|
|
The regulation of TGF-β/SMAD signaling by protein deubiquitination |
Juan Zhang1,2,Xiaofei Zhang2,Feng Xie1,Zhengkui Zhang1,Hans van Dam2,Long Zhang1,2,*( ),Fangfang Zhou2,*( ) |
1. Life Sciences Institute, Zhejiang University, Hangzhou 310058, China 2. Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands and Centre of Biomedical Genetics, Leiden University Medical Center, Postbus 9600, 2300 RC Leiden, The Netherlands |
|
|
Abstract Transforming growth factor-β (TGF-β) members are key cytokines that control embryogenesis and tissue homeostasis via transmembrane TGF-β type II (TβR II) and type I (TβRI) and serine/threonine kinases receptors. Aberrant activation of TGF-β signaling leads to diseases, including cancer. In advanced cancer, the TGF-β/SMAD pathway can act as an oncogenic factor driving tumor cell invasion and metastasis, and thus is considered to be a therapeutic target. The activity of TGF-β/SMAD pathway is known to be regulated by ubiquitination at multiple levels. As ubiquitination is reversible, emerging studies have uncovered key roles for ubiquitin-removals on TGF-β signaling components by deubiquitinating enzymes (DUBs). In this paper, we summarize the latest findings on the DUBs that control the activity of the TGF-β signaling pathway. The regulatory roles of these DUBs as a driving force for cancer progression as well as their underlying working mechanisms are also discussed.
|
Keywords
TGF-β
TβRI
SMAD
DUB
ubiquitin
deubiquitination
|
Corresponding Author(s):
Long Zhang
|
Issue Date: 31 July 2014
|
|
1 |
Aggarwal K, Massague J (2012) Ubiquitin removal in the TGF-beta pathway. Nat Cell Biol14: 656-657 doi: 10.1038/ncb2534
|
2 |
Al-Hakim AK, Zagorska A, Chapman L, Deak M, Peggie M, Alessi DR (2008) Control of AMPK-related kinases by USP9X and atypical Lys(29)/Lys(33)-linked polyubiquitin chains. Biochem J411: 249-260 doi: 10.1042/BJ20080067
|
3 |
Al-Salihi MA, Herhaus L, Macartney T, Sapkota GP (2012) USP11 augments TGFbeta signalling by deubiquitylating ALK5. Open Biol2: 120063 doi: 10.1098/rsob.120063
|
4 |
Amerik AY, Hochstrasser M (2004) Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta1695: 189-207 doi: 10.1016/j.bbamcr.2004.10.003
|
5 |
Bignell GR, Warren W, Seal S, Takahashi M, Rapley E, Barfoot R, Green H, Brown C, Biggs PJ, Lakhani SR (2000) Identification of the familial cylindromatosis tumour-suppressor gene. Nat Genet25: 160-165 doi: 10.1038/76006
|
6 |
Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med342: 1350-1358 doi: 10.1056/NEJM200005043421807
|
7 |
Bonni S, Wang HR, Causing CG, Kavsak P, Stroschein SL, Luo KX, Wrana JL (2001) TGF-beta induces assembly of a Smad2-Smurf2 ubiquitin ligase complex that targets SnoN for degradation. Nat Cell Biol3: 587-595 doi: 10.1038/35078562
|
8 |
Boone DL, Turer EE, Lee EG, Ahmad RC, Wheeler MT, Tsui C, Hurley P, Chien M, Chai S, Hitotsumatsu O (2004) The ubiquitin-modifying enzyme A20 is required for termination of Tolllike receptor responses. Nat Immunol5: 1052-1060 doi: 10.1038/ni1110
|
9 |
Bos PD, Nguyen DX, Massague J (2010) Modeling metastasis in the mouse. Curr Opin Pharmacol10: 571-577 doi: 10.1016/j.coph.2010.06.003
|
10 |
Brummelkamp TR, Nijman SM, Dirac AM, Bernards R (2003) Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature424: 797-801 doi: 10.1038/nature01811
|
11 |
Claassen GF, Hann SR (2000) A role for transcriptional repression of p21CIP1 by c-Myc in overcoming transforming growth factor beta-induced cell-cycle arrest. Proc Natl Acad Sci USA97: 9498-9503 doi: 10.1073/pnas.150006697
|
12 |
Clague MJ, Urbe S (2010) Ubiquitin: same molecule, different degradation pathways. Cell143: 682-685 doi: 10.1016/j.cell.2010.11.012
|
13 |
Clague MJ, Coulson JM, Urbe S (2012) Cellular functions of the DUBs. J Cell Sci125: 277-286 doi: 10.1242/jcs.090985
|
14 |
Cohen P, Tcherpakov M (2010) Will the ubiquitin system furnish as many drug targets as protein kinases? Cell143: 686-693 doi: 10.1016/j.cell.2010.11.016
|
15 |
Colland F (2010) The therapeutic potential of deubiquitinating enzyme inhibitors. Biochem Soc Trans38: 137-143 doi: 10.1042/BST0380137
|
16 |
Dang CV (1999) c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol19: 1-11
|
17 |
Deckers M, van Dinther M, Buijs J, Que N, Lowik C, van der Pluijm G, ten Dijke P (2006) The tumor suppressor Smad4 is required for transforming growth factor beta-induced epithelial to mesenchymal transition and bone metastasis of breast cancer cells. Cancer Res66: 2202-2209 doi: 10.1158/0008-5472.CAN-05-3560
|
18 |
Deng L, Wang C, Spencer E, Yang L, Braun A, You J, Slaughter C, Pickart C, Chen ZJ (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell103: 351-361 doi: 10.1016/S0092-8674(00)00126-4
|
19 |
Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature425: 577-584 doi: 10.1038/nature02006
|
20 |
Dikic I (2009) Journal club. A new ubiquitin chain, a new signal. Nat Rev Mol Cell Biol10: 306 doi: 10.1038/nrm2685
|
21 |
Drabsch Y, ten Dijke P (2012) TGF-beta signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev31: 553-568 doi: 10.1007/s10555-012-9375-7
|
22 |
Dupont S, Zacchigna L, Cordenonsi M, Soligo S, Adorno M, Rugge M, Piccolo S (2005) Germ-layer specification and control of cell growth by Ectodermin, a Smad4 ubiquitin ligase. Cell121: 87-99 doi: 10.1016/j.cell.2005.01.033
|
23 |
Dupont S, Mamidi A, Cordenonsi M, Montagner M, Zacchigna L, Adorno M, Martello G, Stinchfield MJ, Soligo S, Morsut L (2009) FAM/USP9x, a deubiquitinating enzyme essential for TGFbeta signaling, controls Smad4 monoubiquitination. Cell136: 123-135 doi: 10.1016/j.cell.2008.10.051
|
24 |
Ebisawa T, Fukuchi M, Murakami G, Chiba T, Tanaka K, Imamura T, Miyazono K (2001) Smurf1 interacts with transforming growth factor-beta type I receptor through Smad7 and induces receptor degradation. J Biol Chem276: 12477-12480 doi: 10.1074/jbc.C100008200
|
25 |
Eichhorn PJ, Rodon L, Gonzalez-Junca A, Dirac A, Gili M, Martinez-Saez E, Aura C, Barba I, Peg V, Prat A (2012) USP15 stabilizes TGF-beta receptor I and promotes oncogenesis through the activation of TGF-beta signaling in glioblastoma. Nat Med18: 429-435 doi: 10.1038/nm.2619
|
26 |
Frolik CA, Dart LL, Meyers CA, Smith DM, Sporn MB (1983) Purification and initial characterization of a type beta transforming growth factor from human placenta. Proc Natl Acad Sci USA80: 3676-3680 doi: 10.1073/pnas.80.12.3676
|
27 |
Galat A (2011) Common structural traits for cystine knot domain of the TGFbeta superfamily of proteins and three-fingered ectodomain of their cellular receptors. Cell Mol Life Sci68: 3437-3451 doi: 10.1007/s00018-011-0643-4
|
28 |
Gerlach B, Cordier SM, Schmukle AC, Emmerich CH, Rieser E, Haas TL, Webb AI, Rickard JA, Anderton H, Wong WW (2011) Linear ubiquitination prevents inflammation and regulates immune signalling. Nature471: 591-596 doi: 10.1038/nature09816
|
29 |
Goumans MJ, Mummery C (2000) Functional analysis of the TGFbeta receptor/Smad pathway through gene ablation in mice. Int J Dev Biol 44: 253-265
|
30 |
Grady WM, Myeroff LL, Swinler SE, Rajput A, Thiagalingam S, Lutterbaugh JD, Neumann A, Brattain MG, Chang J, Kim SJ (1999) Mutational inactivation of transforming growth factor beta receptor type II in microsatellite stable colon cancers. Cancer Res59: 320-324
|
31 |
Hahn SA, Schutte M, Hoque AT, Moskaluk CA, da Costa LT, Rozenblum E, Weinstein CL, Fischer A, Yeo CJ, Hruban RH (1996) DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science271: 350-353 doi: 10.1126/science.271.5247.350
|
32 |
Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature390: 465-471 doi: 10.1038/37284
|
33 |
Heldin CH, Landstrom M, Moustakas A (2009) Mechanism of TGFbeta signaling to growth arrest, apoptosis, and epithelial-mesenchymal transition. Curr Opin Cell Biol21: 166-176 doi: 10.1016/j.ceb.2009.01.021
|
34 |
Herhaus L, Al-Salihi M, Macartney T, Weidlich S, Sapkota GP (2013) OTUB1 enhances TGF beta signalling by inhibiting the ubiquitylation and degradation of active SMAD2/3. Nat Commun4: 2519 doi: 10.1038/ncomms3519
|
35 |
Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem67: 425-479 doi: 10.1146/annurev.biochem.67.1.425
|
36 |
Hoeller D, Dikic I (2009) Targeting the ubiquitin system in cancer therapy. Nature458: 438-444 doi: 10.1038/nature07960
|
37 |
Hogan BL (1996) Bone morphogenetic proteins: multifunctional regulators of vertebrate development. Genes Dev10: 1580-1594 doi: 10.1101/gad.10.13.1580
|
38 |
Hoy SM (2013) Subcutaneous bortezomib: in multiple myeloma. Drugs73: 45-54 doi: 10.1007/s40265-013-0006-6
|
39 |
Huang T, David L, Mendoza V, Yang Y, Villarreal M, De K, Sun L, Fang X, Lopez-Casillas F, Wrana JL (2011) TGF-beta signalling is mediated by two autonomously functioning TbetaRI: TbetaRII pairs. EMBO J30: 1263-1276 doi: 10.1038/emboj.2011.54
|
40 |
Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol17: 548-558 doi: 10.1016/j.ceb.2005.08.001
|
41 |
Hunter T (2007) The age of crosstalk: phosphorylation, ubiquitination, and beyond. Mol Cell28: 730-738 doi: 10.1016/j.molcel.2007.11.019
|
42 |
Iavarone A, Massague J (1997) Repression of the CDK activator Cdc25A and cell-cycle arrest by cytokine TGF-beta in cells lacking the CDK inhibitor p15. Nature387: 417-422 doi: 10.1038/387417a0
|
43 |
Ibarrola N, Kratchmarova I, Nakajima D, Schiemann WP, Moustakas A, Pandey A, Mann M (2004) Cloning of a novel signaling molecule, AMSH-2, that potentiates transforming growth factor beta signaling. BMC Cell Biol5: 2 doi: 10.1186/1471-2121-5-2
|
44 |
Ideguchi H, Ueda A, Tanaka M, Yang J, Tsuji T, Ohno S, Hagiwara E, Aoki A, Ishigatsubo Y (2002) Structural and functional characterization of the USP11 deubiquitinating enzyme, which interacts with the RanGTP-associated protein RanBPM. Biochem J367: 87-95 doi: 10.1042/BJ20011851
|
45 |
Ikeda F, Deribe YL, Skanland SS, Stieglitz B, Grabbe C, Franz-Wachtel M, van Wijk SJ, Goswami P, Nagy V, Terzic J (2011) SHARPIN forms a linear ubiquitin ligase complex regulating NfkappaB activity and apoptosis. Nature471: 637-641 doi: 10.1038/nature09814
|
46 |
Inoue Y, Imamura T (2008) Regulation of TGF-beta family signaling by E3 ubiquitin ligases. Cancer Sci99: 2107-2112 doi: 10.1111/j.1349-7006.2008.00925.x
|
47 |
Inui M, Manfrin A, Mamidi A, Martello G, Morsut L, Soligo S, Enzo E, Moro S, Polo S, Dupont S (2011) USP15 is a deubiquitylating enzyme for receptor-activated SMADs. Nat Cell Biol13: 1368-1375 doi: 10.1038/ncb2346
|
48 |
Itoh S, ten Dijke P (2007) Negative regulation of TGF-beta receptor/Smad signal transduction. Curr Opin Cell Biol19: 176-184 doi: 10.1016/j.ceb.2007.02.015
|
49 |
Itoh F, Asao H, Sugamura K, Heldin CH, ten Dijke P, Itoh S (2001) Promoting bone morphogenetic protein signaling through negative regulation of inhibitory Smads. EMBO J20: 4132-4142 doi: 10.1093/emboj/20.15.4132
|
50 |
Jackson SP, Durocher D (2013) Regulation of DNA damage responses by ubiquitin and SUMO. Mol Cell49: 795-807 doi: 10.1016/j.molcel.2013.01.017
|
51 |
Jennings MT, Pietenpol JA (1998) The role of transforming growth factor beta in glioma progression. J Neurooncol36: 123-140 doi: 10.1023/A:1005863419880
|
52 |
Jones E, Pu H, Kyprianou N (2009) Targeting TGF-beta in prostate cancer: therapeutic possibilities during tumor progression. Expert Opin Ther Targets13: 227-234 doi: 10.1517/14728220802705696
|
53 |
Kaartinen V, Voncken JW, Shuler C, Warburton D, Bu D, Heisterkamp N, Groffen J (1995) Abnormal lung development and cleft palate in mice lacking Tgf-Beta-3 indicates defects of epithelial-mesenchymal interaction. Nature Genetics11: 415-421 doi: 10.1038/ng1295-415
|
54 |
Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest119: 1420-1428 doi: 10.1172/JCI39104
|
55 |
Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordon-Cardo C, Guise TA, Massague J (2003) A multigenic program mediating breast cancer metastasis to bone. Cancer Cell3: 537-549 doi: 10.1016/S1535-6108(03)00132-6
|
56 |
Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR, Manova-Todorova K, Blasberg R, Gerald WL, Massague J (2005) Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA102: 13909-13914 doi: 10.1073/pnas.0506517102
|
57 |
Kapuria V, Peterson LF, Fang D, Bornmann WG, Talpaz M, Donato NJ (2010) Deubiquitinase inhibition by small-molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Res70: 9265-9276 doi: 10.1158/0008-5472.CAN-10-1530
|
58 |
Katsuno Y, Lamouille S, Derynck R (2012) TGF-beta signaling and epithelial-mesenchymal transition in cancer progression. Curr Opin Oncol25: 76-84 doi: 10.1097/CCO.0b013e32835b6371
|
59 |
Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL (2000) Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell6: 1365-1375 doi: 10.1016/S1097-2765(00)00134-9
|
60 |
Keusekotten K, Elliott PR, Glockner L, Fiil BK, Damgaard RB, Kulathu Y, Wauer T, Hospenthal MK, Gyrd-Hansen M, Krappmann D (2013) OTULIN Antagonizes LUBAC Signaling by Specifically Hydrolyzing Met1-Linked Polyubiquitin. Cell153: 1312-1326 doi: 10.1016/j.cell.2013.05.014
|
61 |
Koinuma D, Shinozaki M, Komuro A, Goto K, Saitoh M, Hanyu A, Ebina M, Nukiwa T, Miyazawa K, Imamura T (2003) Arkadia amplifies TGF-beta superfamily signalling through degradation of Smad7. EMBO J22: 6458-6470 doi: 10.1093/emboj/cdg632
|
62 |
Komander D, Clague MJ, Urbe S (2009) Breaking the chains: structure and function of the deubiquitinases. Nat Rev Mol Cell Biol10: 550-563 doi: 10.1038/nrm2731
|
63 |
Komuro A, Imamura T, Saitoh M, Yoshida Y, Yamori T, Miyazono K, Miyazawa K (2004) Negative regulation of transforming growth factor-beta (TGF-beta) signaling by WW domain-containing protein 1 (WWP1). Oncogene23: 6914-6923 doi: 10.1038/sj.onc.1207885
|
64 |
Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G (2003) The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature424: 801-805 doi: 10.1038/nature01802
|
65 |
Kuratomi G, Komuro A, Goto K, Shinozaki M, Miyazawa K, Miyazono K, Imamura T (2005) NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor. Biochem J386: 461-470 doi: 10.1042/BJ20040738
|
66 |
Lee BH, Lee MJ, Park S, Oh DC, Elsasser S, Chen PC, Gartner C, Dimova N, Hanna J, Gygi SP (2010) Enhancement of proteasome activity by a small-molecule inhibitor of USP14. Nature467: 179-184 doi: 10.1038/nature09299
|
67 |
Li MY, Chen DL, Shiloh A, Luo JY, Nikolaev AY, Qin J, Gu W (2002) Deubiquitination of p53 by HAUSP is an important pathway for p53 stabilization. Nature416: 648-653 doi: 10.1038/nature737
|
68 |
Li L, Xin H, Xu X, Huang M, Zhang X, Chen Y, Zhang S, Fu XY, Chang Z (2004) CHIP mediates degradation of Smad proteins and potentially regulates Smad-induced transcription. Mol Cell Biol24: 856-864 doi: 10.1128/MCB.24.2.856-864.2004
|
69 |
Li J, D’Angiolella V, Seeley ES, Kim S, Kobayashi T, Fu W, Campos EI, Pagano M, Dynlacht BD (2013) USP33 regulates centrosome biogenesis via deubiquitination of the centriolar protein CP110. Nature495: 255-259 doi: 10.1038/nature11941
|
70 |
Liao TL, Wu CY, Su WC, Jeng KS, Lai MM (2010) Ubiquitination and deubiquitination of NP protein regulates influenza A virus RNA replication. EMBO J29: 3879-3890 doi: 10.1038/emboj.2010.250
|
71 |
Lin X, Liang M, Feng XH (2000) Smurf2 is a ubiquitin E3 ligase mediating proteasome-dependent degradation of Smad2 in transforming growth factor-beta signaling. J Biol Chem275: 36818-36822 doi: 10.1074/jbc.C000580200
|
72 |
Lin CH, Chang HS, Yu WC (2008) USP11 stabilizes HPV-16E7 and further modulates the E7 biological activity. J Biol Chem283: 15681-15688 doi: 10.1074/jbc.M708278200
|
73 |
Lin Z, Yang H, Kong Q, Li J, Lee SM, Gao B, Dong H, Wei J, Song J, Zhang DD (2012) USP22 antagonizes p53 transcriptional activation by deubiquitinating Sirt1 to suppress cell apoptosis and is required for mouse embryonic development. Mol Cell46: 484-494 doi: 10.1016/j.molcel.2012.03.024
|
74 |
Liu C, Li Y, Semenov M, Han C, Baeg GH, Tan Y, Zhang Z, Lin X, He X (2002) Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell108: 837-847 doi: 10.1016/S0092-8674(02)00685-2
|
75 |
Liu W, Rui H, Wang J, Lin S, He Y, Chen M, Li Q, Ye Z, Zhang S, Chan SC (2006) Axin is a scaffold protein in TGF-beta signaling that promotes degradation of Smad7 by Arkadia. EMBO J25: 1646-1658 doi: 10.1038/sj.emboj.7601057
|
76 |
Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science268: 1336-1338 doi: 10.1126/science.7761852
|
77 |
Massague J (2008a) TGFbeta in cancer. Cell134: 215-230 doi: 10.1016/j.cell.2008.07.001
|
78 |
Massague J (2008b) A very private TGF-beta receptor embrace. Mol Cell29: 149-150 doi: 10.1016/j.molcel.2008.01.006
|
79 |
Massague J, Blain SW, Lo RS (2000) TGFbeta signaling in growth control, cancer, and heritable disorders. Cell103: 295-309 doi: 10.1016/S0092-8674(00)00121-5
|
80 |
Massaous J, Hata A (1997) TGF-beta signalling through the Smad pathway. Trends Cell Biol7: 187-192 doi: 10.1016/S0962-8924(97)01036-2
|
81 |
Mavrakis KJ, Andrew RL, Lee KL, Petropoulou C, Dixon JE, Navaratnam N, Norris DP, Episkopou V (2007) Arkadia enhances Nodal/TGF-beta signaling by coupling phospho-Smad2/3 activity and turnover. PLoS Biol5: e67 doi: 10.1371/journal.pbio.0050067
|
82 |
McCullough J, Clague MJ, Urbe S (2004) AMSH is an endosomeassociated ubiquitin isopeptidase. J Cell Biol166: 487-492 doi: 10.1083/jcb.200401141
|
83 |
Miyazono K (2009) Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad B85: 314-323 doi: 10.2183/pjab.85.314
|
84 |
Moren A, Imamura T, Miyazono K, Heldin CH, Moustakas A (2005) Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases. J Biol Chem280: 22115-22123 doi: 10.1074/jbc.M414027200
|
85 |
Moustakas A, Heldin CH (2007) Signaling networks guiding epithelial-mesenchymal transitions during embryogenesis and cancer progression. Cancer Sci98: 1512-1520 doi: 10.1111/j.1349-7006.2007.00550.x
|
86 |
Mu Y, Gudey SK, Landstrom M (2012) Non-Smad signaling pathways. Cell Tissue Res347: 11-20 doi: 10.1007/s00441-011-1201-y
|
87 |
Myeroff LL, Parsons R, Kim SJ, Hedrick L, Cho KR, Orth K, Mathis M, Kinzler KW, Lutterbaugh J, Park K (1995) A transforming growth factor beta receptor type II gene mutation common in colon and gastric but rare in endometrial cancers with microsatellite instability. Cancer Res55: 5545-5547
|
88 |
Naber HP, Drabsch Y, Snaar-Jagalska BE, Ten Dijke P, van Laar T (2013) Snail and Slug, key regulators of TGF-beta-induced EMT, are sufficient for the induction of single-cell invasion. Biochem Biophys Res Commun435: 58-63 doi: 10.1016/j.bbrc.2013.04.037
|
89 |
Nguyen DX, Bos PD, Massague J (2009) Metastasis: from dissemination to organ-specific colonization. Nat Rev Cancer9: 274-284 doi: 10.1038/nrc2622
|
90 |
Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell123: 773-786 doi: 10.1016/j.cell.2005.11.007
|
91 |
Niu JX, Shi YL, Iwai K, Wu ZH (2011) LUBAC regulates NF-kappa B activation upon genotoxic stress by promoting linear ubiquitination of NEMO. Embo J30: 3741-3753 doi: 10.1038/emboj.2011.264
|
92 |
Padua D, Zhang XH, Wang Q, Nadal C, Gerald WL, Gomis RR, Massague J (2008) TGFbeta primes breast tumors for lung metastasis seeding through angiopoietin-like 4. Cell133: 66-77 doi: 10.1016/j.cell.2008.01.046
|
93 |
Parsons R, Myeroff LL, Liu B, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B (1995) Microsatellite instability and mutations of the transforming growth factor beta type II receptor gene in colorectal cancer. Cancer Res55: 5548-5550
|
94 |
Petersen M, Pardali E, van der Horst G, Cheung H, van den Hoogen C, van der Pluijm G, ten Dijke P (2010) Smad2 and Smad3 have opposing roles in breast cancer bone metastasis by differentially affecting tumor angiogenesis. Oncogene29: 1351-1361 doi: 10.1038/onc.2009.426
|
95 |
Pickart CM, Eddins MJ (2004) Ubiquitin: structures, functions, mechanisms. Biochim Biophys Acta1695: 55-72 doi: 10.1016/j.bbamcr.2004.09.019
|
96 |
Popov N, Herold S, Llamazares M, Schulein C, Eilers M (2007a) Fbw7 and Usp28 regulate myc protein stability in response to DNA damage. Cell Cycle6: 2327-2331 doi: 10.4161/cc.6.19.4804
|
97 |
Popov N, Wanzel M, Madiredjo M, Zhang D, Beijersbergen R, Bernards R, Moll R, Elledge SJ, Eilers M (2007b) The ubiquitinspecific protease USP28 is required for MYC stability. Nat Cell Biol9: U765-U771 doi: 10.1038/ncb1601
|
98 |
Proetzel G, Pawlowski SA, Wiles MV, Yin M, Boivin GP, Howles PN, Ding J, Ferguson MW, Doetschman T (1995) Transforming growth factor-beta 3 is required for secondary palate fusion. Nat Genet11: 409-414 doi: 10.1038/ng1295-409
|
99 |
Reiley W, Zhang M, Sun SC (2004) Negative regulation of JNK signaling by the tumor suppressor CYLD. J Biol Chem279: 55161-55167 doi: 10.1074/jbc.M411049200
|
100 |
Reyes-Turcu FE, Ventii KH, Wilkinson KD (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem78: 363-397 doi: 10.1146/annurev.biochem.78.082307.091526
|
101 |
Rivkin E, Almeida SM, Ceccarelli DF, Juang YC, MacLean TA, Srikumar T, Huang H, Dunham WH, Fukumura R, Xie G (2013) The linear ubiquitin-specific deubiquitinase gumby regulates angiogenesis. Nature498: 318-324 doi: 10.1038/nature12296
|
102 |
Ross S, Hill CS (2008) How the Smads regulate transcription. Int J Biochem Cell Biol40: 383-408 doi: 10.1016/j.biocel.2007.09.006
|
103 |
Sanchez-Elsner T, Botella LM, Velasco B, Corbi A, Attisano L, Bernabeu C (2001) Synergistic cooperation between hypoxia and transforming growth factor-beta pathways on human vascular endothelial growth factor gene expression. J Biol Chem276: 38527-38535 doi: 10.1074/jbc.M104536200
|
104 |
Sanford LP, Ormsby I, Gittenberger-de Groot AC, Sariola H, Friedman R, Boivin GP, Cardell EL, Doetschman T (1997) TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development124: 2659-2670
|
105 |
Sato Y, Yoshikawa A, Yamagata A, Mimura H, Yamashita M, Ookata K, Nureki O, Iwai K, Komada M, Fukai S (2008) Structural basis for specific cleavage of Lys 63-linked polyubiquitin chains. Nature455: 358-362 doi: 10.1038/nature07254
|
106 |
Schier AF (2003) Nodal signaling in vertebrate development. Annu Rev Cell Dev Biol19: 589-621 doi: 10.1146/annurev.cellbio.19.041603.094522
|
107 |
Schoenfeld AR, Apgar S, Dolios G, Wang R, Aaronson SA (2004) BRCA2 is ubiquitinated in vivo and interacts with USP11, a deubiquitinating enzyme that exhibits prosurvival function in the cellular response to DNA damage. Mol Cell Biol24: 7444-7455 doi: 10.1128/MCB.24.17.7444-7455.2004
|
108 |
Schutte M, Hruban RH, Hedrick L, Cho KR, Nadasdy GM, Weinstein CL, Bova GS, Isaacs WB, Cairns P, Nawroz H (1996) DPC4 gene in various tumor types. Cancer Res56: 2527-2530
|
109 |
Schwartz AL, Ciechanover A (2009) Targeting proteins for destruction by the ubiquitin system: implications for human pathobiology. Annu Rev Pharmacol Toxicol49: 73-96 doi: 10.1146/annurev.pharmtox.051208.165340
|
110 |
Seo SR, Lallemand F, Ferrand N, Pessah M, L’Hoste S, Camonis J, Atfi A (2004) The novel E3 ubiquitin ligase Tiul1 associates with TGIF to target Smad2 for degradation. EMBO J23: 3780-3792 doi: 10.1038/sj.emboj.7600398
|
111 |
Song MS, Salmena L, Carracedo A, Egia A, Lo-Coco F, Teruya-Feldstein J, Pandolfi PP (2008) The deubiquitinylation and localization of PTEN are regulated by a HAUSP-PML network. Nature455: U811-U813 doi: 10.1038/nature07290
|
112 |
Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N, Zhang S, Heldin CH, Landstrom M (2008) The type I TGF-beta receptor engages TRAF6 to activate TAK1 in a receptor kinase-independent manner. Nat Cell Biol10: 1199-1207 doi: 10.1038/ncb1780
|
113 |
Stroschein SL, Bonni S, Wrana JL, Luo K (2001) Smad3 recruits the anaphase-promoting complex for ubiquitination and degradation of SnoN. Genes Dev15: 2822-2836
|
114 |
Sun W, Tan X, Shi Y, Xu G, Mao R, Gu X, Fan Y, Yu Y, Burlingame S, Zhang H (2009) USP11 negatively regulates TNFalpha-induced NF-kappaB activation by targeting on IkappaBalpha. Cell Signal22: 386-394 doi: 10.1016/j.cellsig.2009.10.008
|
115 |
Takenoshita S, Mogi A, Tani M, Osawa H, Sunaga H, Kakegawa H, Yanagita Y, Koida T, Kimura M, Fujita KI (1998) Absence of mutations in the analysis of coding sequences of the entire transforming growth factor-beta type II receptor gene in sporadic human breast cancers. Oncol Rep5: 367-371
|
116 |
Tanaka N, Kaneko K, Asao H, Kasai H, Endo Y, Fujita T, Takeshita T, Sugamura K (1999) Possible involvement of a novel STAM-associated molecule “AMSH” in intracellular signal transduction mediated by cytokines. J Biol Chem274: 19129-19135 doi: 10.1074/jbc.274.27.19129
|
117 |
Tang LY, Yamashita M, Coussens NP, Tang Y, Wang X, Li C, Deng CX, Cheng SY, Zhang YE (2011) Ablation of Smurf2 reveals an inhibition in TGF-beta signalling through multiple mono-ubiquitination of Smad3. EMBO J30: 4777-4789 doi: 10.1038/emboj.2011.393
|
118 |
Tauriello DV, Haegebarth A, Kuper I, Edelmann MJ, Henraat M, Canninga-van Dijk MR, Kessler BM, Clevers H, Maurice MM (2010) Loss of the tumor suppressor CYLD enhances Wnt/betacatenin signaling through K63-linked ubiquitination of Dvl. Mol Cell37: 607-619 doi: 10.1016/j.molcel.2010.01.035
|
119 |
Taya S, Yamamoto T, Kano K, Kawano Y, Iwamatsu A, Tsuchiya T, Tanaka K, Kanai-Azuma M, Wood SA, Mattick JS (1998) The Ras target AF-6 is a substrate of the fam deubiquitinating enzyme. J Cell Biol142: 1053-1062 doi: 10.1083/jcb.142.4.1053
|
120 |
Taya S, Yamamoto T, Kanai-Azuma M, Wood SA, Kaibuchi K (1999) The deubiquitinating enzyme fam interacts with and stabilizes beta-catenin. Genes Cells4: 757-767 doi: 10.1046/j.1365-2443.1999.00297.x
|
121 |
Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S (2009) Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol11: 123-132 doi: 10.1038/ncb1821
|
122 |
Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G (2003) CYLD is a deubiquitinating enzyme that negatively regulates NF-kappa B activation by TNFR family members. Nature424: 793-796 doi: 10.1038/nature01803
|
123 |
Turer EE, Tavares RM, Mortier E, Hitotsumatsu O, Advincula R, Lee B, Shifrin N, Malynn BA, Ma A (2008) Homeostatic MyD88-dependent signals cause lethal inflamMation in the absence of A20. J Exp Med205: 451-464 doi: 10.1084/jem.20071108
|
124 |
van der Horst A, de Vries-Smits AMM, Brenkman AB, van Triest MH, van den Broek N, Colland F, Maurice MM, Burgering BMT (2006) FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol8: U1040-U1064 doi: 10.1038/ncb1469
|
125 |
Vincent F, Hagiwara K, Ke Y, Stoner GD, Demetrick DJ, Bennett WP (1996) Mutation analysis of the transforming growth factor beta type II receptor in sporadic human cancers of the pancreas, liver, and breast. Biochem Biophys Res Commun223: 561-564 doi: 10.1006/bbrc.1996.0934
|
126 |
Wada K, Kamitani T (2006) UnpEL/Usp4 is ubiquitinated by Ro52 and deubiquitinated by itself. Biochem Biophys Res Commun342: 253-258 doi: 10.1016/j.bbrc.2006.01.144
|
127 |
Warner BJ, Blain SW, Seoane J, Massague J (1999) Myc downregulation by transforming growth factor beta required for activation of the p15(Ink4b) G(1) arrest pathway. Mol Cell Biol19: 5913-5922
|
128 |
Weissman AM (2001) Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol2: 169-178 doi: 10.1038/35056563
|
129 |
Whitman M (1998) Smads and early developmental signaling by the TGFbeta superfamily. Genes Dev12: 2445-2462 doi: 10.1101/gad.12.16.2445
|
130 |
Wicks SJ, Haros K, Maillard M, Song L, Cohen RE, Dijke PT, Chantry A (2005) The deubiquitinating enzyme UCH37 interacts with Smads and regulates TGF-beta signalling. Oncogene24: 8080-8084 doi: 10.1038/sj.onc.1208944
|
131 |
Wiener R, Zhang XB, Wang T, Wolberger C (2012) The mechanism of OTUB1-mediated inhibition of ubiquitination. Nature 483: U143-U618 doi: 10.1038/nature10911
|
132 |
Williams SA, Maecker HL, French DM, Liu J, Gregg A, Silverstein LB, Cao TC, Carano RA, Dixit VM (2011) USP1 deubiquitinates ID proteins to preserve a mesenchymal stem cell program in osteosarcoma. Cell146: 918-930 doi: 10.1016/j.cell.2011.07.040
|
133 |
Wiltshire TD, Lovejoy CA, Wang T, Xia F, O’Connor MJ, Cortez D (2010) Sensitivity to poly(ADP-ribose) polymerase (PARP) inhibition identifies ubiquitin-specific peptidase 11 (USP11) as a regulator of DNA double-strand break repair. J Biol Chem285: 14565-14571 doi: 10.1074/jbc.M110.104745
|
134 |
Wrana JL (2009) The secret life of Smad4. Cell136: 13-14 doi: 10.1016/j.cell.2008.12.028
|
135 |
Xiao N, Li H, Luo J, Wang R, Chen H, Chen J, Wang P (2012) Ubiquitin-specific protease 4 (USP4) targets TRAF2 and TRAF6 for deubiquitination and inhibits TNFalpha-induced cancer cell migration. Biochem J441: 979-986 doi: 10.1042/BJ20111358
|
136 |
Xin H, Xu X, Li L, Ning H, Rong Y, Shang Y, Wang Y, Fu XY, Chang Z (2005) CHIP controls the sensitivity of transforming growth factorbeta signaling by modulating the basal level of Smad3 through ubiquitin-mediated degradation. J Biol Chem280: 20842-20850 doi: 10.1074/jbc.M412275200
|
137 |
Xu J, Lamouille S, Derynck R (2009) TGF-beta-induced epithelial to mesenchymal transition. Cell Res19: 156-172 doi: 10.1038/cr.2009.5
|
138 |
Yakicier MC, Irmak MB, Romano A, Kew M, Ozturk M (1999) Smad2 and Smad4 gene mutations in hepatocellular carcinoma. Oncogene18: 4879-4883 doi: 10.1038/sj.onc.1202866
|
139 |
Yamaguchi T, Kimura J, Miki Y, Yoshida K (2007) The deubiquitinating enzyme USP11 controls an IkappaB kinase alpha (IKKalpha)-p53 signaling pathway in response to tumor necrosis factor alpha (TNFalpha). J Biol Chem282: 33943-33948 doi: 10.1074/jbc.M706282200
|
140 |
Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE (2008) TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell31: 918-924 doi: 10.1016/j.molcel.2008.09.002
|
141 |
Yang G, Yang X (2010) Smad4-mediated TGF-beta signaling in tumorigenesis. Int J Biol Sci6: 1-8 doi: 10.7150/ijbs.6.1
|
142 |
Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res19: 128-139 doi: 10.1038/cr.2008.328
|
143 |
Zhang Y, Chang C, Gehling DJ, Hemmati-Brivanlou A, Derynck R (2001) Regulation of Smad degradation and activity by Smurf2, an E3 ubiquitin ligase. Proc Natl Acad Sci USA98: 974-979 doi: 10.1073/pnas.98.3.974
|
144 |
Zhang L, Huang H, Zhou F, Schimmel J, Pardo CG, Zhang T, Barakat TS, Sheppard KA, Mickanin C, Porter JA (2012a) RNF12 controls embryonic stem cell fate and morphogenesis in zebrafish embryos by targeting Smad7 for degradation. Mol Cell46: 650-661 doi: 10.1016/j.molcel.2012.04.003
|
145 |
Zhang L, Zhou F, Drabsch Y, Gao R, Snaar-Jagalska BE, Mickanin C, Huang H, Sheppard KA, Porter JA, Lu CX (2012b) USP4 is regulated by AKT phosphorylation and directly deubiquitylates TGF-beta type I receptor. Nat Cell Biol14: 717-726 doi: 10.1038/ncb2522
|
146 |
Zhang L, Zhou F, Garcia de Vinuesa A, de Kruijf EM, Mesker WE, Hui L, Drabsch Y, Li Y, Bauer A, Rousseau A (2013a) TRAF4 Promotes TGF-beta receptor signaling and drives breast cancer metastasis. Mol Cell51(5): 559-572 doi: 10.1016/j.molcel.2013.07.014
|
147 |
Zhang X, Zhang J, Bauer A, Zhang L, Selinger DW, Lu CX, Ten Dijke P (2013b) Fine-tuning BMP7 signalling in adipogenesis by UBE2O/E2-230K-mediated monoubiquitination of SMAD6. EMBO J32: 996-1007 doi: 10.1038/emboj.2013.38
|
148 |
Zhao B, Schlesiger C, Masucci MG, Lindsten K (2009) The ubiquitin specific protease 4 (USP4) is a new player in the Wnt signalling pathway. J Cell Mol Med13: 1886-1895 doi: 10.1111/j.1582-4934.2008.00682.x
|
149 |
Zhao Y, Thornton AM, Kinney MC, Ma CA, Spinner JJ, Fuss IJ, Shevach EM, Jain A (2011) The deubiquitinase CYLD targets Smad7 protein to regulate transforming growth factor beta (TGFbeta) signaling and the development of regulatory T cells. J Biol Chem286: 40520-40530 doi: 10.1074/jbc.M111.292961
|
150 |
Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH (1999) A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature400: 687-693 doi: 10.1038/23293
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|