Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2019, Vol. 10 Issue (8) : 595-605    https://doi.org/10.1007/s13238-019-0607-2
RESEARCH ARTICLE
A miRNA-HERC4 pathway promotes breast tumorigenesis by inactivating tumor suppressor LATS1
Youqin Xu1, Kaiyuan Ji1, Meng Wu1, Bingtao Hao1(), Kai-tai Yao1(), Yang Xu1,2()
1. Guangdong Provincial Key laboratory of Tumor Immunotherapy, School of Basic Medical Sciences, Cancer Research Institute, Southern Medical University, Guangzhou 510632, China
2. Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
 Download: PDF(2640 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The E3 ligase HERC4 is overexpressed in human breast cancer and its expression levels correlated with the prognosis of breast cancer patients. However, the roles of HERC4 in mammary tumorigenesis remain unclear. Here we demonstrate that the knockdown of HERC4 in human breast cancer cells dramatically suppressed their proliferation, survival, migration, and tumor growth in vivo, while the overexpression of HERC4 promoted their aggressive tumorigenic activities. HERC4 is a new E3 ligase for the tumor suppressor LATS1 and destabilizes LATS1 by promoting the ubiquitination of LATS1. miRNA-136-5p and miRNA-1285-5p, expression of which is decreased in human breast cancers and is inversely correlated with the prognosis of breast cancer patients, are directly involved in suppressing the expression of HERC4. In summary, we discover a miRNA-HERC4-LATS1 pathway that plays important roles in the pathogenesis of breast cancer and represents new therapeutic targets for human breast cancer.

Keywords E3 ligase      tumorigenesis      ubiquitination      tumor suppressor      miRNA     
Corresponding Author(s): Bingtao Hao,Kai-tai Yao,Yang Xu   
Issue Date: 22 August 2019
 Cite this article:   
Youqin Xu,Kaiyuan Ji,Meng Wu, et al. A miRNA-HERC4 pathway promotes breast tumorigenesis by inactivating tumor suppressor LATS1[J]. Protein Cell, 2019, 10(8): 595-605.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-019-0607-2
https://academic.hep.com.cn/pac/EN/Y2019/V10/I8/595
1 L Bonanno, C Costa, M Majem, JJ Sanchez, I Rodriguez, A Gimenez-Capitan, MA Molina-Vila , A Vergnenegre, B Massuti, A Favarettoet al. (2016) Combinatory effect of BRCA1 and HERC2 expression on outcome in advanced non-small-cell lung cancer. BMC Cancer 16:312
https://doi.org/10.1186/s12885-016-2339-5
2 A Britschgi, S Duss, S Kim, JP Couto, H Brinkhaus, S Koren, D De Silva, KD Mertz, D Kaup, Z Vargaet al. (2017) The Hippo kinases LATS1 and 2 control human breast cell fate via crosstalk with ERalpha. Nature 541:541–545
https://doi.org/10.1038/nature20829
3 AD Campos-Parra, GC Mitznahuatl, A Pedroza-Torres, RV Romo, FIP Reyes, E Lopez-Urrutia, C Perez-Plasencia (2017) Micro-RNAs as potential predictors of response to breast cancer systemic therapy: future clinical implications. Int J Mol Sci 18(6): E1182
https://doi.org/10.3390/ijms18061182
4 M Chan, CS Liaw, SM Ji, HH Tan, CY Wong, AA Thike, PH Tan, GH Ho, AS Lee (2013) Identification of circulating microRNA signatures for breast cancer detection. Clin Cancer Res 19 (16):4477–4487
https://doi.org/10.1158/1078-0432.CCR-12-3401
5 B Diouf, Q, Cheng NF Krynetskaia, W Yang, M Cheok, D Pei, Y Fan, C Cheng, EY Krynetskiy, H Genget al. (2011) Somatic deletions of genes regulating MSH2 protein stability cause DNA mismatch repair deficiency and drug resistance in human leukemia cells. Nat Med 17:1298–1303
https://doi.org/10.1038/nm.2430
6 AK Dubey, U Gupta, S Jain (2015) Breast cancer statistics and prediction methodology: a systematic review and analysis. Asian Pac J Cancer Prev 16:4237–4245
https://doi.org/10.7314/APJCP.2015.16.10.4237
7 MJ Duffy, TM Maguire, A Hill, E McDermott, N O’Higgins (2000) Metalloproteinases: role in breast carcinogenesis, invasion and metastasis. Breast Cancer Res 2:252–257
https://doi.org/10.1186/bcr65
8 N Furth, Y Aylon (2017) The LATS1 and LATS2 tumor suppressors: beyond the Hippo pathway. Cell Death Differ 24:1488–1501
https://doi.org/10.1038/cdd.2017.99
9 A Hershko (2005) The ubiquitin system for protein degradation and some of its roles in the control of the cell division cycle. Cell Death Differ 12:1191–1197
https://doi.org/10.1038/sj.cdd.4401702
10 J Kim, Y Liu, M Qiu, Y Xu (2015) Pluripotency factor Nanog is tumorigenic by deregulating DNA damage response in somatic cells. Oncogene 35:1334–1340
https://doi.org/10.1038/onc.2015.205
11 J Kim, S Xu, L Xiong, L Yu, X Fu, Y Xu (2017) SALL4 promotes glycolysis and chromatin remodeling via modulating HP1α-Glut1 pathway. Oncogene 36:6472–6479
https://doi.org/10.1038/onc.2017.265
12 Y Kulaberoglu, K Lin, M Holder, Z Gai, M Gomez, B Assefa Shifa, M Mavis, L Hoa, AAD Sharif, C Lujanet al. (2017) Stable MOB1 interaction with Hippo/MST is not essential for development and tissue growth control. Nat Commun 8:695
https://doi.org/10.1038/s41467-017-00795-y
13 A Lanczky, A Nagy, G Bottai, G Munkacsy, L Paladini, A Szabo, L Santarpia, B Gyorffy (2016) miRpower: a web-tool to validate survival-associated miRNAs utilizing expression data from 2,178 breast cancer patients. Breast Cancer Res Treat 160(3):439–446
https://doi.org/10.1007/s10549-016-4013-7
14 DX Li, XR Fei, YF Dong, CD Cheng, Y Yang, XF Deng, HL Huang, WX Niu, CX Zhou, CY Xiaet al. (2017) The long non-coding RNA CRNDE acts as a ceRNA and promotes glioma malignancy by preventing miR-136-5p-mediated downregulation of Bcl-2 and Wnt2. Oncotarget 8:88163–88178
https://doi.org/10.18632/oncotarget.21513
15 J Liu, J Yan, C Zhou, Q Ma, Q Jin, Z Yang (2015) miR-1285-3p acts as a potential tumor suppressor miRNA via downregulating JUN expression in hepatocellular carcinoma. Tumour Biol 36:219–225
https://doi.org/10.1007/s13277-014-2622-5
16 IA Mayer, R Dent, T Tan, P Savas, S Loi (2017) Novel targeted agents and immunotherapy in breast cancer. Am Soc Clin Oncol Educ Book 37:65–75
https://doi.org/10.14694/EDBK_175631
17 LN Micel, JJ Tentler, PG Smith, GS Eckhardt (2013) Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. J Clin Oncol 31:1231–1238
https://doi.org/10.1200/JCO.2012.44.0958
18 K Mitsui, M Nakanishi, S Ohtsuka, TH Norwood, K Okabayashi, C Miyamoto, K Tanaka, A Yoshimura, M Ohtsubo (1999) A novel human gene encoding HECT domain and RCC1-like repeats interacts with cyclins and is potentially regulated by the tumor suppressor proteins. Biochem Biophys Res Commun 266:115–122
https://doi.org/10.1006/bbrc.1999.1777
19 A Mofers, P Pellegrini, S Linder, P D’Arcy (2017) Proteasomeassociated deubiquitinases and cancer. Cancer Metastasis Rev 36:635–653
https://doi.org/10.1007/s10555-017-9697-6
20 N Patani, LA Martin, M Dowsett (2013) Biomarkers for the clinical management of breast cancer: international perspective. Int J Cancer 133:1–13
https://doi.org/10.1002/ijc.27997
21 CM Pfleger (2017) The hippo pathway: a master regulatory network important in development and dysregulated in disease. Curr Top Dev Biol 123:181–228
https://doi.org/10.1016/bs.ctdb.2016.12.001
22 CI Rodriguez, CL Stewart (2007) Disruption of the ubiquitin ligase HERC4 causes defects in spermatozoon maturation and impaired fertility. Dev Biol 312:501–508
https://doi.org/10.1016/j.ydbio.2007.09.053
23 Z, Rong S Zhu, Y Xu, X Fu (2014) Homologous recombination in human embryonic stem cells using CRISPR/Cas9 nickase and a long DNA donor template. Protein & Cell 5(4):1–3
https://doi.org/10.1007/s13238-014-0032-5
24 D Rotin, S Kumar (2009) Physiological functions of the HECT family of ubiquitin ligases. Nat Rev Mol Cell Biol 10:398–409
https://doi.org/10.1038/nrm2690
25 R Rupaimoole, FJ Slack (2017) MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov 16:203–222
https://doi.org/10.1038/nrd.2016.246
26 D Szklarczyk, JH Morris, H Cook, M Kuhn, S Wyder, M Simonovic, A Santos, NT Doncheva, A Roth, P Bork, LJ Jensen, C von Mering. The STRING database in 2017: quality-controlled proteinprotein association networks, made broadly accessible. Nucleic Acids Res 2017; 45:D362–68
https://doi.org/10.1093/nar/gkw937
27 UH Weidle, S Dickopf, C Hintermair, G Kollmorgen, F, Birzele U Brinkmann (2018) The role of micro RNAs in breast cancer metastasis: preclinical validation and potential therapeutic targets. Cancer Genom Proteom 15:17–39
https://doi.org/10.21873/cgp.20062
28 M Yan, X Li, D Tong, C Han, R Zhao, Y He, X Jin (2016) miR-136 suppresses tumor invasion and metastasis by targeting RASAL2 in triple-negative breast cancer. Oncol Rep 36:65–71
https://doi.org/10.3892/or.2016.4767
29 J Wang, X Zhang, AH Beck, LC Collins, WY Chen, RM Tamimi, A Hazra, M Brown, B, Rosner SE Hankinson (2015) Alcohol consumption and risk of breast cancer by tumor receptor expression. Horm Cancer 6(5–6):237–46
https://doi.org/10.1007/s12672-015-0235-0
30 WL Zeng, YW Chen, H Zhou, JY Zhou, M Wei, R Shi (2015) Expression of HERC4 in lung cancer and its correlation with clinicopathological parameters. Asian Pac J Cancer Prev 16:513–517
https://doi.org/10.7314/APJCP.2015.16.2.513
31 Z-N Zhang, S-K Chung, Z Xu, Y Xu (2014) Maintains the pluripotency of human embryonic stem cells by inactivating p53 through Sirt1-mediated deacetylation. Stem Cells 32:157–165
https://doi.org/10.1002/stem.1532
32 Y Zheng, J Li, C Pan, G Zhou, L Zhuge, L Jin, P Fang (2017) HERC4 Is overexpressed in hepatocellular carcinoma and contributes to the proliferation and migration of hepatocellular carcinoma cells. DNA Cell Biol 36:490–500
https://doi.org/10.1089/dna.2016.3626
33 H Zhou, R Shi, M Wei, WL Zheng, JY Zhou, WL Ma (2013) The expression and clinical significance of HERC4 in breast cancer. Cancer Cell Int 13:113
https://doi.org/10.1186/1475-2867-13-113
[1] PAC-0595-18471-XY_suppl_1 Download
[1] Nan Sun, Li Jiang, Miaomiao Ye, Yihan Wang, Guangwen Wang, Xiaopeng Wan, Yuhui Zhao, Xia Wen, Libin Liang, Shujie Ma, Liling Liu, Zhigao Bu, Hualan Chen, Chengjun Li. TRIM35 mediates protection against influenza infection by activating TRAF3 and degrading viral PB2[J]. Protein Cell, 2020, 11(12): 894-914.
[2] Daisuke Aki, Qian Li, Hui Li, Yun-Cai Liu, Jee Ho Lee. Immune regulation by protein ubiquitination: roles of the E3 ligases VHL and Itch[J]. Protein Cell, 2019, 10(6): 395-404.
[3] Xi Chen, Lin Wang, Rujin Huang, Hui Qiu, Peizhe Wang, Daren Wu, Yonglin Zhu, Jia Ming, Yangming Wang, Jianbin Wang, Jie Na. Dgcr8 deletion in the primitive heart uncovered novel microRNA regulating the balance of cardiac-vascular gene program[J]. Protein Cell, 2019, 10(5): 327-346.
[4] Junting Cai, Miranda K. Culley, Yutong Zhao, Jing Zhao. The role of ubiquitination and deubiquitination in the regulation of cell junctions[J]. Protein Cell, 2018, 9(9): 754-769.
[5] Junhong Guan, Shuyu Yu, Xiaofeng Zheng. NEDDylation antagonizes ubiquitination of proliferating cell nuclear antigen and regulates the recruitment of polymerase η in response to oxidative DNA damage[J]. Protein Cell, 2018, 9(4): 365-379.
[6] Yanpeng Ci, Xiaoning Li, Maorong Chen, Jiateng Zhong, Brian J. North, Hiroyuki Inuzuka, Xi He, Yu Li, Jianping Guo, Xiangpeng Dai. SCFβ-TRCP E3 ubiquitin ligase targets the tumor suppressor ZNRF3 for ubiquitination and degradation[J]. Protein Cell, 2018, 9(10): 879-889.
[7] Xiaowei Chen, Zhen Fan, Warren McGee, Mengmeng Chen, Ruirui Kong, Pushuai Wen, Tengfei Xiao, Xiaomin Chen, Jianghong Liu, Li Zhu, Runsheng Chen, Jane Y. Wu. TDP-43 regulates cancer-associated microRNAs[J]. Protein Cell, 2018, 9(10): 848-866.
[8] Haibo Zhou, Li Wu. The development and function of dendritic cell populations and their regulation by miRNAs[J]. Protein Cell, 2017, 8(7): 501-513.
[9] Shengyuan Zeng,Yangyang Wang,Ting Zhang,Lu Bai,Yalan Wang,Changzhu Duan. E3 ligase UHRF2 stabilizes the acetyltransferase TIP60 and regulates H3K9ac and H3K14ac via RING finger domain[J]. Protein Cell, 2017, 8(3): 202-218.
[10] Kegan Zhu,Lei Liu,Junliang Zhang,Yanbo Wang,Hongwei Liang,Gentao Fan,Zhenhuan Jiang,Chen-Yu Zhang,Xi Chen,Guangxin Zhou. MiR-29b suppresses the proliferation and migration of osteosarcoma cells by targeting CDK6[J]. Protein Cell, 2016, 7(6): 434-444.
[11] Hosuk Lee,Sungwook Han,Chang Seob Kwon,Daeyoup Lee. Biogenesis and regulation of the let-7 miRNAs and their functional implications[J]. Protein Cell, 2016, 7(2): 100-113.
[12] Haiyang Zhang,Jingjing Duan,Yanjun Qu,Ting Deng,Rui Liu,Le Zhang,Ming Bai,Jialu Li,Tao Ning,Shaohua Ge,Xia Wang,Zhenzhen Wang,Qian Fan,Hongli Li,Guoguang Ying,Dingzhi Huang,Yi Ba. Onco-miR-24 regulates cell growth and apoptosis by targeting BCL2L11 in gastric cancer[J]. Protein Cell, 2016, 7(2): 141-151.
[13] Ming Wang,Jing Sang,Yanhua Ren,Kejia Liu,Xinyi Liu,Jian Zhang,Haolu Wang,Jian Wang,Amir Orian,Jie Yang,Jing Yi. SENP3 regulates the global protein turnover and the Sp1 level via antagonizing SUMO2/ 3-targeted ubiquitination and degradation[J]. Protein Cell, 2016, 07(1): 63-77.
[14] Xiaoying Chen,Kunshan Zhang,Liqiang Zhou,Xinpei Gao,Junbang Wang,Yinan Yao,Fei He,Yuping Luo,Yongchun Yu,Siguang Li,Liming Cheng,Yi E. Sun. Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation[J]. Protein Cell, 2016, 07(03): 175-186.
[15] Zhongmin Liu,Jia Wang,Gang Li,Hong-Wei Wang. Structure of precursor microRNA’s terminal loop regulates human Dicer’s dicing activity by switching DExH/D domain[J]. Protein Cell, 2015, 6(3): 185-193.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed