Li, A 3D metal–organic framework with rare 3-fold interpenetrating dia-g nets based on silver(I) and novel tetradentate imidazolate ligand: Synthesis, structure, and possible ferroelectric property, Cryst. Growth Des. 7(11), 2268 (2007)
https://doi.org/10.1021/cg070458d
394 O. Sengupta, and P. S. Mukherjee, Mixed azide and 5-(Pyrimidyl)tetrazole bridged Co(II)/Mn(II) polymers: Synthesis, crystal structures, ferroelectric and magnetic behavior, Inorg. Chem. 49(18), 8583 (2010)
https://doi.org/10.1021/ic101213q
395 W. W. Zhou, J. T. Chen, G. Xu, M. S. Wang, J. P. Zou, X. F. Long, G. J. Wang, G. C. Guo, and J. S. Huang, Nonlinear optical and ferroelectric properties of a 3-D Cd(II) triazolate complex with a novel (63)2(610·85) topology, Chem. Commun. (Camb.) (24), 2762 (2008)
https://doi.org/10.1039/b801529e
396 H. X. Zhao, G. L. Zhuang, S. T. Wu, L. S. Long, H. Y. Guo, Z. G. Ye, R. B. Huang, and L. S. Zheng, Experimental and theoretical demonstration of ferroelectric anisotropy in a one-dimensional copper(II)-based coordination polymer, Chem. Commun. (Camb.) (13), 1644 (2009)
https://doi.org/10.1039/b820500k
397 Q. Ye, Y. Z. Tang, X. S. Wang, and R. G. Xiong, Strong enhancement of second-harmonic generation (SHG) response through multi-chiral centers and metal-coordination, Dalton Trans. (9), 1570 (2005)
https://doi.org/10.1039/b503039k
398 G. X. Wang, G. F. Han, Q. Ye, R. G. Xiong, T. Akutagawa, T. Nakamura, P. W. H. Chan, and S. D. Huang, Dielectric anisotropy of a homochiral rare-earth metal complex, Dalton Trans. 19, 2527 (2008)
https://doi.org/10.1039/b719580j
399 S. T. Zheng and G. Y. Yang, The first polyoxometalatetemplated four-fold interpenetrated coordination polymer with new topology and ferroelectricity, Dalton Trans. 39(3), 700 (2010)
https://doi.org/10.1039/B916462F
400 H. B. Duan, H. R. Zhao, X. M. Ren, H. Zhou, Z. F. Tian, and W. Q. Jin, Inorganic–organic hybrid compounds based on face-sharing octahedral [PbI3]∞ chains: Self-assemblies, crystal structures, and ferroelectric, photoluminescence properties, Dalton Trans. 40(8), 1672 (2011)
https://doi.org/10.1039/c0dt00875c
401 S. P. Zhao and X. M. Ren, Toward design of multipleproperty inorganic–organic hybrid compounds based on face-sharing octahedral iodoplumbate chains, Dalton Trans. 40(33), 8261 (2011)
https://doi.org/10.1039/c0dt01806f
402 H. R. Zhao, D. P. Li, X. M. Ren, Y. Song, and W. Q. Jin, Larger spontaneous polarization ferroelectric inorganic–organic hybrids: [PbI3]∞ chains directed organic cations aggregation to Kagomé-shaped tubular architecture, J. Am. Chem. Soc. 132(1), 18 (2010)
https://doi.org/10.1021/ja907562m
403 T. Hang, D. W. Fu, Q. Ye, H. Y. Ye, R. G. Xiong, and S. D. Huang, Tanklike metal–organic framework filled with perchloric acid and its dielectric–ferroelectric properties, Cryst. Growth Des. 9(5), 2054 (2009)
https://doi.org/10.1021/cg900100w
404 Q. Ye, T. Hang, D. W. Fu, G. H. Xu, and R. G. Xiong, Typical ferroelectric olefin-copper(I) organometallic oligmer with flexible organic ligand, Cryst. Growth Des. 8(10), 3501 (2008)
https://doi.org/10.1021/cg8004129
405 T. Hang, D. W. Fu, Q. Ye, and R. G. Xiong, Two novel noncentrosymmetric zinc coordination compounds with second harmonic generation response, and potential piezoelectric and ferroelectric properties, Cryst. Growth Des. 9(5), 2026 (2009)
https://doi.org/10.1021/cg800618v
406 M. Mon, J. Ferrando-Soria, M. Verdaguer, C. Train, C. Paillard, B. Dkhil, C. Versace, R. Bruno, D. Armentano, and E. Pardo, Postsynthetic approach for the rational design of chiral ferroelectric metal–organic frameworks, J. Am. Chem. Soc. 139(24), 8098 (2017)
https://doi.org/10.1021/jacs.7b03633
407 P. C. Guo, Z. Chu, X. M. Ren, W. H. Ning, and W. Jin, Comparative study of structures, thermal stabilities and dielectric properties for a ferroelectric MOF [Sr(m- BDC)(DMF)]∞ with its solvent-free framework, Dalton Trans. 42(18), 6603 (2013)
https://doi.org/10.1039/c3dt32880e
408 W. K. Han, L. F. Qin, C. Y. Pang, C. K. Cheng, W. Zhu, Z. H. Li, Z. Li, X. Ren, and Z. G. Gu, Polymorphism of a chiral iron(II) complex: spin-crossover and ferroelectric properties, Dalton Trans. 46(25), 8004 (2017)
https://doi.org/10.1039/C7DT01634D
409 D. P. Li, T. W. Wang, C. H. Li, D. S. Liu, Y. Z. Li, and X. Z. You, Single-ion magnets based on mononuclear lanthanide complexes with chiral Schiff base ligands [Ln(FTA)3L] (Ln= Sm, Eu, Gd, Tb and Dy), Chem. Commun. (Camb.) 46(17), 2929 (2010)
https://doi.org/10.1039/b924547b
410 W. Zhang, R. G. Xiong, and S. D. Huang, 3D framework containing Cu4Br4 cubane as connecting node with strong ferroelectricity, J. Am. Chem. Soc. 130(32), 10468 (2008)
https://doi.org/10.1021/ja803021v
411 Y. Q. Zheng, W. Xu, H. L. Zhu, J. L. Lin, L. Zhao, and Y. R. Dong, New pyridine-2; 4; 6-tricarboxylato coordination polymers: Synthesis, crystal structures and properties, CrystEngComm 13(7), 2699 (2011)
https://doi.org/10.1039/c0ce00365d
412 J. D. Lin, X. F. Long, P. Lin, and S. W. Du, A series of cation-templated, polycarboxylate-based Cd(II) or Cd(II)/Li(I) frameworks with second-order nonlinear optical and ferroelectric properties,Cryst. Growth Des. 10(1), 146 (2010)
https://doi.org/10.1021/cg9007476
413 Q. Ye, Y. M. Song, G. X. Wang, K. Chen, D. W. Fu, P. W. H. Chan, J. S. Zhu, S. D. Huang, and R. G. Xiong, Ferroelectric metal–organic framework with a high dielectric constant, J. Am. Chem. Soc. 128(20), 6554 (2006)
https://doi.org/10.1021/ja060856p
414 X. Q. Liang, J. T. Jia, T. Wu, D. P. Li, L. Liu, G. S. Tsolmon, and G. S. Zhu, A spontaneously resoluted zinc–organic framework with nonlinear optical and ferroelectric properties generated from tetrazolate-ethyl ester ligand, CrystEngCom 12(11), 3499 (2010)
https://doi.org/10.1039/c0ce00329h
415 Z. Su, J. Fan, T. Okamura, W. Y. Sun, and N. Ueyama, Ligand-directed and ph-controlled assembly of chiral 3d–3d heterometallic metal–organic frameworks, Cryst. Growth Des. 10(8), 3515 (2010)
https://doi.org/10.1021/cg100418a
416 L. Yu, X. N. Hua, X. J. Jiang, L. Qin, X. Z. Yan, L. H. Luo, and L. Han, Histidine-controlled homochiral and ferroelectric metal–organic frameworks, Cryst. Growth Des. 15(2), 687 (2015)
https://doi.org/10.1021/cg5013796
417 Q. Ye, Y. M. Song, D. W. Fu, G. X. Wang, R. G. Xiong, P. W. H. Chan, and S. D. Huang, Deuteration effect of ferroelectricity and permittivity on homochiral zinc coordination compound, Cryst. Growth Des. 7(9), 1568 (2007)
https://doi.org/10.1021/cg070190q
418 D. W. Fu, W. Zhang, and R. G. Xiong, Isotope effect on SHG response and ferroelectric properties of a homochiral zinc coordination compound containing tetrazole ligand, Cryst. Growth Des. 8(9), 3461 (2008)
https://doi.org/10.1021/cg800507k
419 H. R. Wen, Y. Z. Tang, C. M. Liu, J. L. Chen, and C. L. Yu, One-dimensional homochiral cyano-bridged heterometallic chain coordination polymers with metamagnetic or ferroelectric properties, Inorg. Chem. 48(21), 10177 (2009)
https://doi.org/10.1021/ic901224f
420 L. Li, J. Ma, C. Song, T. Chen, Z. Sun, S. Wang, J. Luo, and M. Hong, A 3D polar nanotubular coordination polymer with dynamic structural transformation and ferroelectric and nonlinear-optical properties,Inorg. Chem. 51(4), 2438 (2012)
https://doi.org/10.1021/ic202406f
421 X. L. Li, C. L. Chen, L. F. Han, C. M. Liu, Y. Song, X. G. Yang, and S. M. Fang, First one-dimensional homochiral stairway-like Cu(II) chains: Crystal structures, circular dichroism (CD) spectra, ferroelectricity and antiferromagnetic properties, Dalton Trans. 42(14), 5036 (2013)
https://doi.org/10.1039/c2dt32578k
422 X. L. Li, Z. Zhang, X. L. Zhang, J. L. Kang, A. L. Wang, L. Zhou, and S. Fang, A pair of dinuclear Re(I) enantiomers: synthesis, crystal structures, chiroptical and ferroelectric properties, Dalton Trans. 44(9), 4180 (2015)
https://doi.org/10.1039/C4DT03884C
423 G. X. Wang, G. F. Han, Q. Ye, R. G. Xiong, T. Akutagawa, T. Nakamura, P. W. H. Chan, and S. D. Huang, Dielectric anisotropy of a homochiral rare-earth metal complex, Dalton Trans. (19), 2527 (2008)
https://doi.org/10.1039/b719580j
424 L. L. Liang, S. B. Ren, J. Zhang, Y. Z. Li, H. B. Du, and X. Z. You, Two unprecedented NLO-active coordination polymers constructed by a semi-rigid tetrahedral linker, Dalton Trans. 39(33), 7723 (2010)
https://doi.org/10.1039/c0dt00255k
425 C. F. Wang, Z. G. Gu, X. M. Lu, J. L. Zuo, and X. Z. You, Ferroelectric heterobimetallic clusters with ferromagnetic interactions, Inorg. Chem. 47(18), 7957 (2008)
https://doi.org/10.1021/ic801049e
426 Q. Ye, D. W. Fu, H. Tian, R. G. Xiong, P. W. H. Chan, and S. D. Huang, Multiferroic homochiral metal–organic framework, Inorg. Chem. 47(3), 772 (2008)
https://doi.org/10.1021/ic701828w
427 L. Li, J. Ma, C. Song, T. Chen, Z. Sun, S. Wang, J. Luo, and M. Hong, A 3D polar nanotubular coordination polymer with dynamic structural transformation and ferroelectric and nonlinear-optical properties, Inorg. Chem. 51(4), 2438 (2012)
https://doi.org/10.1021/ic202406f
428 D. Asthana, A. Kumar, A. Pathak, P. K. Sukul, S. Malik, R. Chatterjee, S. Patnaik, K. Rissanen, and P. Mukhopadhyay, An all-organic steroid–D–p-A modular design drives ferroelectricity in supramolecular solids and nano-architectures at RT, Chem. Commun. (Camb.) 47(31), 8928 (2011)
https://doi.org/10.1039/c1cc12398j
429 Y. T. Wang, G. M. Tang, C. He, S. C. Yan, Q. C. Hao, L. Chen, X. F. Long, T. D. Li, and S. W. Ng, Nonlinear optical and ferroelectric materials based on 1-benzyl- 2-phenyl-1H-benzimidazole salts, CrystEngComm 13(21), 6365 (2011)
https://doi.org/10.1039/c1ce05860f
430 H. R. Chen, and W. W. Zhang, A novel twodimensional CdII coordination polymer: poly[aqua[m4- 2-(carboxylatobenzoyl)benzonato]-cadmium(II)], Acta Crystallogr. C 70(11), 1079 (2014)
https://doi.org/10.1107/S2053229614022852
431 M. L. Feng, P. X. Li, K. Z. Du, and X. Y. Huang, [Ni(en)3][InSbS4]: A one-dimensional polymeric indium thioantimonate with a polar structure, Eur. J. Inorg. Chem. 2011(26), 3881 (2011)
https://doi.org/10.1002/ejic.201100253
432 Z. Guo, R. Cao, X. Wang, H. Li, W. Yuan, G. Wang, H. Wu, and J. Li, A multifunctional 3D ferroelectric and NLO-active porous metal-organic framework, J. Am. Chem. Soc. 131(20), 6894 (2009)
https://doi.org/10.1021/ja9000129
433 X. Duan, Q. Meng, Y. Su, Y. Li, C. Duan, X. Ren, and C. Lu, Multifunctional polythreading coordination polymers: Spontaneous resolution, nonlinear-optic, and ferroelectric properties, Chemistry 17(36), 9936 (2011)
https://doi.org/10.1002/chem.201100185
434 H. Zhao, Q. Ye, Z. R. Qu, D. W. Fu, R. G. Xiong, S. D. Huang, and P. W. H. Chan, Huge deuterated effect on permittivity in a metal–organic framework, Chemistry 14(4), 1164 (2008)
https://doi.org/10.1002/chem.200701044
435 Z. R. Qu, H. Zhao, Y. P. Wang, X. S. Wang, Q. Ye, Y. H. Li, R. G. Xiong, B. F. Abrahams, Z. G. Liu, Z. L. Xue, and X. Z. You, Synthesis of novel chiral and acentric coordination polymers by the reaction of zinc or cadmium salts with racemic 3-pyridyl-3-aminopropionic acid, Chemistry 10(1), 53 (2004)
https://doi.org/10.1002/chem.200305098
436 H. Zhao, Y. H. Li, X. S. Wang, Z. R. Qu, L. Z. Wang, R. G. Xiong, B. F. Abrahams, and Z. Xue, Noncentrosymmetric organic solids with very strong harmonic generation response, Chemistry 10(10), 2386 (2004)
https://doi.org/10.1002/chem.200305425
437 Z. R. Qu, Q. Ye, H. Zhao, D. W. Fu, H. Y. Ye, R. G. Xiong, T. Akutagawa, and T. Nakamura, Homochiral laminar europium metal–organic framework with unprecedented giant dielectric anisotropy, Chemistry 14(11), 3452 (2008)
https://doi.org/10.1002/chem.200701449
438 S. Bhattacharya, S. Pal, and S. Natarajan, Switchable room-temperature ferroelectric behavior, selective sorption and solvent-exchange studies of [H3O][Co2(dat)(sdba)2]·H2sdba·5H2O, ChemPlusChem 81(8), 733 (2016)
https://doi.org/10.1002/cplu.201500564
439 Y. H. Tan, Y. M. Yu, J. B. Xiong, J. X. Gao, Q. Xu, C. W. Fu, Y. Z. Tang, and H. R. Wen, Synthesis, structure and ferroelectric–dielectric properties of an acentric 2D framework with imidazole-containing tripodal ligands, Polyhedron 70, 47 (2014)
https://doi.org/10.1016/j.poly.2013.12.027
440 H. R. Wen, T. T. Qi, S. J. Liu, C. M. Liu, Y. Z. Tang, and J. L. Chen, Syntheses and structures of chiral tri- and tetranuclear Cd(II) clusters with luminescent and ferroelectric properties, Polyhedron 85, 894 (2015)
https://doi.org/10.1016/j.poly.2014.10.025
441 X. P. Zhang, X. W. Qi, D. S. Zhang, L. H. Zhu, X. H. Wang, Z. F. Shi, and Q. Lin, Distinct optoelectronic properties of four-coordinate and five-coordinate Zn(II) complexes with chiral polypyridine ligands, Polyhedron 126, 111 (2017)
https://doi.org/10.1016/j.poly.2017.01.020
442 Y. Z. Tang, Y. M. Yu, Y. H. Tan, J. S. Wu, J. B. Xiong, and H. R. Wen, Two acentric (6; 3) topological 2- D frameworks with imidazole-containing tripodal ligand and their ferroelectric properties, Dalton Trans. 42(28), 10106 (2013)
https://doi.org/10.1039/c3dt50432h
443 L. Z. Chen and J. Sun, Reversible ferroelectric phase transition of 1; 4-diazabicyclo [2; 2; 2]octane N,N′-dioxide di(perchlorate), Inorg. Chem. Commun. 76, 67 (2017)
https://doi.org/10.1016/j.inoche.2017.01.006
444 Y. T. Yang, Y. X. Che, and J. M. Zheng, A novel chiral helical coordination complex with ferroelectric and weak ferromagnetic properties, Inorg. Chem. Commun. 17, 49 (2012)
https://doi.org/10.1016/j.inoche.2011.12.012
445 Y. H. Zhou, J. Li, T. Wu, X. P. Zhao, Q. L. Xu, X. L. Li, M. B. Yu, L. L. Wang, P. Sun, and Y. X. Zheng, Photoluminescent and ferroelectric properties of a chiral rhenium( I) complex based on the chiral (–)–4; 5-pinene-2, 2 ′- bipyridine ligand, Inorg. Chem. Commun. 29, 18 (2013)
https://doi.org/10.1016/j.inoche.2012.11.027
446 X. Tan, Y. X. Che, and J. M. Zheng, Two chiral complexes constructed from mixed L-histidine and Lalanine/ thiocyanate ligands: Synthesis, structure, ferromagnetic and ferroelectric properties, Inorg. Chem. Commun. 22, 10 (2012)
https://doi.org/10.1016/j.inoche.2012.05.001
447 Y. Wang, F. H. Zhao, A. H. Shi, Y. X. Che, and J. M. Zheng, Magnetic and ferroelectric properties of two Co(II) complexes based on flexible bis(imidazole) ligands, Inorg. Chem. Commun. 20, 23 (2012)
https://doi.org/10.1016/j.inoche.2012.02.005
448 Y. Wang, Y. X. Che, and J. M. Zheng, A 3D ferroelectric Co(II) polymer showing (3,5)-connected hms topology with 2-fold interpenetration, Inorg. Chem. Commun. 21, 69 (2012)
https://doi.org/10.1016/j.inoche.2012.04.015
449 F. H. Zhao, S. H. Liang, S. Jing, Y. Wang, Y. X. Che, and J. M. Zheng, Magnetic and ferroelectric properties of a chiral cyano-bridged Pr(III)-Cr(III) complex, Inorg. Chem. Commun. 21, 109 (2012)
https://doi.org/10.1016/j.inoche.2012.04.025
450 Y. Zhao, L. Luo, C. Liu, M. Chen, and W. Y. Sun, Helical silver(I) coordination polymer with oxazolinecontaining ligand: Structure, non-linear and ferroelectric property, Inorg. Chem. Commun. 14(7), 1145 (2011)
https://doi.org/10.1016/j.inoche.2011.04.009
451 Y. T. Wang, G. M. Tang, Y. Q. Wei, T. X. Qin, T. D. Li, J. B. Ling, and X. F. Long, One new nonlinear optical and ferroelectric one-dimensional chain constructed by an unsymmetric bridging ligand,Inorg. Chem. Commun. 12(11), 1164 (2009)
https://doi.org/10.1016/j.inoche.2009.09.019
452 F. Du, M. Zhao, X. Long, and S. Du, A new acentric heterometallic inorganic–organic hybrid framework with an unusual {Cd3Na4}n array: NLO and ferroelectric properties, Inorg. Chem. Commun. 38, 39 (2013)
https://doi.org/10.1016/j.inoche.2013.10.011
453 Z. Su, G. C. Lv, J. Fan, G. X. Liu, and W. Y. Sun, Homochiral ferroelectric three-dimensional cadmium(II) frameworks from racemic camphoric acid and 3, 5- di(imidazol-1-yl)benzoic acid, Inorg. Chem. Commun. 38, 39 (2013)
454 H. W. Kuai, J. J. Xia, and H. Y. Sang, Syntheses, characterization and properties of manganese, cobalt and copper complexes from chelate N-donor ligands, Inorg. Chem. Commun. 72, 73 (2016)
https://doi.org/10.1016/j.inoche.2016.08.011
455 X. L. Li, M. Hu, Y. J. Zhang, X. L. Zhang, F. C. Li, A. L. Wang, J. P. Du, and H. P. Xiao, Synthesis, crystal structure, chiroptical and ferroelectric properties of a multifunctional chiral silver(I) complex based on the chiral bis-bidentate bridging ligand, Inorg. Chim. Acta 444, 221 (2016)
https://doi.org/10.1016/j.ica.2016.02.020
456 G. X. Liu, W. Guo, S. Nishihara, and X. M. Ren, A chiral copper(II) inverse-9-metallacrown-3 complex: Synthesis, crystal structure, ferroelectric and magnetic properties, Inorg. Chim. Acta 368(1), 165 (2011)
https://doi.org/10.1016/j.ica.2010.12.067
457 W. W. Zhou, W. Zhao, B. Wei, F. W. Wang, Y. H. Chen, W. Y. Fang, and X. Zhao, A new 1D Cd(II) pyridinate polymer: Structure, second-harmonic generation response, dielectric and potential ferroelectric properties, Inorg. Chim. Acta 386, 17 (2012)
https://doi.org/10.1016/j.ica.2012.02.018
458 L. Z. Chen, D. D. Huang, J. Z. Ge, and F. M. Wang, A novel Ag(I) coordination polymers based on 2-(pyridin-4-yl)-1H-imidazole-4; 5-dicarboxylic acid: Syntheses, structures, ferroelectric, dielectric and optical properties, Inorg. Chim. Acta 406, 95 (2013)
https://doi.org/10.1016/j.ica.2013.07.013
459 X. F. Wang, G. X. Liu, and H. Zhou, Syntheses, structures and physical properties of two zinc(II) coordination polymers with 1, 3, 5-tris(imidazol-1-ylmethyl)-2, 4, 6- trimethylbenzene and 1, 3, 5-benzenetricarboxylate, Inorg. Chim. Acta 406, 223 (2013)
https://doi.org/10.1016/j.ica.2013.04.039
460 W. Xu, W. Liu, F. Y. Yao, and Y. Q. Zheng, Synthesis, crystal structure and properties of the novel chiral 3D coordination polymer with S-carboxymethyl-l-cysteine, Inorg. Chim. Acta 365(1), 297 (2011)
https://doi.org/10.1016/j.ica.2010.09.026
461 W. J. Ji, Q. G. Zhai, S. N. Li, Y. C. Jiang, and M. C. Hu, The first ionothermal synthesis of a 3D ferroelectric metal–organic framework with colossal dielectric constant, Chem. Commun. (Camb.) 47(13), 3834 (2011)
https://doi.org/10.1039/c0cc04890a
462 H. Zhao, Z. R. Qu, Q. Ye, B. F. Abrahams, Y. P. Wang, Z. G. Liu, Z. Xue, R. G. Xiong, and X. Z. You, Ferroelectric copper quinine complexes, Chem. Mater. 15(22), 4166 (2003)
https://doi.org/10.1021/cm034301u
463 F. H. Zhao, Y. X. Che, J. M. Zheng, F. Grandjean, and G. J. Long, Two acentric mononuclear molecular complexes with unusual magnetic and ferroelectric properties, Inorg. Chem. 51(8), 4862 (2012)
https://doi.org/10.1021/ic300394c
464 T. Hang, D. W. Fu, Q. Ye, H. Y. Ye, R. G. Xiong, and S. D. Huang, Tanklike metal–organic framework filled with perchloric acid and its dielectric–ferroelectric properties, Cryst. Growth Des. 9(5), 2054 (2009)
https://doi.org/10.1021/cg900100w
465 H. R. Wen, Y. Z. Tang, C. M. Liu, J. L. Chen, and C. L. Yu, One-dimensional homochiral cyano-bridged heterometallic chain coordination polymers with metamagnetic or ferroelectric properties, Inorg. Chem. 48(21), 10177 (2009)
https://doi.org/10.1021/ic901224f
466 Y. T. Wang, G. M. Tang, Y. Q. Wei, T. X. Qin, T. D. Li, C. He, J. B. Ling, X. F. Long, and S. W. Ng, Two new nonlinear optical and ferroelectric threedimensional metal–organic frameworks with an sqp-net, Cryst. Growth Des. 10(1), 25 (2010)
https://doi.org/10.1021/cg901066v
467 Y. H. Li, Z. R. Qu, H. Zhao, Q. Ye, L. X. Xing, X. S. Wang, R. G. Xiong, and X. Z. You, A novel TGS-like inorganic–organic hybrid and a preliminary investigation of its possible ferroelectric behavior, Inorg. Chem. 43(13), 3768 (2004)
https://doi.org/10.1021/ic034672c
468 Y. Z. Tang, M. Zhou, J. Huang, Y. H. Tan, J. S. Wu, and H. R. Wen, In situ synthesis and ferroelectric, shg response, and luminescent properties of a novel 3D acentric zinc coordination polymer, Inorg. Chem. 52(4), 1679 (2013)
https://doi.org/10.1021/ic302411r
469 Z. G. Gu, X. H. Zhou, Y. B. Jin, R. G. Xiong, J. L. Zuo, and X. Z. You, Crystal structures and magnetic and ferroelectric properties of chiral layered metal–organic frameworks with dicyanamide as the bridging ligand, Inorg. Chem. 46(14), 5462 (2007)
https://doi.org/10.1021/ic070112s
470 T. K. Pal, R. Katoch, A. Garg, and P. K. Bharadwaj, Metal–organic frameworks built from a linear rigid dicarboxylate and different colinkers: Trap of the Keto form of ethylacetoacetate, luminescence and ferroelectric studies, Cryst. Growth Des. 15(9), 4526 (2015)
https://doi.org/10.1021/acs.cgd.5b00784
471 A. K. Gupta, D. De, R. Katoch, A. Garg, and P. K. Bharadwaj, Synthesis of a NbO type homochiral Cu(II) metal–organic framework: Ferroelectric behavior and heterogeneous catalysis of three-component coupling and pechmann reactions, Inorg. Chem. 56(8), 4697 (2017)
https://doi.org/10.1021/acs.inorgchem.7b00342
472 M. Manivannan, S. A. M. Britto Dhas, and M. Jose, Ferroelectric behavior of organic terahertz radiating DAST crystal, J. Inorg. Organomet. Polym. 27(6), 1870 (2017)
https://doi.org/10.1007/s10904-017-0655-0
473 J. L. Qi, S. L. Ni, W. Xu, J. Y. Qian, and Y. Q. Zheng, The first two examples of (R)-2-chloromandelato coordination polymers: Synthesis, structure, magnetic and ferroelectric properties, J. Inorg. Organomet. Polym. 24(3), 600 (2014)
https://doi.org/10.1007/s10904-014-0022-3
474 C. Hou, Q. Liu, Y. Lu, T. Okamura, P. Wang, M. Chen, and W. Y. Sun, Metal-organic frameworks with N-(4- pyridylmethyl)iminodiacetate ligand: Synthesis, structure and sorption properties, Microporous Mesoporous Mater. 152, 96 (2012)
https://doi.org/10.1016/j.micromeso.2011.11.058
475 D. P. Li, C. H. Li, J. Wang, L. C. Kang, T. Wu, Y. Z. Li, and X. Z. You, Synthesis and physical properties of two chiral terpyridyl europium(III) complexes with distinct crystal polarity, Eur. J. Inorg. Chem. 2009(32), 4844 (2009)
https://doi.org/10.1002/ejic.200900655
476 Y. R. Xie, H. Zhao, X. S. Wang, Z. R. Qu, R. G. Xiong, X. Xue, Z. Xue, and X. Z. You, 2D chiral uranyl(VI) coordination polymers with second-harmonic generation response and ferroelectric properties, Eur. J. Inorg. Chem. 2003(20), 3712 (2003)
https://doi.org/10.1002/ejic.200300483
477 M. L. Feng, P. X. Li, K. Z. Du, and X. Y. Huang, [Ni(en)3][InSbS4]: A one-dimensional polymeric indium thioantimonate with a polar structure, Eur. J. Inorg. Chem. 2011(26), 3881 (2011)
https://doi.org/10.1002/ejic.201100253
478 A. A. Bahgat, S. M. Sayyah, and H. M. Abd-Elsalam, Study of ferroelectricity in polyaniline, Int. J. Polym. Mater. 52(6), 499 (2003)
https://doi.org/10.1080/00914030304909
479 H. Zhao, Z. R. Qu, H. Y. Ye, and R. G. Xiong, In situ hydrothermal synthesis of tetrazole coordination polymers with interesting physical properties, Chem. Soc. Rev. 37(1), 84 (2008)
https://doi.org/10.1039/B616738C
480 J. D. Lin, C. Rong, R. X. Lv, Z. J. Wang, X. F. Long, G. C. Guo, and C. Y. Pan, A 3D metal-organic framework with a pcu net constructed from lead(II) and thiophene-2; 5-dicarboxylic acid: Synthesis, structure and ferroelectric property, J. Solid State Chem. 257, 34 (2018)
https://doi.org/10.1016/j.jssc.2017.09.001
481 L. H. Cao, Y. L. Wei, C. Ji, M. L. Ma, S. Q. Zang, and T. C. W. Mak, A multifunctional 3D chiral porous ferroelectric metal–organic framework for sensing small organic molecules and dye uptake, Chem. Asian J. 9(11), 3094 (2014)
https://doi.org/10.1002/asia.201402785
482 S. R. Sushrutha, S. Mohana, S. Pal, and S. Natarajan, Solvent-dependent delamination, restacking, and ferroelectric behavior in a new charge-separated layered compound: [NH4][Ag3(C9H5NO4S)2(C13H14N2)2]·8H2O, Chem. Asian J. 12(1), 101 (2017)
https://doi.org/10.1002/asia.201601382
483 G. X. Liu, X. F. Wang, and H. Zhou, Versatile frameworks constructed from divalent metals with 4; 4 ′- methylenedibenzoic acid and imidazole derivative ligands: Syntheses, crystal structures and physical properties, J. Solid State Chem. 199, 305 (2013)
https://doi.org/10.1016/j.jssc.2012.12.033
484 D. S. Liu, W. T. Chen, G. M. Ye, J. Zhang, and Y. Sui, Synthesis and characterization of a multifunctional inorganic–organic hybrid mixed-valence copper(I/II) coordination polymer: {[CuCN][Cu(isonic)2]}n, J. Solid State Chem. 256, 14 (2017)
https://doi.org/10.1016/j.jssc.2017.08.017
485 Y. N. Ren, W. Xu, L. X. Zhou, and Y. Q. Zheng, Efficient tetracycline adsorption and photocatalytic degradation of rhodamine B by uranyl coordination polymer, J. Solid State Chem. 251, 105 (2017)
https://doi.org/10.1016/j.jssc.2017.04.005
486 X. X. Li, L. Cheng, and G. Y. Yang, Open frameworks based on mono-lanthanide-substituted polyoxometaloaluminate building units: Syntheses, structures and properties, J. Solid State Chem. 203, 193 (2013)
https://doi.org/10.1016/j.jssc.2013.04.024
487 H. W. Kuai, X. C. Cheng, D. H. Li, T. Hu, and X. H. Zhu, Syntheses, characterization and properties of silver, copper and palladium complexes from bis(oxazoline)- containing ligands, J. Solid State Chem. 228, 65 (2015)
https://doi.org/10.1016/j.jssc.2015.04.021
488 J. Zhang, M. Zhao, W. Xie, J. Jin, F. Xie, X. Song, S. Zhang, J. Wu, and Y. Tian, A series of novel cadmium(II) coordination polymers with photoluminescence and ferroelectric properties based on zwitterionic ligands, New J. Chem. 41(17), 9152 (2017)
https://doi.org/10.1039/C7NJ00524E
489 S. R. Sushrutha, S. Mohana, S. Pal, and S. Natarajan, Solvent-dependent delamination, restacking, and ferroelectric behavior in a new charge-separated layered compound: [NH4][Ag3(C9H5NO4S2(C13H14N2)2]·8H2O, Chem. Asian J. 12(1), 101 (2017)
https://doi.org/10.1002/asia.201601382
490 A. K. Srivastava, B. Praveenkumar, I. K. Mahawar, P. Divya, S. Shalini, and R. Boomishankar, Anion driven [CuIIL2]n frameworks: Crystal structures, guestencapsulation, dielectric, and possible ferroelectric properties, Chem. Mater. 26(12), 3811 (2014)
https://doi.org/10.1021/cm5014575
491 G. X. Liu, W. Guo, S. Nishihara, and X. M. Ren, A chiral copper(II) inverse-9-metallacrown-3 complex: Synthesis, crystal structure, ferroelectric and magnetic properties, Inorg. Chim. Acta 368(1), 165 (2011)
https://doi.org/10.1016/j.ica.2010.12.067
492 L. Z. Chen, D. D. Huang, J. Z. Ge, and F. M. Wang, A novel Ag(I) coordination polymers based on 2-(pyridin-4- yl)-1H-imidazole-4; 5-dicarboxylic acid: Syntheses, structures, ferroelectric, dielectric and optical properties,Inorg. Chim. Acta 406, 95 (2013)
https://doi.org/10.1016/j.ica.2013.07.013
493 X. F. Wang, G. X. Liu, and H. Zhou, Syntheses, structures and physical properties of two zinc(II) coordination polymers with 1; 3; 5-tris(imidazol-1-ylmethyl)-2; 4; 6- trimethylbenzene and 1; 3; 5-benzenetricarboxylate, Inorg. Chim. Acta 406, 223 (2013)
https://doi.org/10.1016/j.ica.2013.04.039
494 W. Xu, W. Liu, F. Y. Yao, and Y. Q. Zheng, Synthesis, crystal structure and properties of the novel chiral 3D coordination polymer with S-carboxymethyl-l-cysteine, Inorg. Chim. Acta 365(1), 297 (2011)
https://doi.org/10.1016/j.ica.2010.09.026
495 X. K. Yu and Y. Q. Zheng, Syntheses, structures, dielectric and ferroelectric properties of a chiral coordination compound with m-nitro-benzoic acid, J. Coord. Chem. 66(12), 2208 (2013)
https://doi.org/10.1080/00958972.2013.803219
496 W. G. Zhu, Y. Q. Zheng, L. X. Zhou, and H. L. Zhu, Structural diversity for three Zn(II) coordination polymers from 4-nitrobenzene-1; 2-dicarboxylate and bispyridyl ligand, J. Coord. Chem. 69(2), 270 (2016)
https://doi.org/10.1080/00958972.2015.1105365
497 J. L. Qi, S. L. Ni, W. Xu, and Y. Q. Zhang, Three Cu(II) (R)-2-chloromandelato complexes generated from dipyridyl-type ligands with different spacer lengths: syntheses, crystal structures, and ferroelectric properties, J. Coord. Chem. 67(13), 2287 (2014)
https://doi.org/10.1080/00958972.2014.939074
498 C. J. Lin, J. L. Qi, Y. Q. Zheng, and J. L. Lin, Two new Cu(II) m-hydroxybenzoato complexes with chloro- and carboxylato-bridged dinuclear [Cu(μ2– Cl)(μ2–COO)Cu] cores, J. Coord. Chem. 66(21), 3877 (2013)
https://doi.org/10.1080/00958972.2013.853053
499 W. Xu, H. S. Chang, W. Liu, and Y. Q. Zheng, Synthesis, crystal structure, and properties of a new lanthanide tartrate coordination polymer, Russ. J. Coord. Chem. 40(4), 251 (2014)
https://doi.org/10.1134/S1070328414030105
500 L. Chen, G. Han, H. Ye, and R. Xiong, A new chiral quinoxaline derivative with ferroelectric property, Chin. J. Chem. 28(10), 1799 (2010)
https://doi.org/10.1002/cjoc.201090302
501 Z. Su, M. S. Chen, J. Fan, M. Chen, S. S. Chen, L. Luo, and W. Y. Sun, Spontaneous resolution of two homochiral ferroelectric cadmium (II) frameworks and an achiral framework from a one-pot reaction involving achiral rigid ligands, CrystEngComm 12(7), 2040 (2010)
https://doi.org/10.1039/c0ce00054j
502 J. L. Qi, S. L. Ni, Y. Q. Zheng, and W. Xu, Syntheses, structural characterizations and ferroelectric properties of new Ce(III) coordination polymers via isomeric tartaric acid ligands, Solid State Sci. 28, 61 (2014)
https://doi.org/10.1016/j.solidstatesciences.2013.12.006
503 J. Zhang, M. Zhao, W. Xie, J. Jin, F. Xie, X. Song, S. Zhang, J. Wu, and Y. Tian, A series of novel cadmium(II) coordination polymers with photoluminescence and ferroelectric properties based on zwitterionic ligands, New J. Chem. 41(17), 9152 (2017)
https://doi.org/10.1039/C7NJ00524E
504 Y. Q. Zheng, H. L. Zhu, X. X. Guo, and J. Y. Liu, Synthesis, crystal structures and properties of three glutarato and adipato bridged manganese(II) coordination polymers under ambient conditions, Solid State Sci. 18, 42 (2013)
https://doi.org/10.1016/j.solidstatesciences.2012.12.018
505 Z. R. Qu, Z. F. Chen, J. Zhang, R. G. Xiong, B. F. Abrahams, and Z. L. Xue, The first highly stable homochiral Olefin–Copper(I) 2D coordination polymer grid based on quinine as a building block, Organometallics 22(14), 2814 (2003)
https://doi.org/10.1021/om030134w
506 D. P. Li, C. H. Li, J. Wang, L. C. Kang, T. Wu, Y. Z. Li, and X. Z. You, Synthesis and physical properties of two chiral terpyridyl europium(III) complexes with distinct crystal polarity, Eur. J. Inorg. Chem. 2009(32), 4844 (2009)
https://doi.org/10.1002/ejic.200900655
507 Y. R. Xie, H. Zhao, X. S. Wang, Z. R. Qu, R. G. Xiong, X. Xue, Z. Xue, and X. Z. You, 2D chiral uranyl(VI) coordination polymers with second-harmonic generation response and ferroelectric properties, Eur. J. Inorg. Chem. 2003(20), 3712 (2003)
https://doi.org/10.1002/ejic.200300483
508 M. L. Feng, P. X. Li, K. Z. Du, and X. Y. Huang, [Ni(en)3][InSbS4]: A one-dimensional polymeric indium thioantimonate with a polar structure, Eur. J. Inorg. Chem. 2011(26), 3881 (2011)
https://doi.org/10.1002/ejic.201100253
509 W. Xu, H. S. Chang, W. Liu, and Y. Q. Zheng, Synthesis, crystal structure, and properties of a new lanthanide tartrate coordination polymer, Russ. J. Coord. Chem. 40(4), 251 (2014)
https://doi.org/10.1134/S1070328414030105
510 H. Yu, M. Liu, X. Gao, and Z. Liu, Construction and crystal structure of a pair of tetranuclear Zn(II) chiral clusters that exhibit ferroelectric behavior under a higher frequency electric field at room temperature, Polyhedron 137, 217 (2017)
https://doi.org/10.1016/j.poly.2017.08.037
511 C. F. Wang, J. X. Gao, C. Li, C. S. Yang, J. B. Xiong, and Y. Z. Tang, A novel co-crystallization molecular ferroelectric induced by the ordering of sulphate anions and hydrogen atoms, Inorg. Chem. Front. 5(10), 2413 (2018)
https://doi.org/10.1039/C8QI00424B
512 Y. T. Wang, G. M. Tang, W. Z. Wan, Y. Wu, T. C. Tian, J. H. Wang, C. He, X. F. Long, J. J. Wang, and S. W. Ng, New homochiral ferroelectric supramolecular networks of complexes constructed by chiral S-naproxen ligand, CrystEngComm 14(10), 3802 (2012)
https://doi.org/10.1039/c2ce25138h
513 M. Ahmad, R. Katoch, A. Garg, and P. K. Bharadwaj, A novel 3D 10-fold interpenetrated homochiralcoordination polymer: Large spontaneouspolarization, dielectric loss and emission studies, CrystEngComm 16(22), 4766 (2014)
https://doi.org/10.1039/c3ce42628a
514 M. Liu, H. Yu, and Z. Liu, A pair of homochiral trinuclear Zn(II) clusters exhibiting unusual ferroelectric behaviour at high-temperature, CrystEngComm 21(14), 2355 (2019)
https://doi.org/10.1039/C9CE00034H
515 S. Moharana, M. K. Mishra, B. Behera, and R. N. Mahaling, Enhanced dielectric properties of polyethylene glycol (PEG) modified BaTiO3 (BT)-poly(vinylidene fluoride) (PVDF) composites, Polym. Sci. A 59(3), 405 (2017)
https://doi.org/10.1134/S0965545X17030130
[1] Zheng Wang, Yuhua Yin, Run Jiang, Baohui Li. Morphological transformations of diblock copolymers in binary solvents: A simulation study[J]. Front. Phys. , 2017, 12(6): 128201-.
[2] Xiao-Yan Yao,Li-Juan Yang. Multiple conical spin order in spinel structure stabilized by magnetic anisotropy[J]. Front. Phys. , 2017, 12(3): 127501-.
[3] Ming An,Hui-Min Zhang,Ya-Kui Weng,Yang Zhang,Shuai Dong. Possible ferrimagnetism and ferroelectricity of half-substituted rare-earth titanate: A first-principles study on Y0.5La0.5TiO3[J]. Front. Phys. , 2016, 11(2): 117501-.
[4] Zai-Chun Xu, Mei-Feng Liu, Lin Lin, Huimei Liu, Zhi-Bo Yan, Jun-Ming Liu. Experimental observations of ferroelectricity in double pyrochlore Dy2Ru2O7[J]. Front. Phys. , 2014, 9(1): 82-89.
[5] Masashi Tokunaga. Studies on multiferroic materials in high magnetic fields[J]. Front. Phys. , 2012, 7(4): 386-398.
[6] Zhen Chen, Rui-Juan Xiao, Chao Ma, Yuan-Bin Qin, Hong-Long Shi, Zhi-Wei Wang, Yuan-Jun Song, Zhen Wang, Huan-Fang Tian, Huai-Xin Yang, Jian-Qi Li. Electronic structure of YMn2O5 studied by EELS and first-principles calculations[J]. Front. Phys. , 2012, 7(4): 429-434.
[7] Cheng-Liang Lu(陆成亮), Jun-Ming Liu(刘俊明), Tao Wu(吴韬). Electric field driven phase transition and possible twining quasi-tetragonal phase in compressively strained BiFeO3 thin films[J]. Front. Phys. , 2012, 7(4): 424-428.
[8] Na Zhang, Shuai Dong, Jun-Ming Liu. Ferroelectricity generated by spin–orbit and spin–lattice couplings in multiferroic DyMnO3[J]. Front. Phys. , 2012, 7(4): 408-417.
[9] Shu-Hong Xie (谢淑红), Yun-Ya Liu(刘运牙), Jiang-Yu Li(李江宇). Synthesis, microstructures, and magnetoelectric couplings of electrospun multiferroic nanofibers[J]. Front. Phys. , 2012, 7(4): 399-407.
[10] Yue-Wei Yin, Muralikrishna Raju, Wei-Jin Hu, Xiao-Jun Weng, Ke Zou, Jun Zhu, Xiao-Guang Li, Zhi-Dong Zhang, Qi Li. Multiferroic tunnel junctions[J]. Front. Phys. , 2012, 7(4): 380-385.
[11] Chun-Gang Duan (段纯刚). Interface/surface magnetoelectric effects: New routes to the electric field control of magnetism[J]. Front. Phys. , 2012, 7(4): 375-379.
[12] LI Li-ben, YOU Jing-han, CHEN Qing-dong. Gradient-stress on polarization in Ba1-xSrxTiO3 films[J]. Front. Phys. , 2007, 2(3): 318-321.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed