Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Prot Cell    2013, Vol. 4 Issue (12) : 932-941    https://doi.org/10.1007/s13238-013-3092-z      PMID: 24203759
RESEARCH ARTICLE
Microvesicle-delivery miR-150 promotes tumorigenesis by up-regulating VEGF, and the neutralization of miR-150 attenuate tumor development
Yuchen Liu1, Luming Zhao1, Dameng Li1, Yuan Yin2, Chen-Yu Zhang1(), Jing Li1(), Yujing Zhang1()
1. Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093, China; 2. Oncology Institute, Fourth Affiliated Hospital of Suzhou University, Wuxi 214062, China
 Download: PDF(775 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Tumor-associated macrophages (TAMs) mostly exhibit M2-like (alternatively activated) properties and play positive roles in angiogenesis and tumorigenesis. Vascular endothelial growth factor (VEGF) is a key angiogenic factor. During tumor development, TAMs secrete VEGF and other factors to promote angiogenesis; thus, anti-treatment against TAMs and VEGF can repress cancer development, which has been demonstrated in clinical trials and on an experimental level. In the present work, we show that miR-150 is an oncomir because of its promotional effect on VEGF. MiR-150 targets TAMs to up-regulate their secretion of VEGF in vitro. With the utilization of cell-derived vesicles, named microvesicles (MVs), we transferred antisense RNA targeted to miR-150 into mice and found that the neutralization of miR-150 down-regulates miR-150 and VEGF levels in vivo and attenuates angiogenesis. Therefore, we proposed the therapeutic potential of neutralizing miR-150 to treat cancer and demonstrated a novel, natural, microvesicle-based method for the transfer of nucleic acids.

Keywords microvesicle      miR-150      tumorigenesis      VEGF      neutralization      attenuation     
Corresponding Author(s): Zhang Chen-Yu,Email:cyzhang@nju.edu.cn; Li Jing,Email:jingli220@nju.edu.cn; Zhang Yujing,Email:yjzhang@nju.edu.cn   
Issue Date: 01 December 2013
 Cite this article:   
Yuchen Liu,Luming Zhao,Dameng Li, et al. Microvesicle-delivery miR-150 promotes tumorigenesis by up-regulating VEGF, and the neutralization of miR-150 attenuate tumor development[J]. Prot Cell, 2013, 4(12): 932-941.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-013-3092-z
https://academic.hep.com.cn/pac/EN/Y2013/V4/I12/932
1 Alvarez-Erviti, L., Seow, Y., Yin, H., Betts, C., Lakhal, S., and Wood, M.J. (2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol 29, 341-345 .
doi: 10.1038/nbt.1807
2 Baek, J.H., Mahon, P.C., Oh, J., Kelly, B., Krishnamachary, B., Pearson, M., Chan, D.A., Giaccia, A.J., and Semenza, G.L. (2005). OS-9 interacts with hypoxia-inducible factor 1alpha and prolyl hydroxylases to promote oxygen-dependent degradation of HIF-1alpha. Mol Cell 17, 503-512 .
doi: 10.1016/j.molcel.2005.01.011
3 Bartel, D.P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 .
doi: 10.1016/S0092-8674(04)00045-5
4 Bingle, L., Brown, N.J., and Lewis, C.E. (2002). The role of tumourassociated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196, 254-265 .
doi: 10.1002/path.1027
5 Bolat, F., Kayaselcuk, F., Nursal, T.Z., Yagmurdur, M.C., Bal, N., and Demirhan, B. (2006). Microvessel density, VEGF expression, and tumor-associated macrophages in breast tumors: correlations with prognostic parameters. J Exp Clin Cancer Res 25, 365-372 .
6 Brahimi-Horn, C., and Pouyssegur, J. (2006). The role of the hypoxiainducible factor in tumor metabolism growth and invasion. Bulletin du cancer 93, E73-80 .
7 Chen, X., Liang, H., Zhang, J., Zen, K., and Zhang, C.Y. (2012). Secreted microRNAs: a new form of i ntercellular communication. Trends Cell Biol 22, 125-132 .
doi: 10.1016/j.tcb.2011.12.001
8 Coffelt, S.B., Hughes, R., and Lewis, C.E. (2009). Tumor-associated macrophages: effectors of angiogenesis and tumor progression. Biochim Biophys Acta 1796, 11-18 .
9 Colla, S., Tagliaferri, S., Morandi, F., Lunghi, P., Donofrio, G., Martorana, D., Mancini, C., Lazzaretti, M., Mazzera, L., Ravanetti, L., et al. (2007). The new tumor-suppressor gene inhibitor of growth family member 4 (ING4) regulates the production of proangiogenic molecules by myeloma cells and suppresses hypoxia-inducible factor-1 alpha (HIF-1alpha) activity: involvement in myeloma-induced angiogenesis. Blood 110, 4464-4475 .
doi: 10.1182/blood-2007-02-074617
10 Cristofanilli, M., Charnsangavej, C., and Hortobagyi, G.N. (2002). Angiogenesis modulation in cancer research: novel clinical approaches. Nat Rev Drug Discov 1, 415-426 .
doi: 10.1038/nrd819
11 Esquela-Kerscher, A., and Slack, F.J. (2006). Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 6, 259-269 .
doi: 10.1038/nrc1840
12 Ferrara, N. (2010). Pathways mediating VEGF-independent tumor angiogenesis. Cytokine Growth Factor Rev 21, 21-26 .
doi: 10.1016/j.cytogfr.2009.11.003
13 Ferrara, N., Gerber, H.P., and LeCouter, J. (2003). The biology of VEGF and its receptors. Nat Med 9, 669-676 .
doi: 10.1038/nm0603-669
14 Folkman, J. (2007). Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6, 273-286 .
doi: 10.1038/nrd2115
15 Fukuda, K., Kobayashi, A., and Watabe, K. (2012). The role of tumorassociated macrophage in tumor progression. Front Biosci (Schol Ed) 4, 787-798 .
doi: 10.2741/S299
16 Goga, A., and Benz, C. (2007). Anti-oncomir suppression of tumor phenotypes. Mol Interv 7, 199-202, 180 .
doi: 10.1124/mi.7.4.6
17 Hanahan, D., and Coussens, L.M. (2012). Accessories to the crime functions of cells recruited to the tumor microenvironment. Cancer Cell 21, 309-322 .
doi: 10.1016/j.ccr.2012.02.022
18 Kim, K.J., Li, B., Winer, J., Armanini, M., Gillett, N., Phillips, H.S., and Ferrara, N. (1993). Inhibition of vascular endothelial growth factorinduced angiogenesis suppresses tumour growth in vivo. Nature 362, 841-844 .
doi: 10.1038/362841a0
19 Kota, J., Chivukula, R.R., O‘Donnell, K.A., Wentzel, E.A., Montgomery, C.L., Hwang, H.W., Chang, T.C., Vivekanandan, P., Torbenson, M., Clark, K.R., et al. (2009). Therapeutic microRNA delivery suppresses tumorigenesis in a murine liver cancer model. Cell 137, 1005-1017 .
doi: 10.1016/j.cell.2009.04.021
20 Lewis, C.E., Leek, R., Harris, A., and McGee, J.O. (1995). Cytokine regulation of angiogenesis in breast cancer: the role of tumorassociated macrophages. J Leukoc Biol 57, 747-751 .
21 Lewis, C.E., and Pollard, J.W. (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Res 66, 605-612 .
doi: 10.1158/0008-5472.CAN-05-4005
22 Lin, E.Y., Nguyen, A.V., Russell, R.G., and Pollard, J.W. (2001). Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193, 727-740 .
doi: 10.1084/jem.193.6.727
23 Lin, E.Y., and Pollard, J.W. (2007). Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res 67, 5064-5066 .
doi: 10.1158/0008-5472.CAN-07-0912
24 Luo, Y., Zhou, H., Krueger, J., Kaplan, C., Lee, S.H., Dolman, C., Markowitz, D., Wu, W., Liu, C., Reisfeld, R.A., et al. (2006). Targeting tumor-associated macrophages as a novel strategy against breast cancer. J Clin Invest 116, 2132-2141 .
doi: 10.1172/JCI27648
25 McDonnell, C.O., Bouchier-Hayes, D.J., Toomey, D., Foley, D., Kay, E.W., Leen, E., and Walsh, T.N. (2003). Effect of neoadjuvant chemoradiotherapy on angiogenesis in oesophageal cancer. Br J Surg 90, 1373-1378 .
doi: 10.1002/bjs.4338
26 Millan Nunez-Cortes, J. (1991). Angiogenesis: a crucial element in tumor development. An Med Interna 8, 369-371 .
27 Murdoch, C., Muthana, M., Coffelt, S.B., and Lewis, C.E. (2008). The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer 8, 618-631 .
doi: 10.1038/nrc2444
28 Ozer, A., Wu, L.C., and Bruick, R.K. (2005). The candidate tumor suppressor ING4 represses activation of the hypoxia inducible factor (HIF). Proc Natl Acad Sci U S A 102, 7481-7486 .
doi: 10.1073/pnas.0502716102
29 Presta, L.G., Chen, H., O‘Connor, S.J., Chisholm, V., Meng, Y.G., Krummen, L., Winkler, M., and Ferrara, N. (1997). Humanization of an anti-vascular endothelial growth factor monoclonal antibody for the therapy of solid tumors and other disorders. Cancer Res 57, 4593-4599 .
30 Qian, B.Z., and Pollard, J.W. (2010). Macrophage diversity enhances tumor progression and metastasis. Cell 141, 39-51 .
doi: 10.1016/j.cell.2010.03.014
31 Rolny, C., Mazzone, M., Tugues, S., Laoui, D., Johansson, I., Coulon, C., Squadrito, M.L., Segura, I., Li, X., Knevels, E., et al. ( 2011). HRG inhibits tumor growth and metastasis by inducing macrophage polarization and vessel normalization through downregulation of PlGF. Cancer Cell 19, 31-44 .
doi: 10.1016/j.ccr.2010.11.009
32 Stockmann, C., Doedens, A., Weidemann, A., Zhang, N., Takeda, N., Greenberg, J.I., Cheresh, D.A., and Johnson, R.S. (2008). Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456, 814-818 .
doi: 10.1038/nature07445
33 Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J.J., and Lotvall, J.O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9, 654-659 .
doi: 10.1038/ncb1596
34 van den Boorn, J.G., Schlee, M., Coch, C., and Hartmann, G. (2011). SiRNA delivery with exosome nanoparticles. Nat Biotechnol 29, 325-326 .
doi: 10.1038/nbt.1830
35 Warren, R.S., Yuan, H., Matli, M.R., Gillett, N.A., and Ferrara, N. (1995). Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest 95, 1789-1797 .
doi: 10.1172/JCI117857
36 Zhang, Y., Liu, D., Chen, X., Li, J., Li, L., Bian, Z., Sun, F., Lu, J., Yin, Y., Cai, X., et al. (2010). Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39, 133-144 .
doi: 10.1016/j.molcel.2010.06.010
[1] Youqin Xu, Kaiyuan Ji, Meng Wu, Bingtao Hao, Kai-tai Yao, Yang Xu. A miRNA-HERC4 pathway promotes breast tumorigenesis by inactivating tumor suppressor LATS1[J]. Protein Cell, 2019, 10(8): 595-605.
[2] Kegan Zhu,Lei Liu,Junliang Zhang,Yanbo Wang,Hongwei Liang,Gentao Fan,Zhenhuan Jiang,Chen-Yu Zhang,Xi Chen,Guangxin Zhou. MiR-29b suppresses the proliferation and migration of osteosarcoma cells by targeting CDK6[J]. Protein Cell, 2016, 7(6): 434-444.
[3] Haiyang Zhang,Jingjing Duan,Yanjun Qu,Ting Deng,Rui Liu,Le Zhang,Ming Bai,Jialu Li,Tao Ning,Shaohua Ge,Xia Wang,Zhenzhen Wang,Qian Fan,Hongli Li,Guoguang Ying,Dingzhi Huang,Yi Ba. Onco-miR-24 regulates cell growth and apoptosis by targeting BCL2L11 in gastric cancer[J]. Protein Cell, 2016, 7(2): 141-151.
[4] Caiguo Zhang,Fan Zhang. Iron homeostasis and tumorigenesis: molecular mechanisms and therapeutic opportunities[J]. Protein Cell, 2015, 6(2): 88-100.
[5] Qiqun Zeng,Zhenzhen Wu,Hongxia Duan,Xuan Jiang,Tao Tu,Di Lu,Yongting Luo,Ping Wang,Lina Song,Jing Feng,Dongling Yang,Xiyun Yan. Impaired tumor angiogenesis and VEG-Finduced pathway in endothelial CD146 knockout mice[J]. Protein Cell, 2014, 5(6): 445-456.
[6] Yihui Fan, Renfang Mao, Jianhua Yang. NF-κB and STAT3 signaling pathways collaboratively link infl ammation to cancer[J]. Prot Cell, 2013, 4(3): 176-185.
[7] Qi Sun, Xi Chen, Jianxiong Yu, Ke Zen, Chen-Yu Zhang, Liang Li. Immune modulatory function of abundant immune-related microRNAs in microvesicles from bovine colostrum[J]. Prot Cell, 2013, 4(3): 197-210.
[8] Yi Sun, Hua Li. Functional characterization of SAG/RBX2/ROC2/RNF7, an antioxidant protein and an E3 ubiquitin ligase[J]. Prot Cell, 2013, 4(2): 103-116.
[9] Qian Wu, Xiaoqun Wang. Neuronal stem cells in the central nervous system and in human diseases[J]. Prot Cell, 2012, 3(4): 262-270.
[10] Xi Chen, Hongwei Liang, Junfeng Zhang, Ke Zen, Chen-Yu Zhang. Horizontal transfer of microRNAs: molecular mechanisms and clinical applications[J]. Prot Cell, 2012, 3(1): 28-37.
[11] Jianghong Man, Xuemin Zhang. CUEDC2: an emerging key player in inflammation and tumorigenesis[J]. Prot Cell, 2011, 2(9): 699-703.
[12] Kristelle S. Brown, Michael J. Keogh, Jonathan K. Ball, Alexander W. Tarr, Ania M. Owsianka, Richard Adair, Arvind H. Patel, James N. Arnold, Robert B. Sim, Timothy P. Hickling, . Specific interaction of hepatitis C virus glycoproteins with mannan binding lectin inhibits virus entry[J]. Protein Cell, 2010, 1(7): 664-674.
[13] Jiaxue Wu, Lin-Yu Lu, Xiaochun Yu, . The role of BRCA1 in DNA damage response[J]. Protein Cell, 2010, 1(2): 117-123.
[14] Zhongfeng Wang, Baojie Li. Mdm2 links genotoxic stress and metabolism to p53[J]. Prot Cell, 2010, 1(12): 1063-1072.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed