Please wait a minute...
Protein & Cell

ISSN 1674-800X

ISSN 1674-8018(Online)

CN 11-5886/Q

Postal Subscription Code 80-984

2018 Impact Factor: 7.575

Protein Cell    2014, Vol. 5 Issue (7) : 503-517    https://doi.org/10.1007/s13238-014-0058-8
REVIEW
The regulation of TGF-β/SMAD signaling by protein deubiquitination
Juan Zhang1,2,Xiaofei Zhang2,Feng Xie1,Zhengkui Zhang1,Hans van Dam2,Long Zhang1,2,*(),Fangfang Zhou2,*()
1. Life Sciences Institute, Zhejiang University, Hangzhou 310058, China
2. Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre of Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands
 Download: PDF(510 KB)  
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Transforming growth factor-β (TGF-β) members are key cytokines that control embryogenesis and tissue homeostasis via transmembrane TGF-β type II (TβR II) and type I (TβRI) and serine/threonine kinases receptors. Aberrant activation of TGF-β signaling leads to diseases, including cancer. In advanced cancer, the TGF-β/SMAD pathway can act as an oncogenic factor driving tumor cell invasion and metastasis, and thus is considered to be a therapeutic target. The activity of TGF-β/SMAD pathway is known to be regulated by ubiquitination at multiple levels. As ubiquitination is reversible, emerging studies have uncovered key roles for ubiquitin-removals on TGF-β signaling components by deubiquitinating enzymes (DUBs). In this paper, we summarize the latest findings on the DUBs that control the activity of the TGF-β signaling pathway. The regulatory roles of these DUBs as a driving force for cancer progression as well as their underlying working mechanisms are also discussed.

Keywords TGF-β      TβRI      SMAD      DUB      ubiquitin      deubiquitination     
Corresponding Author(s): Long Zhang   
Issue Date: 31 July 2014
 Cite this article:   
Juan Zhang,Xiaofei Zhang,Feng Xie, et al. The regulation of TGF-β/SMAD signaling by protein deubiquitination[J]. Protein Cell, 2014, 5(7): 503-517.
 URL:  
https://academic.hep.com.cn/pac/EN/10.1007/s13238-014-0058-8
https://academic.hep.com.cn/pac/EN/Y2014/V5/I7/503
1 Aggarwal K, Massague J (2012) Ubiquitin removal in the TGF-beta pathway. Nat Cell Biol14: 656-657
doi: 10.1038/ncb2534
2 Al-Hakim AK, Zagorska A, Chapman L, Deak M, Peggie M, Alessi DR (2008) Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains. Biochem J411: 249-260
doi: 10.1042/BJ20080067
3 Al-Salihi MA, Herhaus L, Macartney T, Sapkota GP (2012) USP11 augments TGFbeta signalling by deubiquitylating ALK5. Open Biol2: 120063
doi: 10.1098/rsob.120063
4 Amerik AY, Hochstrasser M (2004) Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta1695: 189-207
doi: 10.1016/j.bbamcr.2004.10.003
5 Bignell GR, Warren W, Seal S, Takahashi M, Rapley E, Barfoot R, Green H, Brown C, Biggs PJ, Lakhani SR (2000) Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet25: 160-165
doi: 10.1038/76006
6 Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med342: 1350-1358
doi: 10.1056/NEJM200005043421807
7 Bonni S, Wang HR, Causing CG, Kavsak P, Stroschein SL, Luo KX, Wrana JL (2001) TGF-beta induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation. Nat Cell Biol3: 587-595
doi: 10.1038/35078562
8 Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C, Hurley P, Chien M, Chai S, Hitotsumatsu O (2004) The ubiquitin-modifying enzyme A20 is required for termination of Tolllike receptor responses. Nat Immunol5: 1052-1060
doi: 10.1038/ni1110
9 Bos PD, Nguyen DX, Massague J (2010) Modeling metastasis in the mouse. Curr Opin Pharmacol10: 571-577
doi: 10.1016/j.coph.2010.06.003
10 Brummelkamp TR, Nijman SM, Dirac AM, Bernards R (2003) Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature424: 797-801
doi: 10.1038/nature01811
11 Claassen GF, Hann SR (2000) A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor beta-induced cell-cycle arrest. Proc Natl Acad Sci USA97: 9498-9503
doi: 10.1073/pnas.150006697
12 Clague MJ, Urbe S (2010) Ubiquitin: same molecule, different degradation pathways. Cell143: 682-685
doi: 10.1016/j.cell.2010.11.012
13 Clague MJ, Coulson JM, Urbe S (2012) Cellular functions of the DUBs. J Cell Sci125: 277-286
doi: 10.1242/jcs.090985
14 Cohen P, Tcherpakov M (2010) Will the ubiquitin system furnish as many drug targets as protein kinases? Cell143: 686-693
doi: 10.1016/j.cell.2010.11.016
15 Colland F (2010) The therapeutic potential of deubiquitinating enzyme inhibitors. Biochem Soc Trans38: 137-143
doi: 10.1042/BST0380137
16 Dang CV (1999) c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol19: 1-11
17 Deckers M, van Dinther M, Buijs J, Que N, Lowik C, van der Pluijm G, ten Dijke P (2006) The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res66: 2202-2209
doi: 10.1158/0008-5472.CAN-05-3560
18 Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell103: 351-361
doi: 10.1016/S0092-8674(00)00126-4
19 Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature425: 577-584
doi: 10.1038/nature02006
20 Dikic I (2009) Journal club. A new ubiquitin chain, a new signal. Nat Rev Mol Cell Biol10: 306
doi: 10.1038/nrm2685
21 Drabsch Y, ten Dijke P (2012) TGF-beta signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev31: 553-568
doi: 10.1007/s10555-012-9375-7
22 Dupont S, Zacchigna L, Cordenonsi M, Soligo S, Adorno M, Rugge M, Piccolo S (2005) Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. Cell121: 87-99
doi: 10.1016/j.cell.2005.01.033
23 Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, Martello G, Stinchfield MJ, Soligo S, Morsut L (2009) FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination. Cell136: 123-135
doi: 10.1016/j.cell.2008.10.051
24 Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K (2001) Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem276: 12477-12480
doi: 10.1074/jbc.C100008200
25 Eichhorn PJ, Rodon L, Gonzalez-Junca A, Dirac A, Gili M, Martinez-Saez E, Aura C, Barba I, Peg V, Prat A (2012) USP15 stabilizes TGF-beta receptor I and promotes oncogenesis through the activation of TGF-beta signaling in glioblastoma. Nat Med18: 429-435
doi: 10.1038/nm.2619
26 Frolik CA, Dart LL, Meyers CA, Smith DM, Sporn MB (1983) Purification and initial characterization of a type beta transforming growth factor from human placenta. Proc Natl Acad Sci USA80: 3676-3680
doi: 10.1073/pnas.80.12.3676
27 Galat A (2011) Common structural traits for cystine knot domain of the TGFbeta superfamily of proteins and three-fingered ectodomain of their cellular receptors. Cell Mol Life Sci68: 3437-3451
doi: 10.1007/s00018-011-0643-4
28 Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL, Webb AI, Rickard JA, Anderton H, Wong WW (2011) Linear ubiquitination prevents inflammation and regulates immune signalling. Nature471: 591-596
doi: 10.1038/nature09816
29 Goumans MJ, Mummery C (2000) Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int J Dev Biol 44: 253-265
30 Grady WM, Myeroff LL, Swinler SE, Rajput A, Thiagalingam S, Lutterbaugh JD, Neumann A, Brattain MG, Chang J, Kim SJ (1999) Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res59: 320-324
31 Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science271: 350-353
doi: 10.1126/science.271.5247.350
32 Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature390: 465-471
doi: 10.1038/37284
33 Heldin CH, Landstrom M, Moustakas A (2009) Mechanism of TGFbeta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol21: 166-176
doi: 10.1016/j.ceb.2009.01.021
34 Herhaus L, Al-Salihi M, Macartney T, Weidlich S, Sapkota GP (2013) OTUB1 enhances TGF beta signalling by inhibiting the ubiquitylation and degradation of active SMAD2/3. Nat Commun4: 2519
doi: 10.1038/ncomms3519
35 Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem67: 425-479
doi: 10.1146/annurev.biochem.67.1.425
36 Hoeller D, Dikic I (2009) Targeting the ubiquitin system in cancer therapy. Nature458: 438-444
doi: 10.1038/nature07960
37 Hogan BL (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev10: 1580-1594
doi: 10.1101/gad.10.13.1580
38 Hoy SM (2013) Subcutaneous bortezomib: in multiple myeloma. Drugs73: 45-54
doi: 10.1007/s40265-013-0006-6
39 Huang T, David L, Mendoza V, Yang Y, Villarreal M, De K, Sun L, Fang X, Lopez-Casillas F, Wrana JL (2011) TGF-beta signalling is mediated by two autonomously functioning TbetaRI: TbetaRII pairs. EMBO J30: 1263-1276
doi: 10.1038/emboj.2011.54
40 Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol17: 548-558
doi: 10.1016/j.ceb.2005.08.001
41 Hunter T (2007) The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell28: 730-738
doi: 10.1016/j.molcel.2007.11.019
42 Iavarone A, Massague J (1997) Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-beta in cells lacking the CDK inhibitor p15. Nature387: 417-422
doi: 10.1038/387417a0
43 Ibarrola N, Kratchmarova I, Nakajima D, Schiemann WP, Moustakas A, Pandey A, Mann M (2004) Cloning of a novel signaling molecule, AMSH-2, that potentiates transforming growth factor beta signaling. BMC Cell Biol5: 2
doi: 10.1186/1471-2121-5-2
44 Ideguchi H, Ueda A, Tanaka M, Yang J, Tsuji T, Ohno S, Hagiwara E, Aoki A, Ishigatsubo Y (2002) Structural and functional characterization of the USP11 deubiquitinating enzyme, which interacts with the RanGTP-associated protein RanBPM. Biochem J367: 87-95
doi: 10.1042/BJ20011851
45 Ikeda F, Deribe YL, Skanland SS, Stieglitz B, Grabbe C, Franz-Wachtel M, van Wijk SJ, Goswami P, Nagy V, Terzic J (2011) SHARPIN forms a linear ubiquitin ligase complex regulating NfkappaB activity and apoptosis. Nature471: 637-641
doi: 10.1038/nature09814
46 Inoue Y, Imamura T (2008) Regulation of TGF-beta family signaling by E3 ubiquitin ligases. Cancer Sci99: 2107-2112
doi: 10.1111/j.1349-7006.2008.00925.x
47 Inui M, Manfrin A, Mamidi A, Martello G, Morsut L, Soligo S, Enzo E, Moro S, Polo S, Dupont S (2011) USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nat Cell Biol13: 1368-1375
doi: 10.1038/ncb2346
48 Itoh S, ten Dijke P (2007) Negative regulation of TGF-beta receptor/Smad signal transduction. Curr Opin Cell Biol19: 176-184
doi: 10.1016/j.ceb.2007.02.015
49 Itoh F, Asao H, Sugamura K, Heldin CH, ten Dijke P, Itoh S (2001) Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads. EMBO J20: 4132-4142
doi: 10.1093/emboj/20.15.4132
50 Jackson SP, Durocher D (2013) Regulation of DNA damage responses by ubiquitin and SUMO. Mol Cell49: 795-807
doi: 10.1016/j.molcel.2013.01.017
51 Jennings MT, Pietenpol JA (1998) The role of transforming growth factor beta in glioma progression. J Neurooncol36: 123-140
doi: 10.1023/A:1005863419880
52 Jones E, Pu H, Kyprianou N (2009) Targeting TGF-beta in prostate cancer: therapeutic possibilities during tumor progression. Expert Opin Ther Targets13: 227-234
doi: 10.1517/14728220802705696
53 Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, Groffen J (1995) Abnormal lung development and cleft palate in mice lacking Tgf-Beta-3 indicates defects of epithelial-mesenchymal interaction. Nature Genetics11: 415-421
doi: 10.1038/ng1295-415
54 Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest119: 1420-1428
doi: 10.1172/JCI39104
55 Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell3: 537-549
doi: 10.1016/S1535-6108(03)00132-6
56 Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR, Manova-Todorova K, Blasberg R, Gerald WL, Massague J (2005) Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA102: 13909-13914
doi: 10.1073/pnas.0506517102
57 Kapuria V, Peterson LF, Fang D, Bornmann WG, Talpaz M, Donato NJ (2010) Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res70: 9265-9276
doi: 10.1158/0008-5472.CAN-10-1530
58 Katsuno Y, Lamouille S, Derynck R (2012) TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol25: 76-84
doi: 10.1097/CCO.0b013e32835b6371
59 Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell6: 1365-1375
doi: 10.1016/S1097-2765(00)00134-9
60 Keusekotten K, Elliott PR, Glockner L, Fiil BK, Damgaard RB, Kulathu Y, Wauer T, Hospenthal MK, Gyrd-Hansen M, Krappmann D (2013) OTULIN Antagonizes LUBAC Signaling by Specifically Hydrolyzing Met1-Linked Polyubiquitin. Cell153: 1312-1326
doi: 10.1016/j.cell.2013.05.014
61 Koinuma D, Shinozaki M, Komuro A, Goto K, Saitoh M, Hanyu A, Ebina M, Nukiwa T, Miyazawa K, Imamura T (2003) Arkadia amplifies TGF-beta superfamily signalling through degradation of Smad7. EMBO J22: 6458-6470
doi: 10.1093/emboj/cdg632
62 Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol10: 550-563
doi: 10.1038/nrm2731
63 Komuro A, Imamura T, Saitoh M, Yoshida Y, Yamori T, Miyazono K, Miyazawa K (2004) Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1). Oncogene23: 6914-6923
doi: 10.1038/sj.onc.1207885
64 Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G (2003) The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature424: 801-805
doi: 10.1038/nature01802
65 Kuratomi G, Komuro A, Goto K, Shinozaki M, Miyazawa K, Miyazono K, Imamura T (2005) NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor. Biochem J386: 461-470
doi: 10.1042/BJ20040738
66 Lee BH, Lee MJ, Park S, Oh DC, Elsasser S, Chen PC, Gartner C, Dimova N, Hanna J, Gygi SP (2010) Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature467: 179-184
doi: 10.1038/nature09299
67 Li MY, Chen DL, Shiloh A, Luo JY, Nikolaev AY, Qin J, Gu W (2002) Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature416: 648-653
doi: 10.1038/nature737
68 Li L, Xin H, Xu X, Huang M, Zhang X, Chen Y, Zhang S, Fu XY, Chang Z (2004) CHIP mediates degradation of Smad proteins and potentially regulates Smad-induced transcription. Mol Cell Biol24: 856-864
doi: 10.1128/MCB.24.2.856-864.2004
69 Li J, D’Angiolella V, Seeley ES, Kim S, Kobayashi T, Fu W, Campos EI, Pagano M, Dynlacht BD (2013) USP33 regulates centrosome biogenesis via deubiquitination of the centriolar protein CP110. Nature495: 255-259
doi: 10.1038/nature11941
70 Liao TL, Wu CY, Su WC, Jeng KS, Lai MM (2010) Ubiquitination and deubiquitination of NP protein regulates influenza A virus RNA replication. EMBO J29: 3879-3890
doi: 10.1038/emboj.2010.250
71 Lin X, Liang M, Feng XH (2000) Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem275: 36818-36822
doi: 10.1074/jbc.C000580200
72 Lin CH, Chang HS, Yu WC (2008) USP11 stabilizes HPV-16E7 and further modulates the E7 biological activity. J Biol Chem283: 15681-15688
doi: 10.1074/jbc.M708278200
73 Lin Z, Yang H, Kong Q, Li J, Lee SM, Gao B, Dong H, Wei J, Song J, Zhang DD (2012) USP22 antagonizes p53 transcriptional activation by deubiquitinating Sirt1 to suppress cell apoptosis and is required for mouse embryonic development. Mol Cell46: 484-494
doi: 10.1016/j.molcel.2012.03.024
74 Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X (2002) Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell108: 837-847
doi: 10.1016/S0092-8674(02)00685-2
75 Liu W, Rui H, Wang J, Lin S, He Y, Chen M, Li Q, Ye Z, Zhang S, Chan SC (2006) Axin is a scaffold protein in TGF-beta signaling that promotes degradation of Smad7 by Arkadia. EMBO J25: 1646-1658
doi: 10.1038/sj.emboj.7601057
76 Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science268: 1336-1338
doi: 10.1126/science.7761852
77 Massague J (2008a) TGFbeta in cancer. Cell134: 215-230
doi: 10.1016/j.cell.2008.07.001
78 Massague J (2008b) A very private TGF-beta receptor embrace. Mol Cell29: 149-150
doi: 10.1016/j.molcel.2008.01.006
79 Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell103: 295-309
doi: 10.1016/S0092-8674(00)00121-5
80 Massaous J, Hata A (1997) TGF-beta signalling through the Smad pathway. Trends Cell Biol7: 187-192
doi: 10.1016/S0962-8924(97)01036-2
81 Mavrakis KJ, Andrew RL, Lee KL, Petropoulou C, Dixon JE, Navaratnam N, Norris DP, Episkopou V (2007) Arkadia enhances Nodal/TGF-beta signaling by coupling phospho-Smad2/3 activity and turnover. PLoS Biol5: e67
doi: 10.1371/journal.pbio.0050067
82 McCullough J, Clague MJ, Urbe S (2004) AMSH is an endosomeassociated ubiquitin isopeptidase. J Cell Biol166: 487-492
doi: 10.1083/jcb.200401141
83 Miyazono K (2009) Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad B85: 314-323
doi: 10.2183/pjab.85.314
84 Moren A, Imamura T, Miyazono K, Heldin CH, Moustakas A (2005) Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases. J Biol Chem280: 22115-22123
doi: 10.1074/jbc.M414027200
85 Moustakas A, Heldin CH (2007) Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci98: 1512-1520
doi: 10.1111/j.1349-7006.2007.00550.x
86 Mu Y, Gudey SK, Landstrom M (2012) Non-Smad signaling pathways. Cell Tissue Res347: 11-20
doi: 10.1007/s00441-011-1201-y
87 Myeroff LL, Parsons R, Kim SJ, Hedrick L, Cho KR, Orth K, Mathis M, Kinzler KW, Lutterbaugh J, Park K (1995) A transforming growth factor beta receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res55: 5545-5547
88 Naber HP, Drabsch Y, Snaar-Jagalska BE, Ten Dijke P, van Laar T (2013) Snail and Slug, key regulators of TGF-beta-induced EMT, are sufficient for the induction of single-cell invasion. Biochem Biophys Res Commun435: 58-63
doi: 10.1016/j.bbrc.2013.04.037
89 Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer9: 274-284
doi: 10.1038/nrc2622
90 Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell123: 773-786
doi: 10.1016/j.cell.2005.11.007
91 Niu JX, Shi YL, Iwai K, Wu ZH (2011) LUBAC regulates NF-kappa B activation upon genotoxic stress by promoting linear ubiquitination of NEMO. Embo J30: 3741-3753
doi: 10.1038/emboj.2011.264
92 Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR, Massague J (2008) TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell133: 66-77
doi: 10.1016/j.cell.2008.01.046
93 Parsons R, Myeroff LL, Liu B, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B (1995) Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res55: 5548-5550
94 Petersen M, Pardali E, van der Horst G, Cheung H, van den Hoogen C, van der Pluijm G, ten Dijke P (2010) Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene29: 1351-1361
doi: 10.1038/onc.2009.426
95 Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta1695: 55-72
doi: 10.1016/j.bbamcr.2004.09.019
96 Popov N, Herold S, Llamazares M, Schulein C, Eilers M (2007a) Fbw7 and Usp28 regulate myc protein stability in response to DNA damage. Cell Cycle6: 2327-2331
doi: 10.4161/cc.6.19.4804
97 Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R, Bernards R, Moll R, Elledge SJ, Eilers M (2007b) The ubiquitinspecific protease USP28 is required for MYC stability. Nat Cell Biol9: U765-U771
doi: 10.1038/ncb1601
98 Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN, Ding J, Ferguson MW, Doetschman T (1995) Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet11: 409-414
doi: 10.1038/ng1295-409
99 Reiley W, Zhang M, Sun SC (2004) Negative regulation of JNK signaling by the tumor suppressor CYLD. J Biol Chem279: 55161-55167
doi: 10.1074/jbc.M411049200
100 Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem78: 363-397
doi: 10.1146/annurev.biochem.78.082307.091526
101 Rivkin E, Almeida SM, Ceccarelli DF, Juang YC, MacLean TA, Srikumar T, Huang H, Dunham WH, Fukumura R, Xie G (2013) The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature498: 318-324
doi: 10.1038/nature12296
102 Ross S, Hill CS (2008) How the Smads regulate transcription. Int J Biochem Cell Biol40: 383-408
doi: 10.1016/j.biocel.2007.09.006
103 Sanchez-Elsner T, Botella LM, Velasco B, Corbi A, Attisano L, Bernabeu C (2001) Synergistic cooperation between hypoxia and transforming growth factor-beta pathways on human vascular endothelial growth factor gene expression. J Biol Chem276: 38527-38535
doi: 10.1074/jbc.M104536200
104 Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, Cardell EL, Doetschman T (1997) TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development124: 2659-2670
105 Sato Y, Yoshikawa A, Yamagata A, Mimura H, Yamashita M, Ookata K, Nureki O, Iwai K, Komada M, Fukai S (2008) Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature455: 358-362
doi: 10.1038/nature07254
106 Schier AF (2003) Nodal signaling in vertebrate development. Annu Rev Cell Dev Biol19: 589-621
doi: 10.1146/annurev.cellbio.19.041603.094522
107 Schoenfeld AR, Apgar S, Dolios G, Wang R, Aaronson SA (2004) BRCA2 is ubiquitinated in vivo and interacts with USP11, a deubiquitinating enzyme that exhibits prosurvival function in the cellular response to DNA damage. Mol Cell Biol24: 7444-7455
doi: 10.1128/MCB.24.17.7444-7455.2004
108 Schutte M, Hruban RH, Hedrick L, Cho KR, Nadasdy GM, Weinstein CL, Bova GS, Isaacs WB, Cairns P, Nawroz H (1996) DPC4 gene in various tumor types. Cancer Res56: 2527-2530
109 Schwartz AL, Ciechanover A (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol49: 73-96
doi: 10.1146/annurev.pharmtox.051208.165340
110 Seo SR, Lallemand F, Ferrand N, Pessah M, L’Hoste S, Camonis J, Atfi A (2004) The novel E3 ubiquitin ligase Tiul1 associates with TGIF to target Smad2 for degradation. EMBO J23: 3780-3792
doi: 10.1038/sj.emboj.7600398
111 Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F, Teruya-Feldstein J, Pandolfi PP (2008) The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature455: U811-U813
doi: 10.1038/nature07290
112 Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, Zhang S, Heldin CH, Landstrom M (2008) The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol10: 1199-1207
doi: 10.1038/ncb1780
113 Stroschein SL, Bonni S, Wrana JL, Luo K (2001) Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN. Genes Dev15: 2822-2836
114 Sun W, Tan X, Shi Y, Xu G, Mao R, Gu X, Fan Y, Yu Y, Burlingame S, Zhang H (2009) USP11 negatively regulates TNFalpha-induced NF-kappaB activation by targeting on IkappaBalpha. Cell Signal22: 386-394
doi: 10.1016/j.cellsig.2009.10.008
115 Takenoshita S, Mogi A, Tani M, Osawa H, Sunaga H, Kakegawa H, Yanagita Y, Koida T, Kimura M, Fujita KI (1998) Absence of mutations in the analysis of coding sequences of the entire transforming growth factor-beta type II receptor gene in sporadic human breast cancers. Oncol Rep5: 367-371
116 Tanaka N, Kaneko K, Asao H, Kasai H, Endo Y, Fujita T, Takeshita T, Sugamura K (1999) Possible involvement of a novel STAM-associated molecule “AMSH” in intracellular signal transduction mediated by cytokines. J Biol Chem274: 19129-19135
doi: 10.1074/jbc.274.27.19129
117 Tang LY, Yamashita M, Coussens NP, Tang Y, Wang X, Li C, Deng CX, Cheng SY, Zhang YE (2011) Ablation of Smurf2 reveals an inhibition in TGF-beta signalling through multiple mono-ubiquitination of Smad3. EMBO J30: 4777-4789
doi: 10.1038/emboj.2011.393
118 Tauriello DV, Haegebarth A, Kuper I, Edelmann MJ, Henraat M, Canninga-van Dijk MR, Kessler BM, Clevers H, Maurice MM (2010) Loss of the tumor suppressor CYLD enhances Wnt/betacatenin signaling through K63-linked ubiquitination of Dvl. Mol Cell37: 607-619
doi: 10.1016/j.molcel.2010.01.035
119 Taya S, Yamamoto T, Kano K, Kawano Y, Iwamatsu A, Tsuchiya T, Tanaka K, Kanai-Azuma M, Wood SA, Mattick JS (1998) The Ras target AF-6 is a substrate of the fam deubiquitinating enzyme. J Cell Biol142: 1053-1062
doi: 10.1083/jcb.142.4.1053
120 Taya S, Yamamoto T, Kanai-Azuma M, Wood SA, Kaibuchi K (1999) The deubiquitinating enzyme fam interacts with and stabilizes beta-catenin. Genes Cells4: 757-767
doi: 10.1046/j.1365-2443.1999.00297.x
121 Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S (2009) Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol11: 123-132
doi: 10.1038/ncb1821
122 Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G (2003) CYLD is a deubiquitinating enzyme that negatively regulates NF-kappa B activation by TNFR family members. Nature424: 793-796
doi: 10.1038/nature01803
123 Turer EE, Tavares RM, Mortier E, Hitotsumatsu O, Advincula R, Lee B, Shifrin N, Malynn BA, Ma A (2008) Homeostatic MyD88-dependent signals cause lethal inflamMation in the absence of A20. J Exp Med205: 451-464
doi: 10.1084/jem.20071108
124 van der Horst A, de Vries-Smits AMM, Brenkman AB, van Triest MH, van den Broek N, Colland F, Maurice MM, Burgering BMT (2006) FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol8: U1040-U1064
doi: 10.1038/ncb1469
125 Vincent F, Hagiwara K, Ke Y, Stoner GD, Demetrick DJ, Bennett WP (1996) Mutation analysis of the transforming growth factor beta type II receptor in sporadic human cancers of the pancreas, liver, and breast. Biochem Biophys Res Commun223: 561-564
doi: 10.1006/bbrc.1996.0934
126 Wada K, Kamitani T (2006) UnpEL/Usp4 is ubiquitinated by Ro52 and deubiquitinated by itself. Biochem Biophys Res Commun342: 253-258
doi: 10.1016/j.bbrc.2006.01.144
127 Warner BJ, Blain SW, Seoane J, Massague J (1999) Myc downregulation by transforming growth factor beta required for activation of the p15(Ink4b) G(1) arrest pathway. Mol Cell Biol19: 5913-5922
128 Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol2: 169-178
doi: 10.1038/35056563
129 Whitman M (1998) Smads and early developmental signaling by the TGFbeta superfamily. Genes Dev12: 2445-2462
doi: 10.1101/gad.12.16.2445
130 Wicks SJ, Haros K, Maillard M, Song L, Cohen RE, Dijke PT, Chantry A (2005) The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-beta signalling. Oncogene24: 8080-8084
doi: 10.1038/sj.onc.1208944
131 Wiener R, Zhang XB, Wang T, Wolberger C (2012) The mechanism of OTUB1-mediated inhibition of ubiquitination. Nature 483: U143-U618
doi: 10.1038/nature10911
132 Williams SA, Maecker HL, French DM, Liu J, Gregg A, Silverstein LB, Cao TC, Carano RA, Dixit VM (2011) USP1 deubiquitinates ID proteins to preserve a mesenchymal stem cell program in osteosarcoma. Cell146: 918-930
doi: 10.1016/j.cell.2011.07.040
133 Wiltshire TD, Lovejoy CA, Wang T, Xia F, O’Connor MJ, Cortez D (2010) Sensitivity to poly(ADP-ribose) polymerase (PARP) inhibition identifies ubiquitin-specific peptidase 11 (USP11) as a regulator of DNA double-strand break repair. J Biol Chem285: 14565-14571
doi: 10.1074/jbc.M110.104745
134 Wrana JL (2009) The secret life of Smad4. Cell136: 13-14
doi: 10.1016/j.cell.2008.12.028
135 Xiao N, Li H, Luo J, Wang R, Chen H, Chen J, Wang P (2012) Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFalpha-induced cancer cell migration. Biochem J441: 979-986
doi: 10.1042/BJ20111358
136 Xin H, Xu X, Li L, Ning H, Rong Y, Shang Y, Wang Y, Fu XY, Chang Z (2005) CHIP controls the sensitivity of transforming growth factorbeta signaling by modulating the basal level of Smad3 through ubiquitin-mediated degradation. J Biol Chem280: 20842-20850
doi: 10.1074/jbc.M412275200
137 Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res19: 156-172
doi: 10.1038/cr.2009.5
138 Yakicier MC, Irmak MB, Romano A, Kew M, Ozturk M (1999) Smad2 and Smad4 gene mutations in hepatocellular carcinoma. Oncogene18: 4879-4883
doi: 10.1038/sj.onc.1202866
139 Yamaguchi T, Kimura J, Miki Y, Yoshida K (2007) The deubiquitinating enzyme USP11 controls an IkappaB kinase alpha (IKKalpha)-p53 signaling pathway in response to tumor necrosis factor alpha (TNFalpha). J Biol Chem282: 33943-33948
doi: 10.1074/jbc.M706282200
140 Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE (2008) TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell31: 918-924
doi: 10.1016/j.molcel.2008.09.002
141 Yang G, Yang X (2010) Smad4-mediated TGF-beta signaling in tumorigenesis. Int J Biol Sci6: 1-8
doi: 10.7150/ijbs.6.1
142 Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res19: 128-139
doi: 10.1038/cr.2008.328
143 Zhang Y, Chang C, Gehling DJ, Hemmati-Brivanlou A, Derynck R (2001) Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci USA98: 974-979
doi: 10.1073/pnas.98.3.974
144 Zhang L, Huang H, Zhou F, Schimmel J, Pardo CG, Zhang T, Barakat TS, Sheppard KA, Mickanin C, Porter JA (2012a) RNF12 controls embryonic stem cell fate and morphogenesis in zebrafish embryos by targeting Smad7 for degradation. Mol Cell46: 650-661
doi: 10.1016/j.molcel.2012.04.003
145 Zhang L, Zhou F, Drabsch Y, Gao R, Snaar-Jagalska BE, Mickanin C, Huang H, Sheppard KA, Porter JA, Lu CX (2012b) USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-beta type I receptor. Nat Cell Biol14: 717-726
doi: 10.1038/ncb2522
146 Zhang L, Zhou F, Garcia de Vinuesa A, de Kruijf EM, Mesker WE, Hui L, Drabsch Y, Li Y, Bauer A, Rousseau A (2013a) TRAF4 Promotes TGF-beta receptor signaling and drives breast cancer metastasis. Mol Cell51(5): 559-572
doi: 10.1016/j.molcel.2013.07.014
147 Zhang X, Zhang J, Bauer A, Zhang L, Selinger DW, Lu CX, Ten Dijke P (2013b) Fine-tuning BMP7 signalling in adipogenesis by UBE2O/E2-230K-mediated monoubiquitination of SMAD6. EMBO J32: 996-1007
doi: 10.1038/emboj.2013.38
148 Zhao B, Schlesiger C, Masucci MG, Lindsten K (2009) The ubiquitin specific protease 4 (USP4) is a new player in the Wnt signalling pathway. J Cell Mol Med13: 1886-1895
doi: 10.1111/j.1582-4934.2008.00682.x
149 Zhao Y, Thornton AM, Kinney MC, Ma CA, Spinner JJ, Fuss IJ, Shevach EM, Jain A (2011) The deubiquitinase CYLD targets Smad7 protein to regulate transforming growth factor beta (TGFbeta) signaling and the development of regulatory T cells. J Biol Chem286: 40520-40530
doi: 10.1074/jbc.M111.292961
150 Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH (1999) A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature400: 687-693
doi: 10.1038/23293
[1] Kun Liu, Jiani Cao, Xingxing Shi, Liang Wang, Tongbiao Zhao. Cellular metabolism and homeostasis in pluripotency regulation[J]. Protein Cell, 2020, 11(9): 630-640.
[2] Nan Sun, Li Jiang, Miaomiao Ye, Yihan Wang, Guangwen Wang, Xiaopeng Wan, Yuhui Zhao, Xia Wen, Libin Liang, Shujie Ma, Liling Liu, Zhigao Bu, Hualan Chen, Chengjun Li. TRIM35 mediates protection against influenza infection by activating TRAF3 and degrading viral PB2[J]. Protein Cell, 2020, 11(12): 894-914.
[3] Ruyi Xu, Yi Li, Yang Liu, Jianwei Qu, Wen Cao, Enfan Zhang, Jingsong He, Zhen Cai. How are MCPIP1 and cytokines mutually regulated in cancer-related immunity?[J]. Protein Cell, 2020, 11(12): 881-893.
[4] Youqin Xu, Kaiyuan Ji, Meng Wu, Bingtao Hao, Kai-tai Yao, Yang Xu. A miRNA-HERC4 pathway promotes breast tumorigenesis by inactivating tumor suppressor LATS1[J]. Protein Cell, 2019, 10(8): 595-605.
[5] Daisuke Aki, Qian Li, Hui Li, Yun-Cai Liu, Jee Ho Lee. Immune regulation by protein ubiquitination: roles of the E3 ligases VHL and Itch[J]. Protein Cell, 2019, 10(6): 395-404.
[6] Junting Cai, Miranda K. Culley, Yutong Zhao, Jing Zhao. The role of ubiquitination and deubiquitination in the regulation of cell junctions[J]. Protein Cell, 2018, 9(9): 754-769.
[7] Junhong Guan, Shuyu Yu, Xiaofeng Zheng. NEDDylation antagonizes ubiquitination of proliferating cell nuclear antigen and regulates the recruitment of polymerase η in response to oxidative DNA damage[J]. Protein Cell, 2018, 9(4): 365-379.
[8] Yanpeng Ci, Xiaoning Li, Maorong Chen, Jiateng Zhong, Brian J. North, Hiroyuki Inuzuka, Xi He, Yu Li, Jianping Guo, Xiangpeng Dai. SCFβ-TRCP E3 ubiquitin ligase targets the tumor suppressor ZNRF3 for ubiquitination and degradation[J]. Protein Cell, 2018, 9(10): 879-889.
[9] Shengyuan Zeng,Yangyang Wang,Ting Zhang,Lu Bai,Yalan Wang,Changzhu Duan. E3 ligase UHRF2 stabilizes the acetyltransferase TIP60 and regulates H3K9ac and H3K14ac via RING finger domain[J]. Protein Cell, 2017, 8(3): 202-218.
[10] Pingping Song,Shanshan Li,Hao Wu,Ruize Gao,Ruize Gao,Guanhua Rao,Dongmei Wang,Ziheng Chen,Biao Ma,Hongxia Wang,Nan Sui,Haiteng Deng,Zhuohua Zhang,Tieshan Tang,Zheng Tan,Zehan Han,Tieyuan Lu,Yushan Zhu,Quan Chen. Parkin promotes proteasomal degradation of p62: implication of selective vulnerability of neuronal cells in the pathogenesis of Parkinson’s disease[J]. Protein Cell, 2016, 7(2): 114-129.
[11] Ming Wang,Jing Sang,Yanhua Ren,Kejia Liu,Xinyi Liu,Jian Zhang,Haolu Wang,Jian Wang,Amir Orian,Jie Yang,Jing Yi. SENP3 regulates the global protein turnover and the Sp1 level via antagonizing SUMO2/ 3-targeted ubiquitination and degradation[J]. Protein Cell, 2016, 07(1): 63-77.
[12] Xiaoying Chen,Kunshan Zhang,Liqiang Zhou,Xinpei Gao,Junbang Wang,Yinan Yao,Fei He,Yuping Luo,Yongchun Yu,Siguang Li,Liming Cheng,Yi E. Sun. Coupled electrophysiological recording and single cell transcriptome analyses revealed molecular mechanisms underlying neuronal maturation[J]. Protein Cell, 2016, 07(03): 175-186.
[13] Li Bian,Gangwen Han,Carolyn W. Zhao,Pamela J. Garl,Xiao-Jing Wang. The role of Smad7 in oral mucositis[J]. Protein Cell, 2015, 6(3): 160-169.
[14] Xiangxuan Zhao,Yong Liu,Lei Du,Leya He,Biyun Ni,Junbo Hu,Dahai Zhu,Quan Chen. Threonine 32 (Thr32) of FoxO3 is critical for TGF-β-induced apoptosis via Bim in hepatocarcinoma cells[J]. Protein Cell, 2015, 6(2): 127-138.
[15] Lianying Jiao,Songying Ouyang,Neil Shaw,Gaojie Song,Yingang Feng,Fengfeng Niu,Weicheng Qiu,Hongtao Zhu,Li-Wei Hung,Xiaobing Zuo,V. Eleonora Shtykova,Ping Zhu,Yu-Hui Dong,Ruxiang Xu,Zhi-Jie Liu. Mechanism of the Rpn13-induced activation of Uch37[J]. Protein Cell, 2014, 5(8): 616-630.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed