Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2018, Vol. 9 Issue (4) : 365-379    https://doi.org/10.1007/s13238-017-0455-x
RESEARCH ARTICLE
NEDDylation antagonizes ubiquitination of proliferating cell nuclear antigen and regulates the recruitment of polymerase η in response to oxidative DNA damage
Junhong Guan1,2, Shuyu Yu1,2, Xiaofeng Zheng1,2()
1. State Key Lab of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China
2. Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
 Download: PDF(2929 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

NEDDylation has been shown to participate in the DNA damage pathway, but the substrates of neural precursor cell expressed developmentally downregulated 8 (NEDD8) and the roles of NEDDylation involved in the DNA damage response (DDR) are largely unknown. Translesion synthesis (TLS) is a damage-tolerance mechanism, in which RAD18/RAD6-mediated monoubiquitinated proliferating cell nuclear antigen (PCNA) promotes recruitment of polymerase η (polη) to bypass lesions. Here we identify PCNA as a substrate of NEDD8, and show that E3 ligase RAD18-catalyzed PCNA NEDDylation antagonizes its ubiquitination. In addition, NEDP1 acts as the deNEDDylase of PCNA, and NEDP1 deletion enhances PCNA NEDDylation but reduces its ubiquitination. In response to H2O2 stimulation, NEDP1 disassociates from PCNA and RAD18-dependent PCNA NEDDylation increases markedly after its ubiquitination. Impairment of NEDDylation by Ubc12 knockout enhances PCNA ubiquitination and promotes PCNA-polη interaction, while up-regulation of NEDDylation by NEDD8 overexpression or NEDP1 deletion reduces the excessive accumulation of ubiquitinated PCNA, thus inhibits PCNA-polη interaction and blocks polη foci formation. Moreover, Ubc12 knockout decreases cell sensitivity to H2O2-induced oxidative stress, but NEDP1 deletion aggravates this sensitivity. Collectively, our study elucidates the important role of NEDDylation in the DDR as a modulator of PCNA monoubiquitination and polη recruitment.

Keywords NEDDylation      ubiquitination      PCNA      oxidative stress      DNA damage response     
Corresponding Author(s): Xiaofeng Zheng   
Issue Date: 27 April 2018
 Cite this article:   
Junhong Guan,Shuyu Yu,Xiaofeng Zheng. NEDDylation antagonizes ubiquitination of proliferating cell nuclear antigen and regulates the recruitment of polymerase η in response to oxidative DNA damage[J]. Protein Cell, 2018, 9(4): 365-379.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-017-0455-x
https://academic.hep.com.cn/pac/EN/Y2018/V9/I4/365
1 Aoki I, Higuchi M, Gotoh Y (2013) NEDDylation controls the target specificity of E2F1 and apoptosis induction. Oncogene 32:3954–3964
https://doi.org/10.1038/onc.2012.428
2 Bailly V, Lamb J, Sung P, Prakash S, Prakash L (1994) Specific complex formation between yeast RAD6 and RAD18 proteins: a potential mechanism for targeting RAD6 ubiquitin-conjugating activity to DNA damage sites. Genes Dev 8:811–820
https://doi.org/10.1101/gad.8.7.811
3 Bergink S, Jentsch S (2009) Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458:461–467
https://doi.org/10.1038/nature07963
4 Bienko M, Green CM, Crosetto N, Rudolf F, Zapart G, Coull B, Kannouche P, Wider G, Peter M, Lehmann ARet al. (2005) Ubiquitin-binding domains in Y-family polymerases regulate translesion synthesis. Science 310:1821–1824
https://doi.org/10.1126/science.1120615
5 Branzei D, Foiani M (2008) Regulation of DNA repair throughout the cell cycle. Nat Rev Mol Cell Biol 9:297–308
https://doi.org/10.1038/nrm2351
6 Brown JS, Lukashchuk N, Sczaniecka-Clift M, Britton S, le Sage C, Calsou P, Beli P, Galanty Y, Jackson SP (2015) Neddylation promotes ubiquitylation and release of Ku from DNA-damage sites. Cell Rep. 11(5):704–714
https://doi.org/10.1016/j.celrep.2015.03.058
7 Coleman KE, Bekes M, Chapman JR, Crist SB, Jones MJ, Ueberheide BM, Huang TT (2017) SENP8 limits aberrant neddylation of NEDD8 pathway components to promote cullin-RING ubiquitin ligase function. Elife.
https://doi.org/10.7554/eLife.24325
8 Enchev RI, Schulman BA, Peter M (2015) Protein neddylation: beyond cullin-RING ligases. Nat Rev Mol Cell Biol 16:30–44
https://doi.org/10.1038/nrm3919
9 Gao F, Cheng J, Shi T, Yeh ET (2006) Neddylation of a breast cancer-associated protein recruits a class III histone deacetylase that represses NFkappaB-dependent transcription. Nat Cell Biol 8:1171–1177
https://doi.org/10.1038/ncb1483
10 Hakenjos JP, Bejai S, Ranftl Q, Behringer C, Vlot AC, Absmanner B, Hammes U, Heinzlmeir S, Kuster B, Schwechheimer C (2013) ML3 is a NEDD8- and ubiquitin-modified protein. Plant Physiol 163:135–149
https://doi.org/10.1104/pp.113.221341
11 Han J, Liu T, Huen MS, Hu L, Chen Z, Huang J (2014) SIVA1 directs the E3 ubiquitin ligase RAD18 for PCNA monoubiquitination. J Cell Biol 205:811–827
https://doi.org/10.1083/jcb.201311007
12 Harrison JC, Haber JE (2006) Surviving the breakup: the DNA damage checkpoint. Annu Rev Genet 40:209–235
https://doi.org/10.1146/annurev.genet.40.051206.105231
13 Hedglin M, Pandey B, Benkovic SJ (2016) Characterization of human translesion DNA synthesis across a UV-induced DNA lesion. Elife.
https://doi.org/10.7554/eLife.19788
14 Hjerpe R, Thomas Y, Chen J, Zemla A, Curran S, Shpiro N, Dick LR, Kurz T (2012) Changes in the ratio of free NEDD8 to ubiquitin triggers NEDDylation by ubiquitin enzymes. Biochem J 441:927–936
https://doi.org/10.1042/BJ20111671
15 Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458:422–429
https://doi.org/10.1038/nature07958
16 Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141
https://doi.org/10.1038/nature00991
17 Hoeijmakers JH (2001) Genome maintenance mechanisms for preventing cancer. Nature 411:366–374
https://doi.org/10.1038/35077232
18 Huang TT, Nijman SM, Mirchandani KD, Galardy PJ, Cohn MA, Haas W, Gygi SP, Ploegh HL, Bernards R, D’Andrea AD (2006) Regulation of monoubiquitinated PCNA by DUB autocleavage. Nat Cell Biol 8:339–347
https://doi.org/10.1038/ncb1378
19 Huang DT, Ayrault O, Hunt HW, Taherbhoy AM, Duda DM, Scott DC, Borg LA, Neale G, Murray PJ, Roussel MFet al. (2009a) E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Mol Cell 33:483–495
https://doi.org/10.1016/j.molcel.2009.01.011
20 Huang J, Huen MS, Kim H, Leung CC, Glover JN, Yu X, Chen J (2009b) RAD18 transmits DNA damage signalling to elicit homologous recombination repair. Nat Cell Biol 11:592–603
https://doi.org/10.1038/ncb1865
21 Jackson SP, Durocher D (2013) Regulation of DNA damage responses by ubiquitin and SUMO. Mol Cell 49:795–807
https://doi.org/10.1016/j.molcel.2013.01.017
22 Jimeno S, Fernandez-Avila MJ, Cruz-Garcia A, Cepeda-Garcia C, Gomez-Cabello D, Huertas P (2015) Neddylation inhibits CtIPmediated resection and regulates DNA double strand break repair pathway choice. Nucleic Acids Res 43:987–999
https://doi.org/10.1093/nar/gku1384
23 Johnson RE, Kondratick CM, Prakash S, Prakash L (1999) hRAD30 mutations in the variant form of xeroderma pigmentosum. Science 285:263–265
https://doi.org/10.1126/science.285.5425.263
24 Kamitani T, Kito K, Nguyen HP, Yeh ET (1997) Characterization of NEDD8, a developmentally down-regulated ubiquitin-like protein. J Biol Chem 272:28557–28562
https://doi.org/10.1074/jbc.272.45.28557
25 Kannouche P, Broughton BC, Volker M, Hanaoka F, Mullenders LH, Lehmann AR (2001) Domain structure, localization, and function of DNA polymerase eta, defective in xeroderma pigmentosum variant cells. Genes Dev 15:158–172
https://doi.org/10.1101/gad.187501
26 Kannouche PL, Wing J, Lehmann AR (2004) Interaction of human DNA polymerase eta with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol Cell 14:491–500
https://doi.org/10.1016/S1097-2765(04)00259-X
27 Kirkin V, Dikic I (2007) Role of ubiquitin- and Ubl-binding proteins in cell signaling. Curr Opin Cell Biol 19:199–205
https://doi.org/10.1016/j.ceb.2007.02.002
28 Lan H, Tang Z, Jin H, Sun Y (2016) Neddylation inhibitor MLN4924 suppresses growth and migration of human gastric cancer cells. Sci Rep 6:24218
https://doi.org/10.1038/srep24218
29 Leidecker O, Matic I, Mahata B, Pion E, Xirodimas DP (2012) The ubiquitin E1 enzyme Ube1 mediates NEDD8 activation under diverse stress conditions. Cell Cycle 11:1142–1150
https://doi.org/10.4161/cc.11.6.19559
30 Li T, Guan J, Huang Z, Hu X, Zheng X (2014) RNF168-mediated H2A neddylation antagonizes ubiquitylation of H2A and regulates DNA damage repair. J Cell Sci 127:2238–2248
https://doi.org/10.1242/jcs.138891
31 Loftus SJ, Liu G, Carr SM, Munro S, La Thangue NB (2012) NEDDylation regulates E2F-1-dependent transcription. EMBO Rep 13:811–818
https://doi.org/10.1038/embor.2012.113
32 Ma T, Chen Y, Zhang F, Yang CY, Wang S, Yu X (2013) RNF111-dependent neddylation activates DNA damage-induced ubiquitination. Mol Cell 49:897–907
https://doi.org/10.1016/j.molcel.2013.01.006
33 Mahata B, Sundqvist A, Xirodimas DP (2012) Recruitment of RPL11 at promoter sites of p53-regulated genes upon nucleolar stress through NEDD8 and in an Mdm2-dependent manner. Oncogene 31:3060–3071
https://doi.org/10.1038/onc.2011.482
34 Mergner J, Kuster B, Schwechheimer C (2017) DENEDDYLASE1 protein counters automodification of neddylating enzymes to maintain NEDD8 protein homeostasis in arabidopsis. J Biol Chem 292:3854–3865
https://doi.org/10.1074/jbc.M116.767103
35 Moldovan GL, Pfander B, Jentsch S (2007) PCNA, the maestro of the replication fork. Cell 129:665–679
https://doi.org/10.1016/j.cell.2007.05.003
36 Ohh M, Kim WY, Moslehi JJ, Chen Y, Chau V, Read MA, Kaelin WG Jr (2002) An intact NEDD8 pathway is required for Cullindependent ubiquitylation in mammalian cells. EMBO Rep 3:177–182
https://doi.org/10.1093/embo-reports/kvf028
37 Papouli E, Chen S, Davies AA, Huttner D, Krejci L, Sung P, Ulrich HD (2005) Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol Cell 19:123–133
https://doi.org/10.1016/j.molcel.2005.06.001
38 Park JM, Yang SW, Yu KR, Ka SH, Lee SW, Seol JH, Jeon YJ, Chung CH (2014) Modification of PCNA by ISG15 plays a crucial role in termination of error-prone translesion DNA synthesis. Mol Cell 54:626–638
https://doi.org/10.1016/j.molcel.2014.03.031
39 Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S (2005) SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436:428–433
https://doi.org/10.1038/nature03665
40 Rabut G, Peter M (2008) Function and regulation of protein neddylation. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep 9:969–976
https://doi.org/10.1038/embor.2008.183
41 Sale JE, Lehmann AR, Woodgate R (2012) Y-family DNA polymerases and their role in tolerance of cellular DNA damage. Nat Rev Mol Cell Biol 13:141–152
https://doi.org/10.1038/nrm3289
42 Watanabe K, Tateishi S, Kawasuji M, Tsurimoto T,Inoue H, Yamaizumi M (2004) Rad18 guides poleta to replication stalling sites through physical interaction and PCNA monoubiquitination. EMBO J 23:3886–3896
https://doi.org/10.1038/sj.emboj.7600383
43 Watson IR, Blanch A, Lin DC, Ohh M, Irwin MS (2006) Mdm2-mediated NEDD8 modification of TAp73 regulates its transactivation function. J Biol Chem 281:34096–34103
https://doi.org/10.1074/jbc.M603654200
44 Wei D, Li H, Yu J, Sebolt JT, Zhao L, Lawrence TS, Smith PG, Morgan MA, Sun Y (2012) Radiosensitization of human pancreatic cancer cells by MLN4924, an investigational NEDD8-activating enzyme inhibitor. Cancer Res 72:282–293
https://doi.org/10.1158/0008-5472.CAN-11-2866
45 Xirodimas DP, Saville MK, Bourdon JC, Hay RT, Lane DP (2004) Mdm2-mediated NEDD8 conjugation of p53 inhibits its transcriptional activity. Cell 118:83–97
https://doi.org/10.1016/j.cell.2004.06.016
46 Xirodimas DP, Sundqvist A, Nakamura A, Shen L, Botting C, Hay RT (2008) Ribosomal proteins are targets for the NEDD8 pathway. EMBO Rep 9:280–286
https://doi.org/10.1038/embor.2008.10
47 Zhang J,Bai D, Ma X, Guan J, Zheng X (2014) hCINAP is a novel regulator of ribosomal protein-HDM2-p53 pathway by controlling NEDDylation of ribosomal protein S14. Oncogene 33:246–254
https://doi.org/10.1038/onc.2012.560
48 Zhou X, Tan M, Nyati MK, Zhao Y, Wang G, Sun Y (2016) Blockage of neddylation modification stimulates tumor sphere formation in vitro and stem cell differentiation and wound healing in vivo. Proc Natl Acad Sci USA 113:E2935–2944
https://doi.org/10.1073/pnas.1522367113
49 Zlatanou A, Despras E, Braz-Petta T, Boubakour-Azzouz I,Pouvelle C, Stewart GS, Nakajima S, Yasui A, Ishchenko AA, Kannouche PL (2011) The hMsh2-hMsh6 complex acts in concert with monoubiquitinated PCNA and Pol eta in response to oxidative DNA damage in human cells. Mol Cell 43:649–662
https://doi.org/10.1016/j.molcel.2011.06.023
50 Zuo W, Huang F,Chiang YJ , Li M, Du J, Ding Y, Zhang T, Lee HW, Jeong LS, Chen Yet al. (2013) c-Cbl-mediated neddylation antagonizes ubiquitination and degradation of the TGF-beta type II receptor. Mol Cell 49:499–510
https://doi.org/10.1016/j.molcel.2012.12.002
[1] PAC-0365-17137-ZXF_suppl_1 Download
[1] Nan Sun, Li Jiang, Miaomiao Ye, Yihan Wang, Guangwen Wang, Xiaopeng Wan, Yuhui Zhao, Xia Wen, Libin Liang, Shujie Ma, Liling Liu, Zhigao Bu, Hualan Chen, Chengjun Li. TRIM35 mediates protection against influenza infection by activating TRAF3 and degrading viral PB2[J]. Protein Cell, 2020, 11(12): 894-914.
[2] Youqin Xu, Kaiyuan Ji, Meng Wu, Bingtao Hao, Kai-tai Yao, Yang Xu. A miRNA-HERC4 pathway promotes breast tumorigenesis by inactivating tumor suppressor LATS1[J]. Protein Cell, 2019, 10(8): 595-605.
[3] Hongmei Mao, Zaiming Tang, Hua Li, Bo Sun, Mingjia Tan, Shaohua Fan, Yuan Zhu, Yi Sun. Neddylation inhibitor MLN4924 suppresses cilia formation by modulating AKT1[J]. Protein Cell, 2019, 10(10): 726-744.
[4] Junting Cai, Miranda K. Culley, Yutong Zhao, Jing Zhao. The role of ubiquitination and deubiquitination in the regulation of cell junctions[J]. Protein Cell, 2018, 9(9): 754-769.
[5] Yanpeng Ci, Xiaoning Li, Maorong Chen, Jiateng Zhong, Brian J. North, Hiroyuki Inuzuka, Xi He, Yu Li, Jianping Guo, Xiangpeng Dai. SCFβ-TRCP E3 ubiquitin ligase targets the tumor suppressor ZNRF3 for ubiquitination and degradation[J]. Protein Cell, 2018, 9(10): 879-889.
[6] Hai-tao Zhang, Zi-jian Zhang, Wei-chuan Mo, Ping-dong Hu, Hai-min Ding, Ying Liu, Qian Hua, Rong-qiao He. Shielding of the geomagnetic field reduces hydrogen peroxide production in human neuroblastoma cell and inhibits the activity of CuZn superoxide dismutase[J]. Protein Cell, 2017, 8(7): 527-537.
[7] Shengyuan Zeng,Yangyang Wang,Ting Zhang,Lu Bai,Yalan Wang,Changzhu Duan. E3 ligase UHRF2 stabilizes the acetyltransferase TIP60 and regulates H3K9ac and H3K14ac via RING finger domain[J]. Protein Cell, 2017, 8(3): 202-218.
[8] Jiaxiang Shao,Xiao Yang,Tengyuan Liu,Tingting Zhang,Qian Reuben Xie,Weiliang Xia. Autophagy induction by SIRT6 is involved in oxidative stress-induced neuronal damage[J]. Protein Cell, 2016, 7(4): 281-290.
[9] Ming Wang,Jing Sang,Yanhua Ren,Kejia Liu,Xinyi Liu,Jian Zhang,Haolu Wang,Jian Wang,Amir Orian,Jie Yang,Jing Yi. SENP3 regulates the global protein turnover and the Sp1 level via antagonizing SUMO2/ 3-targeted ubiquitination and degradation[J]. Protein Cell, 2016, 07(1): 63-77.
[10] Xiaoying Chen,Kunshan Zhang,Liqiang Zhou,Xinpei Gao,Junbang Wang,Yinan Yao,Fei He,Yuping Luo,Yongchun Yu,Siguang Li,Liming Cheng,Yi E. Sun. Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation[J]. Protein Cell, 2016, 07(03): 175-186.
[11] Yajin Liao,Yumin Hao,Hong Chen,Qing He,Zengqiang Yuan,Jinbo Cheng. Mitochondrial calcium uniporter protein MCU is involved in oxidative stress-induced cell death[J]. Protein Cell, 2015, 6(6): 434-442.
[12] Lianying Jiao,Songying Ouyang,Neil Shaw,Gaojie Song,Yingang Feng,Fengfeng Niu,Weicheng Qiu,Hongtao Zhu,Li-Wei Hung,Xiaobing Zuo,V. Eleonora Shtykova,Ping Zhu,Yu-Hui Dong,Ruxiang Xu,Zhi-Jie Liu. Mechanism of the Rpn13-induced activation of Uch37[J]. Protein Cell, 2014, 5(8): 616-630.
[13] Juan Zhang,Xiaofei Zhang,Feng Xie,Zhengkui Zhang,Hans van Dam,Long Zhang,Fangfang Zhou. The regulation of TGF-β/SMAD signaling by protein deubiquitination[J]. Protein Cell, 2014, 5(7): 503-517.
[14] Yinghao Zhang,Fang-Mei Chang,Jianjun Huang,Jacob J. Junco,Shivani K. Maffi,Hannah I. Pridgen,Gabriel Catano,Hong Dang,Xiang Ding,Fuquan Yang,Dae Joon Kim,Thomas J. Slaga,Rongqiao He,Sung-Jen Wei. DSSylation, a novel protein modification targets proteins induced by oxidative stress, and facilitates their degradation in cells[J]. Protein Cell, 2014, 5(2): 124-140.
[15] Limin Han, Pan Wang, Ganye Zhao, Hui Wang, Meng Wang, Jun Chen, Tanjun Tong. Upregulation of SIRT1 by 17β-estradiol depends on ubiquitin-proteasome degradation of PPAR-γ mediated by NEDD4-1[J]. Prot Cell, 2013, 4(4): 310-321.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed